JP2003313062A - Hydraulic composition - Google Patents

Hydraulic composition

Info

Publication number
JP2003313062A
JP2003313062A JP2002116201A JP2002116201A JP2003313062A JP 2003313062 A JP2003313062 A JP 2003313062A JP 2002116201 A JP2002116201 A JP 2002116201A JP 2002116201 A JP2002116201 A JP 2002116201A JP 2003313062 A JP2003313062 A JP 2003313062A
Authority
JP
Japan
Prior art keywords
heat storage
latent heat
temperature
microcapsules
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002116201A
Other languages
Japanese (ja)
Inventor
Shinichi Matsushita
晋一 松下
Mamoru Ishiguro
守 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Mitsubishi Paper Mills Ltd
Original Assignee
Asahi Kasei Corp
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp, Mitsubishi Paper Mills Ltd filed Critical Asahi Kasei Corp
Priority to JP2002116201A priority Critical patent/JP2003313062A/en
Publication of JP2003313062A publication Critical patent/JP2003313062A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic composition with which inorganic latent heat accumulative building materials having a reduced dimensional change at about a phase transition temperature can be produced. <P>SOLUTION: The hydraulic composition contains a hydraulic material, a microcapsule involving a latent heat accumulative material and a microcapsule involving a latent heat accumulative material including porous inorganic powder. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、壁・床・天井等に
使用されて、一般建築物、住宅等を蓄熱構造に出来る無
機系建材を得るために適する水硬性組成物に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic composition suitable for use in walls, floors, ceilings and the like to obtain an inorganic building material capable of forming a heat storage structure in general buildings and houses.

【0002】[0002]

【従来の技術】近年、住宅等の建築においては、ボード
建材を構造躯体に取り付ける工法が多用されている。ボ
ード建材自体には躯体としての強度を持たせずに済むの
で、軽量・薄型の部材で住宅を構成出来、施工の簡略化
や工期短縮に著しく寄与している。
2. Description of the Related Art In recent years, in the construction of houses and the like, a method of attaching a board building material to a structural body has been widely used. Since the board building material itself does not have to have strength as a frame, it is possible to construct a house with lightweight and thin members, which contributes significantly to the simplification of construction and shortening the construction period.

【0003】しかし、このような住宅では建物の熱容量
が極めて小さくなることが多い。そのため、室内温度や
壁面温度が外界の環境温度に対して敏感に連動し、室内
の温度変化が大きくなる傾向がある。従って、断熱性能
を高めると共に、電力やガス等のエネルギーを大量に消
費する空調設備を使用して快適温度を維持しているのが
現状である。
However, in such a house, the heat capacity of the building is often extremely small. Therefore, the room temperature and the wall surface temperature are sensitively linked to the external environment temperature, and the temperature change in the room tends to increase. Therefore, it is the current situation that the thermal insulation performance is improved and the comfortable temperature is maintained by using the air conditioning equipment which consumes a large amount of energy such as electric power and gas.

【0004】一方、太陽熱や空調の熱等を蓄え、必要な
時にそれを取り出すようにする、所謂、蓄熱技術を住宅
に応用することによって、快適性や省エネルギー性を向
上させようとする試みも行われている。
On the other hand, an attempt is made to improve comfort and energy saving by applying so-called heat storage technology, which stores solar heat, heat from air conditioning, and the like, and takes out the heat when necessary. It is being appreciated.

【0005】しかし、十分な蓄熱容量を確保するために
は、相応の容積が必要であり、躯体自体がコンクリート
等で構成されている建物以外においては、新たに蓄熱部
材を設けるために相応するスペースを確保する必要が生
じていた。
However, in order to secure a sufficient heat storage capacity, a corresponding volume is required, and in a building other than a building in which the skeleton itself is made of concrete or the like, a corresponding space for newly installing a heat storage member. Had to be secured.

【0006】蓄熱機能を付与するためにコンクリートを
打設したり、煉瓦や砂を敷き詰めたりする等の方法が用
いられているが、施工管理が煩雑になる上、重量物であ
るために、その設置部位は一階床部分等に限られてい
た。
[0006] Methods such as pouring concrete or laying bricks or sand are used to impart a heat storage function, but the construction management is complicated and the weight is heavy. The installation site was limited to the first floor and so on.

【0007】住宅に用いられるボード部材には様々な種
類があるが、夫々の材料の特性を考慮して、適した部位
に施工されている。セメントや石膏等の水硬性材料を結
合材としたボード材料は比較的高い強度を持ち、住宅用
ボード材料として極めて有用である。
There are various types of board members used in houses, but they are constructed in suitable parts in consideration of the characteristics of each material. A board material using a hydraulic material such as cement or gypsum as a binder has relatively high strength and is extremely useful as a board material for a house.

【0008】そのまま蓄熱部材として利用することも考
えられるが、板厚を厚くしなければ十分な蓄熱容量を確
保出来ず、そうすると重量が大きくなってしまうという
問題を有していた。そこで、潜熱蓄熱機能を付与し、ボ
ード状で軽量でありながら蓄熱材として利用出来る新規
建材の出現が望まれている。
Although it can be considered to use it as a heat storage member as it is, there is a problem that a sufficient heat storage capacity cannot be secured unless the plate thickness is increased, and then the weight becomes large. Therefore, it is desired to develop a new building material that has a latent heat storage function and is usable as a heat storage material while being board-shaped and lightweight.

【0009】一般に、水硬性材料は、水和反応によって
生成した水和物が組成物内の粒子間空隙に析出し、これ
を充填していくことによって硬化し、強度が出現する。
水和反応に影響する要因は極めて多く、潜熱蓄熱効果を
有する材料をそのまま混ぜ込んでも十分な固定化効果が
得られず、水和の進行阻害による硬化不良や内容物の漏
出が発生し易かった。
Generally, in a hydraulic material, a hydrate formed by a hydration reaction is precipitated in interparticle voids in the composition and is filled into the voids to be hardened, so that strength appears.
There are many factors that affect the hydration reaction, and even if a material having a latent heat storage effect was mixed as it was, a sufficient immobilization effect could not be obtained, and curing failure and leakage of the contents were likely to occur due to inhibition of hydration progress. .

【0010】その対策として、マイクロカプセル化等の
手段によって水和反応相と隔離する手法が考えられる
が、マイクロカプセルが破壊することなく原料組成物中
に分散したり、成形工程において良好な流動特性を維持
することは困難であった。
As a countermeasure for this, a method of separating from the hydration reaction phase by means such as microencapsulation can be considered. However, the microcapsules can be dispersed in the raw material composition without being broken, or good flow characteristics can be obtained in the molding process. Was difficult to maintain.

【0011】また、潜熱蓄熱材は相転移点で不連続な体
積変化をするためマイクロカプセル化されていてもその
大きさは変化する。そのため、相変化に伴う体積変化が
直接的にセメント基材に伝わり、材料の変形や亀裂発生
の原因の1つになってしまうという問題があった。
Further, since the latent heat storage material undergoes a discontinuous volume change at the phase transition point, its size changes even if it is microencapsulated. Therefore, there has been a problem that the volume change accompanying the phase change is directly transmitted to the cement base material, which becomes one of the causes of the deformation and crack generation of the material.

【0012】潜熱蓄熱材と建材を融合させた複合建材を
実現するためには、建材内に内蔵された相変化材料の融
解時の流出を防ぐ必要がある。例えば、特開平2-298759
号公報(公知例1)のように樹脂製容器で封入したり、
特開平5-1281号公報(公知例2)のように樹脂材料へ含
浸一体化したり、特開平8-219673号公報(公知例3)の
ようにアルミラミネートフィルムで密封する等の手段が
開示されている。
In order to realize a composite building material in which a latent heat storage material and a building material are fused, it is necessary to prevent the phase change material contained in the building material from flowing out at the time of melting. For example, JP-A-2-298759
As described in Japanese Patent Publication (Publication 1),
Means such as impregnation and integration into a resin material as disclosed in JP-A-5-1281 (publication example 2) and sealing with an aluminum laminate film as disclosed in JP-A-8-219673 (publication example 3) are disclosed. ing.

【0013】また、特開昭61-235485号公報(公知例
4)では、潜熱蓄熱材を有機質被膜により被覆して粒径
50μmから2mm程度の微小粒状とし、コンクリート等
の母材内に分散させている。
In Japanese Patent Laid-Open No. 61-235485 (known example 4), a latent heat storage material is coated with an organic coating to form fine particles having a particle size of 50 μm to 2 mm and dispersed in a base material such as concrete. ing.

【0014】しかし、混練時に強い撹拌を与えると有機
質被膜が破壊して潜熱蓄熱材の漏出が起こり、反対に有
機質被膜の破壊を避けるために混練が不足すると、材料
の均一性が損なわれて材料強度が低下する等の問題があ
った。
However, when strong agitation is applied during kneading, the organic coating film is broken and the latent heat storage material leaks out. On the contrary, when the kneading is insufficient to avoid the destruction of the organic coating film, the uniformity of the material is impaired and the material is impaired. There was a problem such as a decrease in strength.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、前述の
従来例において、前述の公知例1〜3のように容器への
封入や表面を被覆する方法では、蓄熱材の切断や孔あけ
等の加工が不可能である。また、相変化材料と親和性が
高い樹脂材料に含浸させたり、練り込んだりした場合で
あっても蓄熱材の漏出を防止するには不十分であった。
However, in the above-mentioned conventional example, in the method of enclosing in the container and covering the surface as in the above-mentioned known examples 1 to 3, the processing such as cutting and punching of the heat storage material is performed. It is impossible. Further, even when the resin material having a high affinity with the phase change material is impregnated or kneaded, it is insufficient to prevent the heat storage material from leaking.

【0016】また、前述の公知例4では、混練時に強い
撹拌を与えると有機質被膜が破壊して潜熱蓄熱材の漏出
が起こり、反対に有機質被膜の破壊を避けるために混練
が不足すると材料の均一性が損なわれて材料強度が低下
する等の問題があった。
Further, in the above-mentioned known example 4, when strong agitation is applied during kneading, the organic coating film is broken and the latent heat storage material leaks out, and conversely, if the kneading is insufficient to avoid the destruction of the organic coating film, the material becomes uniform. However, there is a problem in that the material strength is deteriorated and the material strength is reduced.

【0017】本発明は前記課題を解決するものであり、
その目的とするところは、通常のボード材料と同様に切
断や孔あけ加工を行っても性能低下が起こることがな
く、特殊な施工方法を必要としない潜熱蓄熱建材等に適
用出来る水硬性組成物、及び潜熱蓄熱材の相転移に伴う
体積変化の影響が極めて小さく、安定した部材寸法を保
持出来る潜熱蓄熱建材等に適用出来る水硬性組成物を提
供するものである。
The present invention is to solve the above-mentioned problems.
The purpose is to set a hydraulic composition that can be applied to latent heat storage building materials that do not require a special construction method without performance deterioration even if cutting and drilling are performed like ordinary board materials. The present invention provides a hydraulic composition that can be applied to a latent heat storage building material or the like that has a very small effect of volume change due to the phase transition of the latent heat storage material and can maintain stable member dimensions.

【0018】[0018]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく鋭意検討した結果、マイクロカプセル化し
た潜熱蓄熱材を水硬性材料に分散一体化させるにあた
り、多孔質無機粉体を一定量以上共存させることによっ
て、相転移点での体積変化の影響が極めて少ない材料が
得られることを見出し、本発明を完成したものである。
Means for Solving the Problems The inventors of the present invention have made extensive studies to solve the above problems, and as a result, in dispersing and integrating a microencapsulated latent heat storage material with a hydraulic material, a porous inorganic powder was used. The present invention has been completed by finding that a material having a very small effect of volume change at the phase transition point can be obtained by coexisting with a certain amount or more.

【0019】即ち、前記目的を達成するための本発明に
係る代表的な構成は、水硬性材料、潜熱蓄熱材を内包す
るマイクロカプセル、多孔質無機粉体を含有する潜熱蓄
熱材を内包するマイクロカプセルを含有することを特徴
とする水硬性組成物である。
That is, a typical constitution according to the present invention for achieving the above object is a hydraulic material, a microcapsule containing a latent heat storage material, and a microcapsule containing a latent heat storage material containing a porous inorganic powder. A hydraulic composition comprising a capsule.

【0020】[0020]

【発明の実施の形態】以下に、本発明に係る水硬性組成
物の一実施形態について詳細に説明する。本発明で使用
出来る蓄熱材(潜熱蓄熱材)としては、テトラデカン
(C14)、ペンタデカン(C15)、ヘキサデカン(C1
6)、オクタデカン(C18)等のノルマルパラフィン類
や、無機系共晶物及び無機系水和物、酢酸、カプリル酸
等の脂肪酸類、ベンゼン、p−キシレン等の芳香族炭化
水素化合物、パルミチン酸イソプロピル、ステアリン酸
ブチル、デシルアルコール等のアルコール類等の化合物
が挙げられ、好ましくは融解熱量が80kJ/kg以上
の化合物で、化学的、物理的に安定で、しかも安価なも
のが用いられる。これ等は混合して用いても良いし、必
要に応じて過冷却防止剤、比重調節剤、劣化防止剤等を
添加することが出来る。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the hydraulic composition according to the present invention will be described in detail below. As the heat storage material (latent heat storage material) that can be used in the present invention, tetradecane (C14), pentadecane (C15), hexadecane (C1)
6), normal paraffins such as octadecane (C18), inorganic eutectic and inorganic hydrate, fatty acids such as acetic acid and caprylic acid, aromatic hydrocarbon compounds such as benzene and p-xylene, palmitic acid Examples thereof include compounds such as isopropyl, butyl stearate, and alcohols such as decyl alcohol. Preferably, compounds having a heat of fusion of 80 kJ / kg or more, chemically and physically stable, and inexpensive are used. These may be mixed and used, and if necessary, a supercooling preventive agent, a specific gravity adjusting agent, a deterioration preventing agent and the like may be added.

【0021】一般に潜熱蓄熱材をマイクロカプセル化す
る方法としては、複合エマルジョン法によるカプセル化
法(特開昭62-1452号公報)、蓄熱材粒子の表面に熱可
塑性樹脂を噴霧する方法(特開昭62-45680号公報)、蓄
熱材粒子の表面に液中で熱可塑性樹脂を形成する方法
(特開昭62-149334号公報)、蓄熱材粒子の表面でモノ
マーを重合させ被覆する方法(特開昭62-225241号公
報)、界面重縮合反応によるポリアミド皮膜マイクロカ
プセルの製法(特開平2-258052号公報)等に記載されて
いる方法を用いることが出来るためここでは説明を省略
する。
In general, as a method of microencapsulating a latent heat storage material, an encapsulation method by a composite emulsion method (JP-A-62-1452) and a method of spraying a thermoplastic resin on the surface of the heat storage material particles (JP-A No. 62-45680), a method of forming a thermoplastic resin in the liquid on the surface of the heat storage material particles (JP-A-62-149334), a method of polymerizing and coating a monomer on the surface of the heat storage material particles (special The method described in, for example, JP-A No. 62-225241) and the method for producing microcapsules of polyamide film by interfacial polycondensation reaction (Japanese Patent Application Laid-Open No. 2-258052) can be used, and the description is omitted here.

【0022】マイクロカプセルの膜材としては、界面重
合法、インサイチュー(in-situ)法等の手法で得られる
ポリスチレン、ポリアクリロニトリル、ポリアミド、ポ
リアクリルアミド、エチルセルロース、ポリウレタン、
アミノプラスト樹脂、またはゼラチンとカルボキシメチ
ルセルロース、若しくはアラビアゴムとのコアセルベー
ション法を利用した合成、或いは天然の樹脂が用いられ
るが、本発明のように、マイクロカプセルを破壊させず
に母材中に分散させることを考慮すれば、物理的・化学
的に安定なインサイチュー法によるメラミンホルマリン
樹脂皮膜、尿素ホルマリン樹脂を用いたマイクロカプセ
ルを使用することが特に好ましい。
As the film material of the microcapsule, polystyrene, polyacrylonitrile, polyamide, polyacrylamide, ethyl cellulose, polyurethane obtained by a method such as an interfacial polymerization method or an in-situ method can be used.
Aminoplast resin, or a synthetic or natural resin using the coacervation method of gelatin and carboxymethyl cellulose or gum arabic is used, but as in the present invention, the microcapsules are not destroyed in the matrix. Considering dispersion, it is particularly preferable to use a physically and chemically stable in-situ melamine formalin resin film and microcapsules using urea formalin resin.

【0023】一般に体積平均粒径が大きいマイクロカプ
セルは、撹拌や成形時に生じる剪断力等によりカプセル
が破壊し易くなる。粒子径の大きいカプセルでは、基材
中に均一に分散させても、母材とカプセルとの界面が欠
陥になり易く、曲げ強度等の機械的性質が低下する。加
えて、母材との比重差による材料の分離が発生し易くな
る等の問題がある。
In general, microcapsules having a large volume average particle size are easily broken by stirring or shearing force generated during molding. In a capsule having a large particle diameter, even if the capsule is uniformly dispersed in the base material, the interface between the base material and the capsule is likely to have a defect, and mechanical properties such as bending strength are deteriorated. In addition, there is a problem that the material is easily separated due to the difference in specific gravity from the base material.

【0024】また、原料粉体の粒子径よりも著しく大き
いカプセルを混入すると、カプセルの存在によって組成
物の流動特性が著しく悪化し、製造上、好ましくないた
めマイクロカプセルの粒子径は0.5μm以上、且つ5
0μm以下の範囲にすることが好ましい。
When a capsule having a particle size significantly larger than that of the raw material powder is mixed, the flowability of the composition is significantly deteriorated due to the presence of the capsule, which is not preferable in production, and therefore the particle size of the microcapsule is 0.5 μm or more. , And 5
The range is preferably 0 μm or less.

【0025】この粒子径の範囲より小さいマイクロカプ
セルは、安定して製造することが技術的に難しく、製造
コストが高くなるばかりでなく、カプセルの表面積が著
しく大きくなるので撹拌時に必要な水量がかえって多く
なり、ボードの機械的強度を低下させる傾向があるので
好ましくない。
Microcapsules having a particle size smaller than this range are technically difficult to stably produce, and not only the production cost is high, but also the surface area of the capsules is remarkably large, so that the amount of water required at the time of stirring is rather large. This is not preferable because it tends to increase and the mechanical strength of the board tends to decrease.

【0026】尚、本実施形態のマイクロカプセル粒子径
は、米国コールター社製粒度測定装置「コールターカウ
ンターマルチサイザー」を用いて得られた体積平均粒子
径を示す。
The microcapsule particle size of this embodiment is a volume average particle size obtained by using a particle size measuring device "Coulter Counter Multisizer" manufactured by Coulter, Inc. in the United States.

【0027】マイクロカプセルの粒子径は、乳化剤の種
類と濃度、乳化時の乳化液の温度、乳化比(水相と油相
の体積比率)、乳化機、分散機等と称される微粒化装置
の運転条件(撹拌回転数、時間等)等を適宜調節して所
望の粒子径に設定される。
The particle size of the microcapsules depends on the type and concentration of the emulsifier, the temperature of the emulsified liquid during emulsification, the emulsification ratio (volume ratio of the water phase and the oil phase), and an atomizer called an emulsifier or disperser. The operating conditions (stirring speed, time, etc.) are appropriately adjusted to set a desired particle size.

【0028】相変化を利用した潜熱蓄熱材においては、
相転移点における体積変化がおこり、マイクロカプセル
の体積も変動する。マイクロカプセルが基材中に隙間な
く埋め込まれている場合、カプセル自体の体積変化が直
接的に基材に伝わるため部材寸法の変化が比較的大きく
なる。
In the latent heat storage material utilizing phase change,
Volume change occurs at the phase transition point, and the volume of the microcapsule also changes. When the microcapsules are embedded in the base material without any gaps, the change in the volume of the capsule itself is directly transmitted to the base material, so that the change in the member size becomes relatively large.

【0029】本発明では、多孔質無機粉体を組成物中に
一定量以上含有させることを特徴としており、これによ
って、潜熱蓄熱マイクロカプセルの体積変化に起因する
材料の寸法変化を極めて小さくすることが可能になる。
The present invention is characterized by containing a certain amount or more of the porous inorganic powder in the composition, thereby making it possible to extremely reduce the dimensional change of the material due to the volume change of the latent heat storage microcapsules. Will be possible.

【0030】多孔質無機粉体は化学的に極めて安定であ
るためセメントの水和や強度発現に殆ど影響を与えな
い。多孔質体であることによって、極めて粒径の小さい
マイクロカプセルは粉体細孔内や表面の凹部等において
周囲を強く拘束されない状態で存在することが出来、カ
プセルの体積変化に伴う部材の寸法変化を緩和する。ま
た多孔質であるためマイクロカプセルが破壊した場合、
蓄熱材を細孔内に保持し、漏出を防止する。
Since the porous inorganic powder is chemically extremely stable, it hardly affects the hydration and strength development of cement. Since it is a porous material, microcapsules with extremely small particle size can exist in a state in which the surroundings are not strongly restrained in the pores of the powder or in the recesses on the surface, and the dimensional change of the member due to the volume change of the capsule. Alleviate. Also, if the microcapsule breaks because it is porous,
Holds the heat storage material in the pores to prevent leakage.

【0031】本発明で用いる多孔質無機粉体としては硅
酸カルシウムや硅酸アルミニウム等のケイ酸塩化合物を
主成分とする鉱物または人工鉱物の多孔質無機粉体、ケ
イ藻土、パーライト等の多孔質無機粉体が使用出来る。
Examples of the porous inorganic powder used in the present invention include mineral or artificial mineral porous inorganic powders containing silicate compounds such as calcium silicate and aluminum silicate as a main component, diatomaceous earth, and pearlite. Porous inorganic powder can be used.

【0032】多孔質珪酸カルシウム粉体としては、例え
ば珪石のような珪酸質材料とセメント、生石灰のような
石灰質原料とを混合したスラリー状物に発泡剤、気泡剤
等の気泡生成剤を添加混合した後、発泡、硬化させ、高
温高圧水蒸気養生して得られる人工鉱物等を粉砕したも
のを挙げることが出来る。
As the porous calcium silicate powder, for example, a foaming agent such as a foaming agent and a foaming agent are added and mixed to a slurry-like material in which a siliceous material such as silica stone is mixed with cement and a calcareous raw material such as quicklime. After that, an artificial mineral or the like obtained by foaming and hardening and curing at high temperature and high pressure steam is pulverized.

【0033】また、軽量気泡コンクリートでもある多孔
質珪酸カルシウムを使用して、それを粉砕して粉体とし
たものでも良い。また、多孔質陶磁器、煉瓦等を粉砕し
て粉体としたものが良い。
It is also possible to use a porous calcium silicate which is also a lightweight cellular concrete and grind it into a powder. Further, it is preferable to pulverize porous ceramics, bricks, etc. to obtain powder.

【0034】多孔質無機粉体のセメントに対する含有量
はセメント100重量部に対して50重量部以上が好ま
しく、より好ましくは100重量部以上、且つ500重
量部以下の範囲が好ましい。
The content of the porous inorganic powder in the cement is preferably 50 parts by weight or more, more preferably 100 parts by weight or more and 500 parts by weight or less, based on 100 parts by weight of the cement.

【0035】この範囲以上であると建材の機械強度が著
しく低下して好ましくなく、逆に含有量が少ないと本発
明で述べる蓄熱材の相変化時の製品寸法変化率が大きく
なり好ましくない。
If the content is more than this range, the mechanical strength of the building material is remarkably lowered, which is not preferable, and conversely, if the content is too small, the product dimensional change rate at the phase change of the heat storage material described in the present invention becomes large, which is not preferable.

【0036】また、多孔質無機粉体の粒径は体積平均粒
径5μm以上、且つ100μm以下のものが好適に用い
られる。この範囲より大きいと粉体の粗大な細孔が残存
しているため、欠陥となり強度低下の原因となる。
The particle diameter of the porous inorganic powder is preferably 5 μm or more and 100 μm or less. If it is larger than this range, coarse pores of the powder remain, which causes defects and causes a decrease in strength.

【0037】体積平均粒径が5μmよりも小さいと、粉
砕に非常にエネルギーと時間が必要であり生産性が低下
する。尚、本発明の多孔質珪酸カルシウム粉体の粒子径
はレーザー回折・散乱式粒度測定装置「マイクロトラッ
ク粒度分布測定装置」を用い、水を分散媒とした湿式測
定で得られた体積平均粒子径を示す。
If the volume average particle size is smaller than 5 μm, it takes a lot of energy and time to pulverize, and the productivity is lowered. The particle size of the porous calcium silicate powder of the present invention is a volume average particle size obtained by wet measurement using a laser diffraction / scattering particle size measuring device “Microtrac particle size distribution measuring device” with water as a dispersion medium. Indicates.

【0038】蓄熱材の相転移温度は特に限定されない
が、快適な温度環境維持を目的とする場合には、5℃以
上、且つ50℃以下が望ましい。しかしながら、とりわ
け日本の様な夏場と冬場の温度差が大きい気候風土にお
いては、潜熱蓄熱材の融点を一定にしてしまうことは何
れかの季節においては、その潜熱が全く機能していない
ということになるため、その土地の環境に応じた融点設
定または2種以上の蓄熱材を別々に内包したマイクロカ
プセルを組み合わせることが効果的である。
The phase transition temperature of the heat storage material is not particularly limited, but is preferably 5 ° C. or higher and 50 ° C. or lower for the purpose of maintaining a comfortable temperature environment. However, especially in climate climates where there is a large temperature difference between summer and winter, such as Japan, keeping the melting point of the latent heat storage material constant means that the latent heat does not function at all in any season. Therefore, it is effective to set the melting point according to the environment of the land or to combine the microcapsules in which two or more heat storage materials are separately included.

【0039】具体的には、夏場の室内の温度上昇を抑え
るためには約25℃〜30℃に融点を有する蓄熱材のマ
イクロカプセルを用い、冬場の室温の低下を抑えるため
に10℃以上、且つ20℃以下に融点を有する蓄熱材の
マイクロカプセルの2種を含む建材を用いることにより
年間を通して、より快適な室内環境を提供し得ることが
期待出来る。
Specifically, in order to suppress the temperature rise in the room in the summer, microcapsules of a heat storage material having a melting point of about 25 ° C to 30 ° C are used, and in order to suppress the decrease in the room temperature in the winter, 10 ° C or more, In addition, it is expected that a more comfortable indoor environment can be provided throughout the year by using a building material containing two kinds of microcapsules as a heat storage material having a melting point of 20 ° C. or lower.

【0040】また、25℃以上、且つ50℃の比較的高
い相転移温度の蓄熱材を使用することによって、床暖房
システムの一部を構成させたり、5℃〜25℃の比較的
低い相転移温度の蓄熱材を使用することによって、冷房
システムの一部を構成させたりすることも可能である。
Further, by using a heat storage material having a relatively high phase transition temperature of 25 ° C. or higher and 50 ° C., a part of the floor heating system can be formed, or a relatively low phase transition of 5 ° C. to 25 ° C. It is also possible to form part of the cooling system by using a heat storage material of temperature.

【0041】本発明の水硬性組成物を利用した建材は、
顕熱蓄熱材に比べて蓄熱量付与のために大きなスペース
を必要としないから、従来の住宅設計を変えることな
く、躯体構造に取り付けるだけで、蓄熱機能を付与する
ことが出来る。もちろん、本発明による水硬性組成物の
使用目的及び用途は、これ等に限定されるものではな
い。
A building material using the hydraulic composition of the present invention is
Compared with the sensible heat storage material, it does not require a large space for providing the amount of heat storage, so the heat storage function can be provided by simply attaching it to the frame structure without changing the conventional housing design. Of course, the purpose and use of the hydraulic composition according to the present invention are not limited to these.

【0042】マイクロカプセル化潜熱蓄熱材は、水に均
一に分散させたスラリーで添加することが好ましい。ス
ラリーとして添加することにより、マイクロカプセル化
潜熱蓄熱材が均一に分散した基材が容易に得られるだけ
でなく、混練・撹拌時等にカプセル同士、或いはカプセ
ルとその他の粒子との衝突や摩擦によるカプセルの破損
を低減出来る。また、水硬性材料の水和に必要な水分を
スラリーから供給することにより製造設備が簡略化され
る。
The microencapsulated latent heat storage material is preferably added as a slurry uniformly dispersed in water. By adding it as a slurry, not only a base material in which the microencapsulated latent heat storage material is uniformly dispersed can be easily obtained, but also due to collision or friction between capsules or between capsules and other particles during kneading / stirring, etc. Capsule damage can be reduced. Further, by supplying the water necessary for the hydration of the hydraulic material from the slurry, the manufacturing facility can be simplified.

【0043】本実施形態の潜熱蓄熱建材中に占めるマイ
クロカプセルの含有量は、セメントと多孔質無機粉体の
混合物100重量部に対して1重量部以上、且つ200
重量部以下の範囲、好ましくは10重量部以上、且つ1
50重量部以下の範囲であることが好ましい。
The content of the microcapsules in the latent heat storage building material of this embodiment is 1 part by weight or more and 200 parts by weight or more with respect to 100 parts by weight of the mixture of cement and porous inorganic powder.
The range is not more than 10 parts by weight, preferably not less than 10 parts by weight and 1
It is preferably in the range of 50 parts by weight or less.

【0044】この範囲以上であると潜熱蓄熱性に富み好
ましいが、完成した建材の物理的強度が著しく低下して
好ましくなく、逆に含有量が少ないと本発明で述べる蓄
熱効果に乏しくなり好ましくない。
When the content is more than this range, it is preferable because the latent heat storage property is excellent, but the physical strength of the finished building material is remarkably lowered, and when the content is too small, the heat storage effect described in the present invention becomes poor, which is not preferable. .

【0045】マイクロカプセル化潜熱蓄熱材スラリーの
固形分濃度は、5%以上、且つ70%以下であり、更に
好ましくは30%以上、且つ50%以下である。固形分
濃度が高すぎる場合には水を添加して調節可能であるが
固形分濃度が低すぎると、十分な量の蓄熱カプセルを混
入出来ず、蓄熱材としての機能が十分発揮出来ないか、
水硬性材料の硬化に悪影響を与えるので好ましくない。
The solid content concentration of the microencapsulated latent heat storage material slurry is 5% or more and 70% or less, more preferably 30% or more and 50% or less. If the solid content concentration is too high, it is possible to adjust by adding water, but if the solid content concentration is too low, it is not possible to mix a sufficient amount of heat storage capsules, and whether the function as a heat storage material cannot be fully exerted,
It is not preferable because it adversely affects the hardening of the hydraulic material.

【0046】本発明において使用される水硬性材料とし
てはセメントまたは石膏が使用出来る。セメントとして
は、普通、早強、中庸熱ポルトランドセメント、高炉、
シリカ、フライアッシュセメント等の混合セメント等、
及びアルミナセメント等が挙げられる。これ等は単独で
用いても良いし、混合して用いても良い。
As the hydraulic material used in the present invention, cement or gypsum can be used. As cement, normal, early strength, moderate heat Portland cement, blast furnace,
Mixed cement such as silica and fly ash cement,
And alumina cement and the like. These may be used alone or in combination.

【0047】石膏原料は、石膏ボード原料として使用出
来るレベルの純度があれば十分である。使用される石膏
は、α型半水石膏、β型半水石膏の何れか、或いはこれ
等の混合物であっても良く、任意の配合比率で使用出来
る。
It is sufficient that the gypsum raw material has such a purity that it can be used as a gypsum board raw material. The gypsum used may be any one of α-type hemihydrate gypsum, β-type hemihydrate gypsum, or a mixture thereof, and can be used in an arbitrary mixing ratio.

【0048】混練に必要な水分が不足すると、混練物の
流動性が著しく悪くなり、均一な組成物が得られ難くな
るばかりでなく、混練後の成形や施工が難しくなるた
め、予め蓄熱材スラリーに必要量の水を添加しておくこ
とが好ましい。
If the water content required for kneading is insufficient, the fluidity of the kneaded product will be significantly deteriorated, and not only a uniform composition will be difficult to obtain but also molding and construction after kneading will be difficult. It is preferable to add a necessary amount of water to.

【0049】また、分散材や補強繊維材料等、通常ボー
ド状建材を製造する際に使用される各種材料を添加する
ことが可能である。
Further, it is possible to add various materials which are usually used in the production of board-like building materials such as dispersants and reinforcing fiber materials.

【0050】配合物の混練機は特に限定しないが、2軸
強制攪拌ミキサー、アイリッヒミキサー、オムニミキサ
ー等を用いることが出来る。
The kneading machine for the compound is not particularly limited, but a twin-screw forced agitation mixer, an Erich mixer, an omni mixer and the like can be used.

【0051】成型方法、及び養生方法としては通常のボ
ード建材製造に用いられる方法が使用出来る。
As the molding method and the curing method, the methods used in the production of ordinary board building materials can be used.

【0052】<実施例1>メラミン粉末6.2gに37
%ホルムアルデヒド水溶液12gと水40gを加え、p
Hを8に調整した後、約70℃まで加熱してメラミンホ
ルムアルデヒド初期縮合物水溶液を得た。
Example 1 37 g per 6.2 g of melamine powder
% Formaldehyde aqueous solution 12g and water 40g, p
After adjusting H to 8, it was heated to about 70 ° C. to obtain an aqueous melamine formaldehyde initial condensate solution.

【0053】pHを4.5に調整した10%スチレン無
水マレイン酸共重合体のナトリウム塩水溶液100g中
に、蓄熱材としてn-オクタデカン(融点27℃)8g
部を激しく撹拌しながら添加し、平均粒子径が3.5μ
mになるまで乳化を行なった。
8 g of n-octadecane (melting point: 27 ° C.) as a heat storage material was added to 100 g of a 10% styrene-maleic anhydride sodium salt aqueous solution whose pH was adjusted to 4.5.
Part was added with vigorous stirring, and the average particle size was 3.5μ.
The emulsion was emulsified until m.

【0054】この乳化液に上記メラミン−ホルムアルデ
ヒド初期縮合物水溶液全量を添加し、70℃で2時間撹
拌を施した後、pHを9に調製して固形分濃度45%の
蓄熱材のマイクロカプセル分散液を得た。
The whole amount of the above melamine-formaldehyde initial condensate aqueous solution was added to this emulsion, and the mixture was stirred at 70 ° C. for 2 hours, adjusted to pH 9 and dispersed in microcapsules of a heat storage material having a solid content concentration of 45%. A liquid was obtained.

【0055】珪酸質原料65%と石灰質原料35%とを
主原料する混合スラリーにアルミニウム粉末を添加して
発泡硬化させた後、高温高圧水蒸気養生により水熱反応
処理し、多孔質珪酸カルシウムを得た。得られた多孔質
珪酸カルシウムを体積平均粒径30μmに粉砕した。
Aluminum powder was added to a mixed slurry containing 65% siliceous raw material and 35% calcareous raw material as main raw materials to foam and harden it, and then hydrothermally treated by high temperature and high pressure steam curing to obtain porous calcium silicate. It was The obtained porous calcium silicate was pulverized to a volume average particle size of 30 μm.

【0056】普通ポルトランドセメント430gと前記
多孔質珪酸カルシウム粉体1000g、及びビニロン繊
維7gとを5リットルオムニミキサーにて2分間混合し
た後、前記蓄熱スラリーを1300g添加し、2分間混
練した。
430 g of ordinary Portland cement, 1000 g of the above-mentioned porous calcium silicate powder, and 7 g of vinylon fiber were mixed with a 5 liter omni mixer for 2 minutes, and then 1300 g of the heat storage slurry was added and kneaded for 2 minutes.

【0057】得られたモルタルを、脱水プレス機によっ
て300mm×400mmの金型を用いて脱水プレス成形
し、約10mm厚の板状成形体を得た。成形体は60℃で
12時間蒸気養生した。
The obtained mortar was dehydrated and press-molded by a dehydration press machine using a mold of 300 mm × 400 mm to obtain a plate-shaped molded body having a thickness of about 10 mm. The molded body was steam-cured at 60 ° C. for 12 hours.

【0058】溶剤抽出によってマイクロカプセルの破損
に起因する潜熱蓄熱材の漏出量を測定し、カプセルの損
傷状態を調べた結果、混入したマイクロカプセルの殆ど
が破損せずに分散内在していることが明らかとなった。
The amount of leakage of the latent heat storage material caused by the breakage of the microcapsules by solvent extraction was measured, and the damage state of the capsules was investigated. As a result, it was found that most of the mixed microcapsules were present in the dispersion without being broken. It became clear.

【0059】得られた蓄熱ボードを環境温度が0℃〜5
0℃の変温試験槽の中に置き、蓄熱ボード中心部分の温
度を測定したところ、27℃付近に温度の緩衝性が観測
され、その付近の温度から容易に変化し難い性質の建材
が得られた。また、蓄熱ボードの24℃から30℃での
長さ変化率は200μm/mであった。
The heat storage board thus obtained has an ambient temperature of 0 ° C. to 5 ° C.
When placed in a 0 ° C temperature change test tank and measured the temperature of the central part of the heat storage board, a buffering property of temperature was observed at around 27 ° C, and a building material with properties that were not easily changed from the temperature around it was obtained. Was given. The rate of change in length of the heat storage board from 24 ° C to 30 ° C was 200 µm / m.

【0060】<実施例2>前記実施例1の多孔質珪酸カ
ルシウムの代わりに体積平均粒径35μmのケイ藻土粉
体を用い、前記実施例1と同様の操作で蓄熱ボードを作
製した。溶剤抽出によってマイクロカプセルの破損に起
因する潜熱蓄熱材の漏出量を測定し、カプセルの損傷状
態を調べた結果、混入したマイクロカプセルの殆どが破
損せずに分散内在していることが明らかとなった。
Example 2 A heat storage board was prepared in the same manner as in Example 1 except that diatomaceous earth powder having a volume average particle diameter of 35 μm was used instead of the porous calcium silicate of Example 1. The amount of leakage of the latent heat storage material due to the breakage of the microcapsules by solvent extraction was measured, and the damage state of the capsules was investigated.As a result, it was revealed that most of the mixed microcapsules were inherent in the dispersion without being damaged. It was

【0061】得られた蓄熱ボードを環境温度が0℃〜5
0℃の変温試験槽の中に置き、蓄熱ボード中心部分の温
度を測定したところ、27℃付近に温度の緩衝性が観測
され、その付近の温度から容易に変化し難い性質の建材
が得られた。また、蓄熱ボードの24℃から30℃での
長さ変化率は210μm/mであった。
The obtained heat storage board was used at an environmental temperature of 0 ° C to 5 ° C.
When placed in a 0 ° C temperature change test tank and measured the temperature of the central part of the heat storage board, a buffering property of temperature was observed at around 27 ° C, and a building material with properties that were not easily changed from the temperature around it was obtained. Was given. The rate of change in length of the heat storage board from 24 ° C to 30 ° C was 210 µm / m.

【0062】<実施例3>多孔質無機質粉体として、前
記実施例1の多孔質珪酸カルシウムの代わりに体積平均
粒径33μmに粉砕したパーライト粉末を用い、前記実
施例1と同様の条件で蓄熱ボードを作製した。溶剤抽出
によってマイクロカプセルの破損に起因する潜熱蓄熱材
の漏出量を測定し、カプセルの損傷状態を調べた結果、
混入したマイクロカプセルの殆どが破損せずに分散内在
していることが明らかとなった。
Example 3 As the porous inorganic powder, pearlite powder crushed to a volume average particle size of 33 μm was used in place of the porous calcium silicate of Example 1 described above, and heat was stored under the same conditions as in Example 1 above. A board was made. As a result of measuring the amount of latent heat storage material leaked due to breakage of the microcapsules by solvent extraction and examining the damage state of the capsules,
It was revealed that most of the mixed microcapsules were inherently dispersed without being damaged.

【0063】得られた蓄熱ボードを環境温度が0℃〜5
0℃の変温試験槽の中に置き、蓄熱ボード中心部分の温
度を測定したところ、27℃付近に温度の緩衝性が観測
され、その付近の温度から容易に変化し難い性質の建材
が得られた。また、蓄熱ボードの24℃から30℃での
長さ変化率は220μm/mであった。
The obtained heat storage board has an environmental temperature of 0 ° C to 5 ° C.
When placed in a 0 ° C temperature change test tank and measured the temperature of the central part of the heat storage board, a buffering property of temperature was observed at around 27 ° C, and a building material with properties that were not easily changed from the temperature around it was obtained. Was given. The rate of change in length of the heat storage board from 24 ° C to 30 ° C was 220 µm / m.

【0064】<比較例1>普通ポルトランドセメント1
430gとビニロン繊維7gとを5リットルオムニミキ
サーにて2分間混合した後、前記蓄熱スラリーを130
0g添加し、2分間混練した。
Comparative Example 1 Ordinary Portland Cement 1
430 g and 7 g of vinylon fiber were mixed in a 5 liter omni mixer for 2 minutes, and the heat storage slurry was mixed with 130 g of the heat storage slurry.
0 g was added and kneaded for 2 minutes.

【0065】得られたモルタルを、脱水プレス機によっ
て300mm×400mmの金型を用いて脱水プレス成形
し、約10mm厚の板状成形体を得た。成形体は60℃で
12時間蒸気養生した。得られた蓄熱ボードの24℃か
ら30℃での長さ変化率は1000μm/mであった。
The obtained mortar was dehydrated and press-molded by a dehydration press machine using a mold of 300 mm × 400 mm to obtain a plate-shaped molded body having a thickness of about 10 mm. The molded body was steam-cured at 60 ° C. for 12 hours. The rate of change in length of the obtained heat storage board from 24 ° C. to 30 ° C. was 1000 μm / m.

【0066】[0066]

【発明の効果】本発明は、上述の如き構成と作用とを有
するので、本発明に係る水硬性組成物を利用した潜熱蓄
熱建材及びその製造において、潜熱蓄熱材の相転移温度
付近での長さ変化率が少なく、しかも混入した潜熱蓄熱
材マイクロカプセルの殆どが破損せずに分散内在出来る
潜熱蓄熱建材の製造に適した水硬性組成物の提供が可能
となる。
EFFECTS OF THE INVENTION Since the present invention has the above-mentioned constitution and operation, in the latent heat storage building material using the hydraulic composition according to the present invention and in the production thereof, a long temperature near the phase transition temperature of the latent heat storage material is obtained. It is possible to provide a hydraulic composition suitable for the production of a latent heat storage building material, which has a small rate of change in temperature, and in which most of the mixed latent heat storage material microcapsules can be dispersed and contained without being damaged.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 5/08 C04B 111:40 // C04B 111:40 C09K 5/00 E (72)発明者 石黒 守 茨城県つくば市和台46番地 三菱製紙株式 会社内 Fターム(参考) 4G012 LA13 PA03 PA05 PA07 PB14 PB16 PB18 PC01 PC11 4G019 LA02 LA04 LB01 LB02 LD02Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C09K 5/08 C04B 111: 40 // C04B 111: 40 C09K 5/00 E (72) Inventor Mamoru Ishiguro Tsukuba City, Ibaraki Prefecture No. 46 Wadai Mitsubishi Paper Mills In-house F-term (reference) 4G012 LA13 PA03 PA05 PA07 PB14 PB16 PB18 PC01 PC11 4G019 LA02 LA04 LB01 LB02 LD02

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水硬性材料、潜熱蓄熱材を内包するマイ
クロカプセル、多孔質無機粉体を含有する潜熱蓄熱材を
内包するマイクロカプセルを含有することを特徴とする
水硬性組成物。
1. A hydraulic composition comprising a hydraulic material, microcapsules containing a latent heat storage material, and microcapsules containing a latent heat storage material containing a porous inorganic powder.
【請求項2】 前記水硬性材料がセメントまたは石膏で
あることを特徴とする請求項1に記載の水硬性組成物。
2. The hydraulic composition according to claim 1, wherein the hydraulic material is cement or gypsum.
JP2002116201A 2002-04-18 2002-04-18 Hydraulic composition Pending JP2003313062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002116201A JP2003313062A (en) 2002-04-18 2002-04-18 Hydraulic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002116201A JP2003313062A (en) 2002-04-18 2002-04-18 Hydraulic composition

Publications (1)

Publication Number Publication Date
JP2003313062A true JP2003313062A (en) 2003-11-06

Family

ID=29533927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002116201A Pending JP2003313062A (en) 2002-04-18 2002-04-18 Hydraulic composition

Country Status (1)

Country Link
JP (1) JP2003313062A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239860A (en) * 2007-03-28 2008-10-09 Toyokazutada Kk Heat-storage medium
EP3037496A4 (en) * 2013-08-23 2017-04-19 National University Corporation Kobe University Latent heat transfer material micro-encapsulated in hard shell, and production method for same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239860A (en) * 2007-03-28 2008-10-09 Toyokazutada Kk Heat-storage medium
EP3037496A4 (en) * 2013-08-23 2017-04-19 National University Corporation Kobe University Latent heat transfer material micro-encapsulated in hard shell, and production method for same

Similar Documents

Publication Publication Date Title
Liu et al. Integrating phase change materials into concrete through microencapsulation using cenospheres
Kastiukas et al. Development and optimisation of phase change material-impregnated lightweight aggregates for geopolymer composites made from aluminosilicate rich mud and milled glass powder
US8070876B1 (en) Fireproof insulating cementitious foam comprising phase change materials
RU2161143C2 (en) Composite material comprising aerogel, method of preparation thereof and also use thereof
Hassan et al. Thermal and structural performance of geopolymer concrete containing phase change material encapsulated in expanded clay
US20210130244A1 (en) Particle-stabilized foams using sustainable materials
KR101236584B1 (en) High strength aerogel paint compositions
CN105294141A (en) Nano porous concrete taking thixotropic colloid as template agent and preparation method
CN104263335A (en) Low-density early-strength micro-expanding cement mortar and preparation method thereof
CN102503337B (en) Prefabricated panels and preparation method thereof
JP4632507B2 (en) Latent heat storage cement building material
Ismail et al. Microencapsulation of bio-based phase change materials with silica coated inorganic shell for thermal energy storage
Sun et al. The synthesis of DMTDA microcapsules and investigation of self-healing cement paste through an isocyanate-amine system
Gencel et al. Development, characterization, and performance analysis of shape‐stabilized phase change material included‐geopolymer for passive thermal management of buildings
JP2007196465A (en) Non-flammable heat storage panel
CN102503277B (en) Building material and preparation method thereof
JP2003313062A (en) Hydraulic composition
JP2003260705A (en) Heat accumulation type fiberboard and utilization method therefor
JP2004269560A (en) Heat storage molded product
JPH10297950A (en) Concrete for accumulating cold heat
JP2002114560A (en) Latent heat storage type gypsum-base building material
WO2013139961A1 (en) A composition for production of construction materials
CN106085366A (en) Phase-change material, light phase transition honeycomb concrete plate and preparation method thereof
KR102651041B1 (en) Phase change material microcapsule, method for manufacturing the same, and thermal energy storage concrete composite using the same
JP2740873B2 (en) Cement hydration heat inhibitor and method for suppressing temperature rise due to heat of hydration of cement