JP2003307459A - Method and apparatus for detection of intake heat quantity of underground heat exchanger - Google Patents

Method and apparatus for detection of intake heat quantity of underground heat exchanger

Info

Publication number
JP2003307459A
JP2003307459A JP2002111538A JP2002111538A JP2003307459A JP 2003307459 A JP2003307459 A JP 2003307459A JP 2002111538 A JP2002111538 A JP 2002111538A JP 2002111538 A JP2002111538 A JP 2002111538A JP 2003307459 A JP2003307459 A JP 2003307459A
Authority
JP
Japan
Prior art keywords
underground heat
heat exchanger
underground
heat
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002111538A
Other languages
Japanese (ja)
Inventor
Akimi Suzawa
昭己 洲澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Misawa Kankyo Gijutsu KK
Original Assignee
Misawa Kankyo Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Misawa Kankyo Gijutsu KK filed Critical Misawa Kankyo Gijutsu KK
Priority to JP2002111538A priority Critical patent/JP2003307459A/en
Publication of JP2003307459A publication Critical patent/JP2003307459A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for detecting an intake quantity of concrete underground heat in a place in which an underground heat exchanger is buried and to provide an apparatus for the method. <P>SOLUTION: A heating medium 2 such as water or the like in a prescribed circulation amount is circulated continuously to the underground heat exchanger 4 buried in the ground in a prescribed place from a supply tank 1 filled with ice lumps 3 so as to keep the heating medium 2 at a definite temperature, the circulation amount of the heating medium 2, temperatures on the entrance side 4a and the exit side 4b of the underground heat exchanger 4 for the thermal medium 2 and a temperature of the underground heat near the underground heat exchanger 4 are measured, respectively, and a quantity of the underground heat capable of being sampled in the prescribed place is detected on the basis of their measured values. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】 本発明は、空調、給湯、温水プ
ール、植物栽培、動物飼育あるいは融雪等を、地中熱を
利用して行う際に使用する地中熱交換器の採取熱量を、
それに供給する熱媒の循環量、当該熱媒の温度および地
中熱の温度によって測定する方法およびその装置に関す
るものである。
[Field of Industrial Application] The present invention relates to the heat extraction amount of a geothermal heat exchanger used when geothermal heat is used for air conditioning, hot water supply, hot water pool, plant cultivation, animal breeding or snow melting.
The present invention relates to a method and an apparatus for measuring the circulation amount of a heat medium supplied thereto, the temperature of the heat medium and the temperature of underground heat.

【0002】[0002]

【従来の技術】 従来から、地下水(温水)を汲み上げ
て、それを空調、給湯、温水プール、植物栽培、動物飼
育あるいは融雪等に利用する技術が考えられているが、
実際には、積極的に実行されていない。大量の地下水を
汲み上げると、地盤沈下等の問題が発生することがその
理由である。
2. Description of the Related Art Conventionally, a technique has been considered in which groundwater (hot water) is pumped up and used for air conditioning, hot water supply, hot water pool, plant cultivation, animal breeding, snow melting, etc.
In fact, it is not actively implemented. The reason is that when a large amount of groundwater is pumped up, problems such as land subsidence occur.

【0003】この地下水に代わって、近年では、地中熱
を利用する方法が創案されている。それは、地中熱交換
器を地下に埋設し、その中に水や不凍液等の熱媒を循環
させて熱交換させ、当該熱媒で地中熱を採取するもので
ある。この地中熱を利用して空調や融雪等を行う技術
は、地盤沈下等の問題を起こさないので、これからの積
極的な利用が望まれている。
In recent years, a method of utilizing underground heat has been devised instead of this groundwater. That is, an underground heat exchanger is buried underground, and a heat medium such as water or an antifreeze solution is circulated in the ground heat exchanger for heat exchange, and the ground heat is collected by the heat medium. Since the technology of air conditioning, snow melting, etc. using the underground heat does not cause problems such as ground subsidence, active use in the future is desired.

【0004】[0004]

【発明が解決しようとする課題】 しかし、この地中熱
を利用する技術は、地中熱交換器を埋設する場所によっ
て地中熱の温度が異なるため、どれだけの地中熱を採取
できるかを把握することが難しい。そのため、具体的な
地中熱利用計画の立案が困難であると言った問題があ
る。
However, in the technique of utilizing the underground heat, since the temperature of the underground heat varies depending on the place where the underground heat exchanger is buried, how much underground heat can be collected. Difficult to grasp. Therefore, there is a problem that it is difficult to make a concrete geothermal heat utilization plan.

【0005】本発明はこうした問題に鑑み創案されたも
ので、地中熱交換器を埋設する場所における具体的な地
中熱の採取量を検知する方法およびその装置を提供する
ことを課題とする。
The present invention has been made in view of these problems, and an object thereof is to provide a method and an apparatus for detecting a concrete amount of underground heat to be collected at a place where the underground heat exchanger is buried. .

【0006】[0006]

【課題を解決するための手段】 図1および図2を参照
して説明する。本発明に係る地中熱交換器の採取熱量検
知方法は、水などの熱媒2を一定温度に保つべく、氷塊
3を充填した供給タンク1から、所定場所の地中に埋設
した地中熱交換器4に所定循環量の熱媒2を連続的に循
環させ、該熱媒2の循環量と、該熱媒2の地中熱交換器
4の入口側4aと出口側4bにおける温度と、地中熱交
換器4近傍の地中熱の温度をそれぞれ測定し、それらの
測定値から前記所定場所で採取できる地中熱の量を検知
してなる。
Means for Solving the Problems An explanation will be given with reference to FIGS. 1 and 2. The method for detecting the amount of collected heat of an underground heat exchanger according to the present invention is a method for detecting the amount of collected heat from a supply tank 1 filled with ice blocks 3 to keep a heat medium 2 such as water at a constant temperature. A predetermined circulation amount of the heat medium 2 is continuously circulated in the exchanger 4, the circulation amount of the heat medium 2 and the temperatures of the heat medium 2 at the inlet side 4a and the outlet side 4b of the underground heat exchanger 4, The temperature of the underground heat near the underground heat exchanger 4 is measured, and the amount of the underground heat that can be collected at the predetermined place is detected from the measured values.

【0007】また、本発明に係る地中熱交換器の採取熱
量検知装置は、少なくとも、水などの熱媒2を一定温度
に保つべく、氷塊3を充填した供給タンク1と、所定場
所の地中に埋設した地中熱交換器4と、前記供給タンク
1と地中熱交換器4との間に熱媒2を循環させるべく、
両者間に連結した循環路7と、前記循環路7に設けた循
環ポンプ8、バルブ9および流量計10と、前記地中熱
交換器4の入口側4aに設けた第一熱媒温度計11およ
び出口側4bに設けた第二熱媒温度計12と、前記地中
熱交換器4の近傍に設けた地中熱温度計13と、から構
成し、前記供給タンク1から、地中熱交換器4に所定循
環量の熱媒2を連続的に循環させ、該熱媒2の循環量
と、該熱媒2の地中熱交換器4の入口側4aと出口側4
bにおける温度と、地中熱交換器4近傍の地中熱の温度
をそれぞれ測定し、それらの測定値から前記所定場所で
採取できる地中熱の量を検知してなる。
Further, the sampling heat quantity detecting device for the underground heat exchanger according to the present invention has at least a supply tank 1 filled with an ice block 3 and a ground at a predetermined place in order to keep the heat medium 2 such as water at a constant temperature. In order to circulate the heat medium 2 between the underground heat exchanger 4 buried inside and the supply tank 1 and the underground heat exchanger 4,
A circulation path 7 connected between the two, a circulation pump 8, a valve 9 and a flowmeter 10 provided in the circulation path 7, and a first heat medium thermometer 11 provided at an inlet side 4a of the underground heat exchanger 4. And a second heat medium thermometer 12 provided on the outlet side 4b, and a ground heat thermometer 13 provided near the ground heat exchanger 4, and the ground heat exchange from the supply tank 1 is performed. A predetermined circulation amount of the heat medium 2 is continuously circulated in the vessel 4, and the circulation amount of the heat medium 2 and the inlet side 4a and the outlet side 4 of the underground heat exchanger 4 of the heat medium 2
The temperature in b and the temperature of the underground heat near the underground heat exchanger 4 are measured, and the amount of the underground heat that can be collected at the predetermined location is detected from the measured values.

【0008】[0008]

【発明の実施の形態】 本発明に係る地中熱交換器の採
取熱量検知方法を、同検知装置の実施形態と共に、図1
を参照しながら説明する。この装置は、水を熱媒2とし
ており、供給タンク1、中間タンク14、地中熱交換器
4、循環路7、循環ポンプ8、バルブ9、流量計10、
第一熱媒温度計11、第二熱媒温度計12および地中熱
温度計13を備える。なお、熱媒2は水に限定されるも
のではなく、例えば、不凍液を使用することもできる。
BEST MODE FOR CARRYING OUT THE INVENTION A method for detecting the amount of collected heat of an underground heat exchanger according to the present invention, together with an embodiment of the detection device, will be described with reference to FIG.
Will be described with reference to. This device uses water as a heat medium 2, and includes a supply tank 1, an intermediate tank 14, an underground heat exchanger 4, a circulation path 7, a circulation pump 8, a valve 9, a flow meter 10,
A first heat medium thermometer 11, a second heat medium thermometer 12, and an underground heat thermometer 13 are provided. The heat medium 2 is not limited to water, and, for example, antifreeze can be used.

【0009】供給タンク1は、水である熱媒2を2℃〜
4℃に保つために、氷塊3を充填しており、また、それ
に連通して、同じく氷塊3を充填した中間タンク14を
設けている。地中熱交換器4は、底部を塞いだ外筒5
と、その中に同心状に挿入した内筒6とで構成し同心二
重管タイプであり、所定場所の地中50m〜100m程
度の深さに埋設している。なお、この同心二重管タイプ
に代えて、図2に示すような、管本体15の中心部にを
隔壁16を設け、二つの通路17を形成したU字タイプ
のものを使用することができる。
The supply tank 1 stores the heat medium 2 which is water at 2 ° C.
In order to keep the temperature at 4 ° C., the ice lump 3 is filled, and an intermediate tank 14 also filled with the ice lump 3 is provided in communication with the ice lump 3. The underground heat exchanger 4 has an outer cylinder 5 whose bottom is closed.
And an inner cylinder 6 concentrically inserted therein, which is a concentric double pipe type and is buried at a depth of about 50 m to 100 m in the ground at a predetermined place. Instead of this concentric double pipe type, as shown in FIG. 2, it is possible to use a U-shaped type in which a partition wall 16 is provided in the central portion of the pipe body 15 and two passages 17 are formed. .

【0010】循環路7は、供給タンク1と地中熱交換器
4との間に熱媒2を循環させるべく、両者間に連結した
ものであり、往路7aと復路7bからなる。この循環路
7には、熱媒2を送るための循環ポンプ8と、当該熱媒
2の循環量を設定するためのバルブ9および流量計10
を設けている。
The circulation path 7 is connected between the supply tank 1 and the underground heat exchanger 4 in order to circulate the heat medium 2 between them, and comprises a forward path 7a and a return path 7b. In this circulation path 7, a circulation pump 8 for sending the heat medium 2, a valve 9 and a flow meter 10 for setting the circulation amount of the heat medium 2.
Is provided.

【0011】第一温度計は地中熱交換器4の入口側4a
に設け、また、第二熱媒温度計12はその出口側4bに
設けている。また、地中熱温度計13は、地中熱交換器
4の近傍に添って複数設けている。複数設けることによ
って、地中熱の温度を正確に把握することができる。
The first thermometer is the inlet side 4a of the underground heat exchanger 4.
The second heat medium thermometer 12 is provided on the outlet side 4b. A plurality of underground heat thermometers 13 are provided along the vicinity of the underground heat exchanger 4. By providing a plurality, the temperature of underground heat can be accurately grasped.

【0012】こうした構成の装置において、地中熱採取
量を検知するには、まず、循環ポンプ8を駆動する。こ
れによって、2℃〜4℃に保たれた供給タンク1内の熱
媒2が、中間タンク14を介して、往路7aを通り地中
熱交換器4に供給される。このとき、バルブ9と流量計
10によって、熱媒2の循環量を所定値に設定する。
In the apparatus having such a structure, first, the circulation pump 8 is driven in order to detect the underground heat extraction amount. As a result, the heat medium 2 in the supply tank 1 kept at 2 ° C. to 4 ° C. is supplied to the underground heat exchanger 4 through the outward path 7 a via the intermediate tank 14. At this time, the circulation amount of the heat medium 2 is set to a predetermined value by the valve 9 and the flow meter 10.

【0013】地中熱交換器4に供給された熱媒2は、内
筒6を通過した後、その下端部で反転して内筒6と外筒
5との間に形成された間隙路5aを、地中熱を採取しな
がら上昇する。そして、復路7bを通過して供給タンク
1に戻り、そこで再び2℃〜4℃に冷却される。
The heat medium 2 supplied to the underground heat exchanger 4 passes through the inner cylinder 6 and then reverses at the lower end thereof to form a gap passage 5a formed between the inner cylinder 6 and the outer cylinder 5. Rise while collecting underground heat. Then, it passes through the return path 7b and returns to the supply tank 1, where it is cooled again to 2 ° C to 4 ° C.

【0014】こうして熱媒2を循環させながら、地中熱
温度計13で地中熱交換器4近傍の地中熱温度を測定す
ると共に、第一熱媒温度計11と第二熱媒温度計12
で、熱媒2の地中熱採取前の温度(入口側4aの温度)
と採取後の温度(出口側4bの温度)をそれぞれ一定時
間をあけて測定する。こうして得たそれぞれの測定値
と、熱媒2の循環量とによって、当該所定場所において
採取できる地中熱の量を検知することができる。
While circulating the heat medium 2 in this manner, the ground heat temperature in the vicinity of the ground heat exchanger 4 is measured by the ground heat thermometer 13, and the first heat medium thermometer 11 and the second heat medium thermometer are measured. 12
Then, the temperature of the heat medium 2 before the underground heat extraction (temperature of the inlet side 4a)
And the temperature after sampling (the temperature on the outlet side 4b) are measured after a certain period of time. Based on the respective measured values thus obtained and the circulation amount of the heating medium 2, it is possible to detect the amount of underground heat that can be collected at the predetermined place.

【0015】例えば、一定量の熱媒2を一定時間循環さ
せると、熱交換によって、出口側4bにおける熱媒2の
温度が上昇する反面、地中熱の温度が低下する。この熱
媒2の出口側4bにおける温度(第二熱媒温度計12の
測定温度)が入口側4aにおける温度(第一熱媒温度計
11の測定温度)より高い状態を維持し、かつ地中熱の
温度(地中熱温度計13の測定温度)がそのままの一定
状態を維持していれば、当該場所では、それだけの地中
熱を安定して採取することができることを意味し、従っ
て、それを基準として埋設する地中熱交換器4の数や規
模を設定することができる。
For example, when a certain amount of the heat medium 2 is circulated for a certain period of time, the heat exchange causes the temperature of the heat medium 2 on the outlet side 4b to rise, while the temperature of the underground heat decreases. The temperature of the heat medium 2 on the outlet side 4b (the temperature measured by the second heat medium thermometer 12) is higher than the temperature on the inlet side 4a (the temperature measured by the first heat medium thermometer 11), and If the temperature of heat (the temperature measured by the underground heat thermometer 13) maintains a constant state as it is, it means that that much underground heat can be stably collected at that location. The number and scale of the underground heat exchangers 4 to be buried can be set based on that.

【0016】逆に、例えば、熱媒2の出口側4bの温度
が下降し、入口側4aの温度と同じ程度になったり、あ
るいは地中熱の温度が下降し続けると、当該場所にはそ
れだけの地中熱が存在しないことを意味するので、バル
ブ9を絞って、それら温度が安定するまで熱媒2の循環
量を減らす。そして、それら温度が安定したら、それを
基準として地中熱交換器4の数等を設定する。このよう
にして、この採取熱量検知方法およびその装置を使用す
ることによって、具体的な地中熱利用計画の立案を容易
に行うことができる。
On the contrary, for example, when the temperature of the outlet side 4b of the heat medium 2 decreases to the same level as the temperature of the inlet side 4a, or the temperature of the underground heat continues to decrease, that much is found at that place. Since it means that there is no underground heat, the valve 9 is throttled to reduce the circulation amount of the heating medium 2 until the temperature becomes stable. Then, when the temperatures become stable, the number of the underground heat exchangers 4 and the like are set based on the stable temperature. In this way, by using this sampling heat quantity detection method and the apparatus thereof, it is possible to easily make a concrete underground heat utilization plan.

【0017】なお、本発明に係る装置においては、熱媒
2を一定温度に設定するために、供給タンク1内に氷塊
3を充填するといった容易かつ安定した技術を採用して
いるため、本装置を正確かつ簡易で廉価なものとするこ
とができる。
The apparatus according to the present invention employs an easy and stable technique of filling the supply tank 1 with the ice blocks 3 in order to set the heat medium 2 at a constant temperature. Can be made accurate, simple and inexpensive.

【0018】また、循環ポンプ8は、商用電源の他に、
太陽熱発電装置や内燃機関発電装置によって稼動するこ
とができる。太陽光発電装置は、図3に示すように、ソ
ーラーパネル18で太陽光を吸収し、蓄電池ボックス1
9内の蓄電池21に、充電必要時に作動する制御基板2
0を介して蓄電し、コントローラー22によって必要量
の電力をポンプ8へ供給する。
In addition to the commercial power source, the circulation pump 8 is
It can be operated by a solar thermal power generator or an internal combustion engine power generator. As shown in FIG. 3, the solar power generation device absorbs sunlight by the solar panel 18, and the storage battery box 1
The storage battery 21 in the control board 2 that operates when charging is required
The electric power is stored via 0, and a necessary amount of electric power is supplied to the pump 8 by the controller 22.

【0019】[0019]

【発明の効果】 本発明に係る地中熱交換器の採取熱量
検知方法およびその装置は、一定温度の熱媒2を地中熱
交換器4に循環させながら、熱媒2の循環量、熱媒2の
入口側4aと出口側4bにおける温度、および地中熱の
温度を測定することによって、当該場所における地中熱
の量を検知することができる。従って、具体的な地中熱
利用計画の立案を容易に行うことができる。
EFFECTS OF THE INVENTION The method and apparatus for detecting the amount of collected heat of an underground heat exchanger according to the present invention circulate the heating medium 2 having a constant temperature through the underground heat exchanger 4 while controlling the circulation amount of the heating medium 2, By measuring the temperature on the inlet side 4a and the outlet side 4b of the medium 2 and the temperature of the underground heat, the amount of underground heat at the location can be detected. Therefore, a concrete geothermal heat utilization plan can be easily drafted.

【0020】また、熱媒2を一定温度に設定するため
に、供給タンク1内に氷塊3を充填するといった容易か
つ安定した技術を採用しているため、本装置を正確かつ
簡易で廉価なものとすることができる。
Further, in order to set the heating medium 2 at a constant temperature, an easy and stable technique such as filling the supply tank 1 with the ice blocks 3 is adopted, so that the present apparatus is accurate, simple and inexpensive. Can be

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係る装置の実施形態を示す構成図で
ある。
FIG. 1 is a configuration diagram showing an embodiment of an apparatus according to the present invention.

【図2】 本発明における地中熱交換器の他の実施形態
を示すもので、(aは正面断面図、(b)は平面断面図
である。
FIG. 2 shows another embodiment of the underground heat exchanger according to the present invention, where (a) is a front sectional view and (b) is a plan sectional view.

【図3】 本発明に係る装置の循環ポンプを稼動する太
陽熱発電装置のフローチャート
FIG. 3 is a flowchart of a solar thermal power generator that operates a circulation pump of the device according to the present invention.

【符号の説明】[Explanation of symbols]

1 供給タンク 2 熱媒 3 氷塊 4 地中熱交換器 4a 入口側 4b 出口側 5 外筒 5a 間隙路 6 内筒 7 循環路 7a 往路 7b 復路 8 循環ポンプ 9 バルブ 10 流量計 11 第一熱媒温度計 12 第二熱媒温度計 13 地中熱温度計 14 中間タンク 15 管本体 16 隔壁 17 通路 18 ソーラーパネル 19 蓄電池ボックス 20 制御基板 21 蓄電池 22 コントローラー 1 supply tank 2 Heat medium 3 ice blocks 4 underground heat exchanger 4a entrance side 4b exit side 5 outer cylinder 5a Gap 6 inner cylinder 7 circuit 7a Outward route 7b Return trip 8 circulation pumps 9 valves 10 Flowmeter 11 First heat medium thermometer 12 Second heat medium thermometer 13 Underground heat thermometer 14 Intermediate tank 15 tube body 16 partitions 17 passage 18 solar panels 19 Storage battery box 20 control board 21 Battery 22 Controller

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水などの熱媒(2)を一定温度に保つべ
く、氷塊(3)を充填した供給タンク(1)から、所定
場所の地中に埋設した地中熱交換器(4)に所定循環量
の熱媒(2)を連続的に循環させ、該熱媒(2)の循環
量と、該熱媒(2)の地中熱交換器(4)の入口側(4
a)と出口側(4b)における温度と、地中熱交換器
(4)近傍の地中熱の温度をそれぞれ測定し、それらの
測定値から前記所定場所で採取できる地中熱の量を検知
してなる地中熱交換器の採取熱量検知方法。
1. An underground heat exchanger (4) buried in a ground at a predetermined place from a supply tank (1) filled with an ice block (3) in order to keep a heat medium (2) such as water at a constant temperature. A predetermined circulating amount of the heat medium (2) is continuously circulated, and the circulating amount of the heat medium (2) and the inlet side (4) of the underground heat exchanger (4) of the heat medium (2).
a) The temperature at the outlet side (4b) and the temperature of the underground heat near the underground heat exchanger (4) are measured, and the amount of underground heat that can be collected at the predetermined location is detected from the measured values. A method for detecting the amount of heat collected by an underground heat exchanger.
【請求項2】 少なくとも、水などの熱媒(2)を一定
温度に保つべく、氷塊(3)を充填した供給タンク
(1)と、 所定場所の地中に埋設した地中熱交換器(4)と、 前記供給タンク(1)と地中熱交換器(4)との間に熱
媒(2)を循環させるべく、両者間に連結した循環路
(7)と、 前記循環路(7)に設けた循環ポンプ(8)、バルブ
(9)および流量計(10)と、 前記地中熱交換器(4)の入口側(4a)に設けた第一
熱媒温度計(11)および出口側(4b)に設けた第二
熱媒温度計(12)と、 前記地中熱交換器(4)の近傍に設けた地中熱温度計
(13)と、から構成し、 前記供給タンク(1)から、地中熱交換器(4)に所定
循環量の熱媒(2)を連続的に循環させ、該熱媒(2)
の循環量と、該熱媒(2)の地中熱交換器(4)の入口
側(4a)と出口側(4b)における温度と、地中熱交
換器(4)近傍の地中熱の温度をそれぞれ測定し、それ
らの測定値から前記所定場所で採取できる地中熱の量を
検知してなる地中熱交換器の採取熱量検知装置。
2. A supply tank (1) filled with an ice block (3) and at least a ground heat exchanger (6) buried in the ground at a predetermined location in order to keep at least a heat medium (2) such as water at a constant temperature. 4), a circulation path (7) connected between the supply tank (1) and the underground heat exchanger (4) in order to circulate the heat medium (2), and the circulation path (7). ), A circulation pump (8), a valve (9) and a flowmeter (10), and a first heat medium thermometer (11) and an inlet side (4a) of the underground heat exchanger (4). The second heat medium thermometer (12) provided on the outlet side (4b) and the underground heat thermometer (13) provided near the underground heat exchanger (4), and the supply tank From (1), a predetermined circulating amount of the heat medium (2) is continuously circulated through the underground heat exchanger (4), and the heat medium (2) is circulated.
Of the heat medium (2), the temperatures of the heat medium (2) at the inlet side (4a) and the outlet side (4b) of the underground heat exchanger (4), and the underground heat in the vicinity of the underground heat exchanger (4). An apparatus for detecting the amount of collected heat of an underground heat exchanger, which measures the temperature and detects the amount of underground heat that can be collected at the predetermined location from the measured values.
JP2002111538A 2002-04-15 2002-04-15 Method and apparatus for detection of intake heat quantity of underground heat exchanger Pending JP2003307459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111538A JP2003307459A (en) 2002-04-15 2002-04-15 Method and apparatus for detection of intake heat quantity of underground heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111538A JP2003307459A (en) 2002-04-15 2002-04-15 Method and apparatus for detection of intake heat quantity of underground heat exchanger

Publications (1)

Publication Number Publication Date
JP2003307459A true JP2003307459A (en) 2003-10-31

Family

ID=29394299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111538A Pending JP2003307459A (en) 2002-04-15 2002-04-15 Method and apparatus for detection of intake heat quantity of underground heat exchanger

Country Status (1)

Country Link
JP (1) JP2003307459A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102884A (en) * 2007-10-23 2009-05-14 Dai-Dan Co Ltd Structure of underground pile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102884A (en) * 2007-10-23 2009-05-14 Dai-Dan Co Ltd Structure of underground pile

Similar Documents

Publication Publication Date Title
Acuña Improvements of U-pipe borehole heat exchangers
CN102243192B (en) Multifunctional rock-soil body thermal-physical property testing device for ground source heat pump
CN103890499A (en) System using solar energy
Boughanmi et al. A performance of a heat pump system connected a new conic helicoidal geothermal heat exchanger for a greenhouse heating in the north of Tunisia
CN105605956A (en) High-temperature air and fused salt efficient heat storage system
US9085412B1 (en) Underground storage heating and cooling (USHC) system
CN201166615Y (en) Tester for exchanging heat of buried tube of earth source heat pump
JP5067956B1 (en) Heat exchange system
Al-Habaibeh et al. Assessment of a novel technology for a stratified hot water energy storage–The water snake
JP2003021360A (en) Air conditioning system utilizing soil heat, and heat exchanger apparatus in soil
Abbas et al. Experimental investigation of underground seasonal cold energy storage using borehole heat exchangers based on laboratory scale sandbox
JP5690960B1 (en) Heat exchange system
JP2003004680A (en) Method and device for testing thermal response of underground heat exchanger
JP2003130494A (en) Air conditioning system utilizing underground heat exchanger, and operating method for the same
JP2003307459A (en) Method and apparatus for detection of intake heat quantity of underground heat exchanger
CN103808755A (en) Rock and earth mass thermal response testing equipment
CN207081677U (en) Rock And Soil thermal property tester for earth-source hot-pump system
Dong et al. Starting up a practical natural draft cooling system: Experimental and theoretical study on transients
Hu et al. Experimental investigation on system with combination of ground-source heat pump and solar collector
JP2004301750A (en) Underground heat sampling tester
CN210690095U (en) Closed energy well energy measurement appearance
KR101405821B1 (en) Sub air conditioning apparatus using underground water
Naicker Performance analysis of a large-scale ground source heat pump system
JP2946082B2 (en) Method and apparatus for measuring exchange heat of underground heat exchanger
CN107343377B (en) Water-cooling heat dissipation system of wind generating set converter and control and laying method thereof