JP2003307616A - Dielectric multilayer film filter and method for manufacturing the same - Google Patents

Dielectric multilayer film filter and method for manufacturing the same

Info

Publication number
JP2003307616A
JP2003307616A JP2002114936A JP2002114936A JP2003307616A JP 2003307616 A JP2003307616 A JP 2003307616A JP 2002114936 A JP2002114936 A JP 2002114936A JP 2002114936 A JP2002114936 A JP 2002114936A JP 2003307616 A JP2003307616 A JP 2003307616A
Authority
JP
Japan
Prior art keywords
substrate
film
multilayer film
polyimide
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002114936A
Other languages
Japanese (ja)
Inventor
Yoshikazu Yamaguchi
慶和 山口
Toyo Otsuki
東洋 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2002114936A priority Critical patent/JP2003307616A/en
Publication of JP2003307616A publication Critical patent/JP2003307616A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means to improve the yield for fabricating a multilayer film filter which uses a fluorinated polyimide substrate. <P>SOLUTION: After dielectric films are laminated onto a fluorinated polyimide substrate which has enough thickness for self supporting property and is easily handled, the multilayer film side is adhered and fixed to a supporting material, the back face of the polyimide substrate is ground and polished to control to specified thickness, and the film is cut into a chip size from the fluorinated polyimide substrate side. Or, if the substrate bends by the stress of the film after the dielectric layers are formed on the fluorinated polyimide substrate, a resin film such as polyimide is applied on the surface of the dielectric layer so as to reduce the bend and to protect the dielectric layers. Thus, the dielectric multilayer film filter is manufactured in a high yield. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光学特性に優れた
誘電体多層膜フィルタの製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a dielectric multilayer filter having excellent optical characteristics.

【0002】[0002]

【従来の技術】情報通信システムの基盤技術として光通
信技術が浸透していくにつれて多層膜フィルタは、光ネ
ットワーク用のキーデバイスとしてその重要性が高ま
り、低価格化と量産化が要望されている。
2. Description of the Related Art As optical communication technology has spread as a basic technology for information communication systems, multilayer filters have become more important as key devices for optical networks, and there is a demand for cost reduction and mass production. .

【0003】樹脂製材料を基板とした光学薄膜フィルタ
は、ガラス基板に較べ、耐久性に優れ、取り扱いやすい
という利点があり、期待されている。なかでも、フッ素
化ポリイミド樹脂は近赤外領域での透過特性がすぐれて
おり、そのうえ最も耐熱性が高く、強度も高いため、多
層膜フィルタの基板材料としては最も適している。
An optical thin film filter using a resin material as a substrate is expected to be excellent in durability and easy to handle as compared with a glass substrate. Among them, the fluorinated polyimide resin has excellent transmission characteristics in the near infrared region, and also has the highest heat resistance and high strength, and is therefore most suitable as the substrate material of the multilayer filter.

【0004】ポリイミド基板を用いた誘電体多層膜フィ
ルタは、従来、表面が平滑なガラスやSi(シリコン)
基板などの基材にディップ法やスピンコート法で厚さ1
0数μmのポリイミドフィルム基板を作製し、それに誘
電体膜を積層した後、ダイサーで所定サイズ(0.5m
m×1〜2mm)に切断した後、基材を取り除いて作製
していた。多層膜フィルタは、光ファイバに挿入して使
用されることが多く、基板を含めて30μm程度の薄膜
として、製造することが必要である。
Dielectric multilayer filters using a polyimide substrate are conventionally made of glass or Si (silicon) having a smooth surface.
Thickness of 1 on substrate such as substrate by dipping method or spin coating method
After preparing a polyimide film substrate with a size of 0 to several μm and laminating a dielectric film on it, dicer is used to obtain a predetermined size (0.5 m
After being cut into m × 1 to 2 mm), the base material was removed to prepare. The multilayer filter is often used by inserting it into an optical fiber, and it is necessary to manufacture it as a thin film of about 30 μm including the substrate.

【0005】しかし、これまでの方法では、ポリイミド
フィルムとガラスやSi(シリコン)などの基材との密
着力が弱いために、ダイサーでの切断中にフィルタチッ
プが基材から剥離し、チップの収率が極めて悪くコスト
低減が図りづらいという問題があった。
However, in the conventional methods, since the adhesion between the polyimide film and the base material such as glass or Si (silicon) is weak, the filter chip is separated from the base material during cutting by the dicer, and There is a problem that the yield is extremely poor and it is difficult to reduce the cost.

【0006】これを防ぐ方法として、特開2000−1
80618には、基板上に作製したポリイミドフィルム
基板を一旦基材から剥離し、再度、他の基材にワックス
などの柔らかい接着材を用いて貼り付け、その後、チッ
プ形状に応じたポリイミドフィルムから接着層の途中ま
での切り込みを入れ、その上に誘電体を積層した後、溶
剤等で接着材を溶解してチップ化する方法が述べられて
いる。
As a method for preventing this, Japanese Patent Laid-Open No. 2000-1
For 80618, the polyimide film substrate prepared on the substrate is once peeled from the base material, and is again attached to another base material using a soft adhesive such as wax, and then the polyimide film is adhered from the polyimide film according to the chip shape. A method is described in which a cut is made up to the middle of a layer, a dielectric is laminated on the cut, and then the adhesive is dissolved with a solvent or the like to form a chip.

【0007】しかし、この方法ではポリイミドフィルム
が薄いために、ハンドリングが難しく、また、基材から
の剥離工程や、接着材で基材に再接着する工程で、誘電
体層とポリイミドフィルムに割れやクラックが発生しや
すいという問題がある。
However, since the polyimide film is thin in this method, it is difficult to handle, and the dielectric layer and the polyimide film are cracked or broken during the step of peeling from the substrate or the step of re-adhering to the substrate with an adhesive. There is a problem that cracks are likely to occur.

【0008】このように、ポリイミド基板を用いた誘電
体多層膜フィルタを製造する場合、チップ化工程におい
て傷やチップのクラック等による欠陥が発生しやすく、
歩留まり低下を引き起こすことが大きな問題となり、製
造方法の改善が望まれていた。
As described above, when manufacturing a dielectric multilayer filter using a polyimide substrate, defects such as scratches and chip cracks are likely to occur in the chip forming process,
A major problem is that it causes a decrease in yield, and improvement of the manufacturing method has been desired.

【0009】本発明は、歩留まり良く、フッ素化ポリイ
ミド多層膜フィルタを製造するを課題とする。
An object of the present invention is to produce a fluorinated polyimide multilayer filter with a high yield.

【0010】[0010]

【課題を解決するための手段】本発明は、自己支持性の
ある厚みを持ったフッ素化ポリイミド基板に誘電体膜を
積層後、誘電体多層膜側をガラス基板などの支持材に接
着・固定し、フッ素化ポリイミド基板の裏面を切削・研
磨した後、誘電体多層膜が積層されていないフッ素化ポ
リイミド基板側から、多層膜フィルタチップのサイズに
切断することを特徴とする。
According to the present invention, a dielectric film is laminated on a fluorinated polyimide substrate having a self-supporting thickness, and then the dielectric multilayer film side is adhered / fixed to a supporting material such as a glass substrate. Then, after the back surface of the fluorinated polyimide substrate is cut and polished, it is cut to the size of the multilayer filter chip from the side of the fluorinated polyimide substrate on which the dielectric multilayer film is not laminated.

【0011】[0011]

【発明の実施の形態】本発明では、ハンドリングが容易
な自己支持性と表面平滑性を持つ、厚さ0.5〜1.0
mmの光学用フッ素化ポリイミド基板を使用する。基板
の厚さはハンドリングが容易であれば問題ないが、厚す
ぎると研磨の時間がかかり、また薄すぎるとハンドリン
グが困難になるため0.5〜1.0mmの厚さが適当で
ある。この厚さのフッ素化ポリイミド基板は、従来、製
造が困難であったが、最近、光学用としての性能を持
ち、かつ、表面平滑性の高いものが製造可能になってお
り入手することができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a thickness of 0.5 to 1.0 having self-supporting property and surface smoothness that is easy to handle.
A mm fluorinated polyimide substrate for optics is used. There is no problem with the thickness of the substrate if it is easy to handle, but if it is too thick, polishing will take time, and if it is too thin, handling will be difficult, so a thickness of 0.5 to 1.0 mm is suitable. A fluorinated polyimide substrate having this thickness has hitherto been difficult to produce, but recently, a substrate having optical performance and high surface smoothness can be produced and can be obtained. .

【0012】図1は本発明により、フッ素化ポリイミド
多層膜フィルタの製造工程を説明する図である。フッ素
化ポリイミド基板が図1(A)である。この基板をIA
D(イオンアシスト蒸着)あるいはスパッタ装置などに
セットして、誘電体膜を積層したものが、図1(B)で
ある。蒸着用の基板ホルダにセットする際に、ポリイミ
ド基板をテープや接着材で別の基板に張り付けて補強し
て実施しても良い。図1(C)では誘電体膜を積層した
後、UV硬化樹脂や熱硬化樹脂などの接着剤を用いて、
多層膜側を平滑性のあるガラス基板やSi(シリコン)
基板、樹脂などの支持材に接着・固定する。
FIG. 1 is a view for explaining the manufacturing process of a fluorinated polyimide multilayer filter according to the present invention. A fluorinated polyimide substrate is shown in FIG. This board is IA
FIG. 1B shows a structure in which a dielectric film is stacked by setting it in D (ion-assisted vapor deposition) or a sputtering device. When the polyimide substrate is set in the substrate holder for vapor deposition, the polyimide substrate may be attached to another substrate with a tape or an adhesive to reinforce it. In FIG. 1C, after stacking the dielectric films, an adhesive such as a UV curable resin or a thermosetting resin is used,
The multilayer film side has a smooth glass substrate or Si (silicon)
Adhesive / fixed to a substrate, resin or other supporting material.

【0013】図1(D)では、ポリイミド基板の裏面を
研磨して、例えば基板と多層膜の全体の厚みが30μm
程度になるまで加工する。
In FIG. 1D, the back surface of the polyimide substrate is polished so that the total thickness of the substrate and the multilayer film is 30 μm, for example.
Process to a certain degree.

【0014】次に図1(E)でポリイミド基板を支持材
ごとダイサーにセットして、所定のチップサイズ(0.
5mm×1〜2mm程度)に切断し、切断後、UV照
射、加熱などにより、フィルタチップを支持材から剥離
し、製品を得るものである。
Next, in FIG. 1 (E), the polyimide substrate together with the supporting material is set in a dicer, and a predetermined chip size (0.
5 mm × 1 to 2 mm), and after cutting, the filter chip is peeled from the support material by UV irradiation, heating, etc. to obtain a product.

【0015】なお、誘電体を積層した後、膜応力のため
に多層膜基板が湾曲などしてハンドリングが難しい場合
は、誘電体層表面にポリイミドなどの樹脂膜を薄く形成
することで湾曲を補正する事ができる。
After the dielectrics are laminated, if the multilayer film substrate is curved and is difficult to handle due to film stress, the resin layer such as polyimide is thinly formed on the surface of the dielectric layer to correct the curvature. You can do it.

【0016】また、多層膜基板が湾曲していない場合で
も、誘電体層表面にポリイミドなどの樹脂膜を薄く形成
することは、誘電体層を保護することができるため好適
である。
Even if the multilayer substrate is not curved, it is preferable to form a thin resin film such as polyimide on the surface of the dielectric layer because the dielectric layer can be protected.

【0017】この膜応力を補正、及び誘電体表面の保護
のための樹脂としてはポリイミド、フッ素化ポリイミド
をはじめ、エポキシ樹脂、シリコーン樹脂、フルオロメ
タクレート、及び伝搬損失を抑えたフッ素化エポキシ樹
脂、重水素化シリコーン樹脂、重水素フルオロメタクリ
レート等が考えられるが、もちろんフィルタ性能として
求める波長に於いて伝搬損失が小さなものであれば他の
ものでも良い。
Resins for correcting the film stress and protecting the dielectric surface include polyimide, fluorinated polyimide, epoxy resin, silicone resin, fluoromethacrylate, and fluorinated epoxy resin with suppressed propagation loss, Deuterated silicone resin, deuterium fluoromethacrylate, etc. are conceivable, but of course other materials may be used as long as they have a small propagation loss at the wavelength required for filter performance.

【0018】本発明の方法では、切削・研磨加工するま
でのポリイミド基板は一定の厚みを有するのでハンドリ
ングが容易である。また、誘電体層を積層した後の、切
削・研磨工程ならびにチップ切断工程は、誘電体側を支
持材に接着固定した状態で多層膜を積層していないポリ
イミド側から行うので、多層膜の剥離や膜のクラック、
チッピングなどの発生が少なく、高い収率でポリイミド
フィルタが得られる。ポリイミド基板を切断する場合、
多層膜を張り付けた支持財側から切断する事も可能であ
るが、ガラスなどの支持体の破片により、フィルタの損
傷が発生し、歩留まりが低下するため、これらの素材に
較べて柔軟性を持ち、薄膜であるポリイミド側から切断
することで、歩留まりの向上をはかることが可能であ
る。
In the method of the present invention, the polyimide substrate before cutting and polishing has a constant thickness, so that it is easy to handle. Further, since the cutting / polishing step and the chip cutting step after the dielectric layer is laminated are performed from the polyimide side where the multilayer film is not laminated in the state where the dielectric side is adhesively fixed to the support material, peeling of the multilayer film or Film cracks,
A polyimide filter can be obtained in a high yield with less chipping. When cutting the polyimide substrate,
It is possible to cut from the side of the support material to which the multi-layer film is attached, but the fragments of the support such as glass will damage the filter and reduce the yield, so it has more flexibility than these materials. By cutting from the polyimide side which is a thin film, it is possible to improve the yield.

【0019】以下、実施例により本発明を具体的に説明
するが、本発明はこれらの実施例に限定されるものでは
ない。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.

【0020】[0020]

【実施例】〔実施例1〕まず、キャスティング法により
製造された、平滑性のある厚さ1.0mmの光学用板状
フッ素化ポリイミド基板(100mmφ)を使用した。
この基板をプラズマ蒸着装置にセットし、誘電体多層膜
(約100層、約20μm)を蒸着成膜した。その後、こ
の蒸着面を熱硬化樹脂接着剤により同径の硝子基板(厚
さ2mm)に接着し、ポリイミド側を研磨機により、ポ
リイミドと誘電体膜の厚みが全体で30μmになるまで
研磨加工した。この状態のまま全体をダイサーにセット
し、ポリイミド側から所定のチップサイズに深さ40μ
mまで切断した。切断加工部は基板中央付近の60mm
角の正方形内で、チップサイズは0.5mm×2mmで
ある。その後、加熱することでチップを硝子基板から剥
離して目的のフィルタチップを得た。
EXAMPLES Example 1 First, a flat plate-like fluorinated polyimide substrate for optical use (100 mmφ) having a thickness of 1.0 mm and manufactured by a casting method was used.
This substrate is set in the plasma deposition device and the dielectric multilayer film
(About 100 layers, about 20 μm) was deposited by vapor deposition. Then, this vapor deposition surface was bonded to a glass substrate (thickness: 2 mm) having the same diameter with a thermosetting resin adhesive, and the polyimide side was polished with a polishing machine until the total thickness of the polyimide and the dielectric film became 30 μm. . In this state, the whole is set on a dicer, and the polyimide side has a depth of 40μ in a predetermined chip size.
Cut to m. The cutting part is 60mm near the center of the board.
Within the square of the corner, the chip size is 0.5 mm x 2 mm. After that, the chip was peeled off from the glass substrate by heating to obtain a target filter chip.

【0021】得られたフィルタチップを偏光顕微鏡で目
視検査したところ、全チップ3,600個のうち、不良
品は表面の傷によるもの25、ポリイミドと蒸着膜の剥
がれによるもの41、チップのカケによるもの193、
チップ全体の折れもしくは膜割れによるものが104、
の計363で、良品率(歩留まり)は89.9%と極め
て良好であった。
Visual inspection of the obtained filter chips with a polarizing microscope revealed that out of the total of 3,600 chips, the defective ones were those 25 due to surface scratches, the ones 41 due to peeling of the polyimide and the vapor deposition film, and the chipping of the chips. Thing 193,
104 due to chip breakage or film cracking
The total yield was 363, and the yield rate was 89.9%, which was extremely good.

【0022】〔実施例2〕厚さ0.5mmの光学用板状
フッ素化ポリイミド基板(100mmφ)を使用した。
この基板をイオンアシストスパッタ成膜装置にセット
し、実施例1と同様の誘電体多層膜(約100層、20
μm)を成膜した。この基板には膜応力による反りがわ
ずかに見られたため、多層膜面の上にポリアミドワニス
をスピンコート法により成膜し、加熱することで、10
μmのフッ素化ポリイミドを成膜した。これにより基板
全体の反りは見られなくなった。この蒸着面を熱硬化樹
脂接着剤により同径のシリコン基板に接着し、ポリイミ
ド側を研磨機により、ポリイミドと誘電体膜の厚みが全
体で40μmになるまで研磨加工した。この基板を、ポ
リイミド側から所定のチップサイズに深さ50μmまで
切断した。切断加工部は基板中央付近の60mm角の正
方形内で、チップサイズは0.5mm×2mmである。
その後、加熱することでチップを硝子基板から剥離して
目的のフィルタチップを得た。
Example 2 An optical plate-shaped fluorinated polyimide substrate (100 mmφ) having a thickness of 0.5 mm was used.
This substrate was set in an ion assisted sputtering film forming apparatus, and the same dielectric multilayer film (about 100 layers, 20 layers) as in Example 1 was prepared.
(μm) was deposited. Since a slight warpage due to film stress was observed on this substrate, a polyamide varnish was formed on the surface of the multilayer film by a spin coating method and heated to 10
A μm fluorinated polyimide film was formed. As a result, the warpage of the entire substrate is no longer observed. The vapor deposition surface was adhered to a silicon substrate having the same diameter with a thermosetting resin adhesive, and the polyimide side was polished with a polishing machine until the total thickness of the polyimide and the dielectric film became 40 μm. This substrate was cut into a predetermined chip size from the polyimide side to a depth of 50 μm. The cutting portion is within a square of 60 mm square near the center of the substrate, and the chip size is 0.5 mm × 2 mm.
After that, the chip was peeled off from the glass substrate by heating to obtain a target filter chip.

【0023】得られたフィルタチップを偏光顕微鏡で目
視検査したところ、全チップ3,600個のうち、不良
品は表面の傷によるもの13、ポリイミドと蒸着膜の剥
がれによるもの72、チップのカケによるもの221、
チップ全体の折れもしくは膜割れによるものが76、の
計382で、良品率(歩留まり)は89.4%と極めて
良好であった。
Visual inspection of the obtained filter chip with a polarizing microscope revealed that out of 3,600 chips, defective ones were due to scratches on the surface 13, peeling of the polyimide and vapor deposition film 72, and chipping of the chips. Thing 221,
The total number of 382 chips was 76 due to breakage or film cracking of the entire chip, and the yield rate was 89.4%, which was extremely good.

【0024】〔比較例1〕100mmφ、厚み3mmの
硝子基板にスパッタ蒸着で200nmの厚みの金属Al
を成膜した。その上にスピンコート法による焼成成膜で
15μmのフッ素化ポリイミドを成膜した。この基板を
プラズマ蒸着装置にセットし、実施例1と同様の条件で
誘電体多層膜(約100層、約20μm)を蒸着成膜し
た。この基板をダイサーにセットし、誘電体膜側から所
定のチップサイズに深さ40μmまで切断した。実施例
と同様に切断加工部は基板中央付近の60mm角の正方
形内で、チップサイズは0.5mm×2mmである。そ
の後、この基板を15%塩酸に浸漬し、金属Alを溶解
することでチップを硝子基板から剥離して目的のフィル
タチップを得た。
[Comparative Example 1] Metal Al having a thickness of 200 nm was sputter-deposited on a glass substrate having a diameter of 100 mm and a thickness of 3 mm.
Was deposited. A fluorinated polyimide film having a thickness of 15 μm was formed thereon by baking by spin coating. This substrate was set in a plasma vapor deposition apparatus, and a dielectric multilayer film (about 100 layers, about 20 μm) was formed by vapor deposition under the same conditions as in Example 1. This substrate was set on a dicer and cut from the dielectric film side to a predetermined chip size to a depth of 40 μm. Similar to the embodiment, the cutting portion is within a square of 60 mm square near the center of the substrate, and the chip size is 0.5 mm × 2 mm. After that, this substrate was immersed in 15% hydrochloric acid to dissolve the metal Al, whereby the chip was peeled off from the glass substrate to obtain the target filter chip.

【0025】得られたフィルタチップを偏光顕微鏡で目
視検査したところ、全チップ3,600個のうち、不良
品は表面の傷によるもの240、ポリイミドと蒸着膜の
剥がれによるもの133、チップのカケによるもの53
1、チップ全体の折れもしくは膜割れによるものが52
4、の計1428で、良品率(歩留まり)は60.3%
と実施例1と比較してかなり低い値となった。
Visual inspection of the obtained filter chips with a polarizing microscope revealed that out of the total of 3,600 chips, defective ones were 240 due to scratches on the surface, 133 due to peeling of the polyimide and the vapor deposition film, and chipping of the chips. Thing 53
1. 52 due to chip breakage or film cracking
4, the total is 1428, and the non-defective rate (yield) is 60.3%.
The value was considerably lower than that of Example 1.

【0026】〔比較例2〕比較例1と同様に100mm
φ、厚み3mmの硝子基板にスパッタ蒸着で200nm
の厚みの金属Alを成膜した。その上にスピンコート法
による焼成成膜で15μmのフッ素化ポリイミドを成膜
した。この基板をイオンアシストスパッタ成膜装置にセ
ットし、実施例2と同様の条件で誘電体多層膜(約10
0層、約20μm)を成膜した。この基板をダイサーに
セットし、多層膜側から所定のチップサイズに深さ40
μmまで切断した。実施例と同様に切断加工部は基板中
央付近の60mm角の正方形内で、チップサイズは0.
5mm×2mmである。その後、この基板を15%塩酸
に浸漬し、金属Alを溶解することでチップを硝子基板
から剥離して目的のフィルタチップを得た。
Comparative Example 2 100 mm as in Comparative Example 1
φ, thickness of 3mm glass substrate 200nm by sputter deposition
Was formed into a film of metal Al. A fluorinated polyimide film having a thickness of 15 μm was formed thereon by baking by spin coating. This substrate was set in an ion assisted sputtering film forming apparatus, and the dielectric multilayer film (about 10
0 layer, about 20 μm) was formed. This substrate is set on a dicer and the depth of 40
Cut to μm. Similar to the embodiment, the cutting portion is within a square of 60 mm square near the center of the substrate, and the chip size is 0.
It is 5 mm × 2 mm. After that, this substrate was immersed in 15% hydrochloric acid to dissolve the metal Al, whereby the chip was peeled off from the glass substrate to obtain the target filter chip.

【0027】得られたフィルタチップを偏光顕微鏡で目
視検査したところ、全チップ3,600個のうち、不良
品は表面の傷によるもの228、ポリイミドと蒸着膜の
剥がれによるもの207、チップのカケによるもの61
7、チップ全体の折れもしくは膜割れによるものが73
5、の計1787で、良品率(歩留まり)は50.4%
と実施例2と比較して低い値となった。
Visual inspection of the obtained filter chip with a polarizing microscope revealed that out of 3,600 chips, defective ones were 228 due to scratches on the surface, 207 due to peeling of the polyimide and the deposited film, and chipping of the chips. Thing 61
7, 73 due to chip breakage or film cracking
5, the total is 1787, and the non-defective rate (yield) is 50.4%.
The value was lower than that of Example 2.

【0028】[0028]

【発明の効果】フッ素化ポリイミドを基体としたフィル
タにおいて、ハンドリングしやすい厚さの基板に誘電体
膜を積層後、基板の裏面を切削・研磨して、所定の厚さ
に調整し、フッ素化ポリイミド基板側から切断すること
により、歩留まり良く誘電体多層膜フィルタを製造す
る。
EFFECTS OF THE INVENTION In a filter based on fluorinated polyimide, after laminating a dielectric film on a substrate having a thickness that is easy to handle, the back surface of the substrate is cut and polished to adjust to a predetermined thickness, and then fluorinated. By cutting from the polyimide substrate side, a dielectric multilayer filter is manufactured with good yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法により、多層膜フィルタを製造す
る工程を示す図である。
FIG. 1 is a diagram showing steps of manufacturing a multilayer filter by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 フッ素化ポリイミド基板 2 誘電体多層膜 3 硝子基板 4 多層膜フィルタチップ 1 Fluorinated polyimide substrate 2 Dielectric multilayer film 3 Glass substrate 4 Multi-layer filter chip

フロントページの続き Fターム(参考) 2H048 GA04 GA09 GA26 GA30 4F100 AK17B AK49B CB001 CB02 EH66 EJ273 EJ343 GB41 GB56 JG05A JJ03 JK01 JM02A JN00 Continued front page    F-term (reference) 2H048 GA04 GA09 GA26 GA30                 4F100 AK17B AK49B CB001 CB02                       EH66 EJ273 EJ343 GB41                       GB56 JG05A JJ03 JK01                       JM02A JN00

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 自己支持性のあるフッ素化ポリイミド基
板の表面に、誘電体多層膜を積層した後、誘電体多層膜
側を支持材に接着・固定し、誘電体多層膜が積層されて
いない、フッ素化ポリイミド基板の裏面側を、切削・研
磨して、フッ素化ポリイミド基板を薄膜化し、その後、
チップサイズに切断する事を特徴とする誘電体多層膜フ
ィルタの製造方法。
1. A dielectric multilayer film is laminated on the surface of a self-supporting fluorinated polyimide substrate, and then the dielectric multilayer film side is adhered and fixed to a supporting material, and the dielectric multilayer film is not laminated. , The back side of the fluorinated polyimide substrate is cut and polished to thin the fluorinated polyimide substrate, and then
A method for manufacturing a dielectric multilayer filter, which is characterized by cutting into a chip size.
【請求項2】 誘電体多層膜が表面に積層されたフッ素
化ポリイミド基板を切断する時、誘電体多層膜が積層さ
れていない、フッ素化ポリイミド基板裏面から切断す
る、誘電体多層膜フィルタの製造方法。
2. A method of manufacturing a dielectric multilayer filter, wherein when cutting a fluorinated polyimide substrate having a dielectric multilayer film laminated on the surface, the dielectric multilayer film is not laminated, and the fluorinated polyimide substrate is cut from the back surface. Method.
【請求項3】 請求項1、請求項2のいずれかの方法に
より製造された誘電体多層膜フィルタ。
3. A dielectric multilayer film filter manufactured by the method according to claim 1.
JP2002114936A 2002-04-17 2002-04-17 Dielectric multilayer film filter and method for manufacturing the same Pending JP2003307616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002114936A JP2003307616A (en) 2002-04-17 2002-04-17 Dielectric multilayer film filter and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002114936A JP2003307616A (en) 2002-04-17 2002-04-17 Dielectric multilayer film filter and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003307616A true JP2003307616A (en) 2003-10-31

Family

ID=29396529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002114936A Pending JP2003307616A (en) 2002-04-17 2002-04-17 Dielectric multilayer film filter and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2003307616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093314A (en) * 2021-03-31 2021-07-09 南昌欧菲光电技术有限公司 Optical diaphragm and camera module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093314A (en) * 2021-03-31 2021-07-09 南昌欧菲光电技术有限公司 Optical diaphragm and camera module

Similar Documents

Publication Publication Date Title
TWI491469B (en) The treatment of brittle parts
JP5304112B2 (en) Manufacturing method of glass substrate with thin film
JP2021519536A (en) Method of transferring the piezoelectric layer onto the support substrate
US10737965B2 (en) Method of manufacturing glass sheet
TW200947372A (en) Method of forming an electronic device on a substrate supported by a carrier and resultant device
JP4573722B2 (en) Adhesive peeling method, optical element manufacturing method, prism manufacturing method, and prism manufactured by the manufacturing method
TWI706505B (en) Mounting of semiconductor-on-diamond wafers for device processing
CN114156168A (en) Composite wafer processing method and super surface prepared by using same
TW200306247A (en) Method for cutting thin film filter work pieces
JP2003307616A (en) Dielectric multilayer film filter and method for manufacturing the same
JP2000040677A (en) Manufacture of semiconductor element
JP2008203851A (en) Method of fabricating grayscale mask using wafer bonding process
JP2002290182A (en) Manufacturing method of surface acoustic wave element baseboard
US20050028728A1 (en) Method for fabricating a diamond film having low surface roughness
JPH1164629A (en) Optical element and its production
CN111741936A (en) Laminate and method for producing laminate
TWI699569B (en) Patterned light guide structure and method to form the same
WO2019021672A1 (en) Support glass substrate and laminated substrate using same
JP2005243780A (en) Wafer-supporting member and wafer-processing method
KR100962854B1 (en) Process for producing optical multilayer film filter and optical multilayer film filter
JP2004101842A (en) Mother board for optical board and method for manufacturing optical board
JP2003315533A (en) Method for manufacturing interference filter composed of dielectric multilayer film
JP2004118002A (en) Manufacturing method of chip-like deposition component
JP2005164982A (en) Manufacturing method for compound prism
WO2003049165A1 (en) Method of manufacturing optical device, and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050203

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20060421

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080624