JP2004301750A - Underground heat sampling tester - Google Patents

Underground heat sampling tester Download PDF

Info

Publication number
JP2004301750A
JP2004301750A JP2003096656A JP2003096656A JP2004301750A JP 2004301750 A JP2004301750 A JP 2004301750A JP 2003096656 A JP2003096656 A JP 2003096656A JP 2003096656 A JP2003096656 A JP 2003096656A JP 2004301750 A JP2004301750 A JP 2004301750A
Authority
JP
Japan
Prior art keywords
temperature
pipe
fluid
heating unit
tester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003096656A
Other languages
Japanese (ja)
Other versions
JP4034220B2 (en
Inventor
Kazuo Shibata
和夫 柴田
Katsunori Nagano
克則 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003096656A priority Critical patent/JP4034220B2/en
Publication of JP2004301750A publication Critical patent/JP2004301750A/en
Application granted granted Critical
Publication of JP4034220B2 publication Critical patent/JP4034220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make light a tester body instead of a conventional, large-scale tester, to accommodate the tester in a compact, strong package, to carry and install the tester easily, to perform unmanned test operation independently without receiving any power supply, and to automatically transmit data by radio for achieving remote monitoring. <P>SOLUTION: The underground heat sampling tester comprises a heating unit 33 having a fuel tank 23, a kerosene boiler 19, and a power supply 31; a circulation pump 35 for feeding fluid heated by the heating unit into a pipe 9 in ground 3; a first sensor 39 for measuring the first temperature of fluid sent to the pipe in the ground; a second sensor 43 for measuring the second temperature of fluid returned from the pipe in the ground; a flowmeter 41 for measuring the flow rate of fluid being circulated to the pipe in the ground and the heating unit; a computing means 49 for computing the difference between the first temperature T1 and the second temperature T2 for obtaining a thermal conductivity; and a radio communication means 53 for transmitting the arithmetic result by the computing means. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、地中熱の利用可能量を推定するのに必要な地層の有効熱伝導率と地中熱交換器と土壌との熱抵抗を、電力を受けずとも、独立して自動的に簡単かつ容易に、そして精密に測定できるようにした地中採熱試験装置に関する。
【0002】
【従来の技術】
建物の暖房や冷房、または融雪などに地中熱を利用するシステムは海外では二十年以上前から実際に利用されてきており、急速な普及が進んでいる。一方、国内では、最近になって地中熱利用システムの導入が見られるようになってきたが、まだ数は少ない。
【0003】
地中熱の利用を行うにあたって、地中からの採熱可能量を把握することは重要であるが、採熱量を把握するための地中採熱試験装置は、一般的に大きな電源が必要であったり、大規模なものであり、電力供給を受けずに独立して試験を行うことができる試験装置は、国内外においては例がない。
【0004】
【特許文献1】
特開2002−5594
【0005】
【発明が解決しようとする課題】
ところで、現在、スウエーデンやドイツ、米国においては、電気ヒータを熱源とした地中採熱試験装置が開発され、使用されてきているが、ヒータ容量は3kW〜12kWと大きく、また地中採熱試験を行うには電気設備が整った場所あるいは大型の数日間運転できる発電機が必要であり、どこでも簡易に試験を行える地中採熱試験装置はないのが現状である。
【0006】
この発明は上述の課題を解決するためになされたもので、その目的は、従来の大掛かりな装置でなく、装置本体が軽量かつ、コンパクトで頑丈なパッケージに収められており、持ち運びや、設置に容易であり、しかも、電力供給を受けずに無人独自で試験運転ができ、データも自動的に無線転送して遠隔監視が可能な地中採熱試験装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために請求項1によるこの発明の地中採熱試験装置は、燃料タンクと灯油ボイラと電源とを備えた加熱ユニットと、この加熱ユニットで加熱された流体を地中内のパイプへ送るための循環ポンプと、地中内のパイプへ送られる流体の第1温度を測定する第1温度センサと、地中内のパイプから戻される流体の第2温度を測定する第2温度センサと、前記地中内のパイプと加熱ユニットとを循環される流体の流量を測定する流量計と、前記第1、第2温度センサで測定された第1温度と第2温度および、それらの差を演算して地中の熱伝導率を求めるための演算手段と、この演算手段の演算結果をデータ転送する無線通信手段と、を備えたことを特徴とする構成である。
【0008】
請求項2によるこの発明の地中採熱試験装置は、請求項1記載の地中採熱試験装置において、加熱ユニットの中の灯油ボイラと第1温度センサとの間に、流体の温度および流量を均一化するためのクッションタンクを備えていることを特徴とする構成である。
【0009】
【発明の実施の形態】
以下、この発明の実施の形態について図面を参照して詳細に説明する。
【0010】
図1を参照するに、地中採熱試験装置1としては地中3内に例えば60〜200φ程度のボアホール5が地表面より例えば100m程度の深さで掘られ、このボアホール5には地中熱交換器としてのU字形状のパイプ9が埋設されている。このパイプ9の一端にはクイックカプラなどの継ぎ手11を介して入り側用パイプ13の一端が連結されていると共にパイプ9の他端にはクイックカプラなどの継ぎ手15を介して出側用パイプ17の一端が連結されている。そして、入り側用パイプ13の他端および出側用パイプ17の他端が灯油ボイラ19に連結されている。
【0011】
この灯油ボイラ19には燃料配管21を介して例えば90Lの燃料タンク23が接続されている。また、灯油ボイラ19にはスイッチS1を介してDC/ACインバータ24、バッテリ25、さらにスイッチS2を介してAC/DCインバータ26およびAC入力出力部27が順に直列で接続されている。前記バッテリ25にはチャージコントローラ28を介してPV(太陽光発電パネル)29が接続されている。そして、DC/ACインバータ24、バッテリ25、DC/ACインバータ26、AC入力出力部27、チャージコントローラ28およびPV29を総称して電源31としている。燃料タンク23と灯油ボイラ19と電源31とで加熱ユニット33を構成している。
【0012】
前記電源31の使用方法としてスイッチS1をAC入力出力部27側に切換えると、AC入力出力部27が灯油ボイラ19に接続されて使用される。また、図1に示されているように、スイッチS1をDC/ACインバータ24側に切換え、スイッチS2をOFFにすることで、PV29またはAC/DC入力出力部27によって充電されたバッテリ25がDC/ACインバータ24を経て灯油ボイラ19に接続されて使用される。このように電源31は必要に応じて2通りに使い分けられる。前記バッテリ25はスイッチS2をONにすると、AC入力出力部27がAC/DCインバータ26を経てバッテリ25に接続されて充電されるほか、晴天時などの日照時間にPV29からチャージコントローラ28を介して充電され満たされる。
【0013】
前記入り側用パイプ13の途中には順次灯油ボイラ19側から循環ポンプ35、例えば20Lのクッションタンク37、第1温度センサ39が直列に設けられている。また、出側用パイプ15の途中には順次灯油ボイラ19側から精密流量計41、第2温度センサ43が直列に設けられている。
【0014】
前記第1温度センサ39および第2温度センサ43には温度変換器47が接続されている。そして、温度変換器47には演算手段としての計測装置49が接続されていると共に前記精密流量計41、外気温センサー55も前記計測装置49に接続されている。前記計測装置49にはパソコン51が接続され、このパソコン51にはデータ転送するするための無線通信手段としての例えば携帯電話53が接続されている。
【0015】
上記構成により、電源31を2通りのいずれかにONせしめると、燃料タンク23から灯油ボイラ19へ灯油が供給され、灯油ボイラ19が作動する。循環ポンプ35が作動し、不凍液または水などの流体が入り側用パイプ13へ送られ、さらに、クッションタンク37、第1温度センサ39を経てパイプ9に送られる。流体はパイプ9を通り、第2温度センサ43、精密流量計41を経て灯油ボイラ19に戻される。こうして、循環ポンプ35を作動させている間、前記流体がパイプ9内を循環されることになる。したがって、従来の電気ヒータ使用時と同等な一定加熱性能を得るために、灯油ボイラ19の燃焼制御とクッションタンク37を用いているのが重要なポイントである。
【0016】
そして、流体がパイプ9内を循環しているときに、パイプ9内の循環液体温度の変化を測定する。すなわち、定期的に、第1温度センサ39でパイプ9内に送られる第1温度T1が測定されると共に第2温度センサ41でパイプ9内から送出される第2温度T2が測定される。この第1温度センサ39で測定された第1温度T1と第2温度センサ43で測定された第2温度T2とがそれぞれ温度変換器47を経てある時間毎に計測装置49に送られると共に精密流量計41で測定された流量が計測装置49に送られる。
【0017】
この計測装置49において、図2に示されているように、第1温度T1と第2温度T2の変化がグラフ化されている。横軸に経過時間の対数ln(t)をとり、縦軸にT1とT2の対数平均温度Tfをとると図3中の実線のように示される。なお、試験時間は1n(t)に対するTfの変化幅が一定に達した後、さらに数十時間を要し、通常は60〜72h連続的に注熱を行う必要がある。
【0018】
ここで、線状熱源の理論(Kelvinの線源理論)がすでに知られている。この理論を基にして、ボアホールに長期的に連続して一定の加熱を行うとき、次のようにあらわせる。
【0019】
【数1】

Figure 2004301750
Tf:対数平均温度 a:熱拡散係数(λ/c:は比熱)
Q:加熱量 ro:ボアホール半径
λ:有効熱伝導率 γ:オイラー数(0.5772)
H:ボアホール深さ Rb:熱抵抗
t:時間 Tsur:地盤温度
上記(1)式において、総熱抵抗は、地盤の熱抵抗、自然対流などのボアホール周辺の様々な条件の影響を受けるが、図2に示されているように、Tfとln(t)には次の一次の関係が成り立つ。
【0020】
Tf=kln(t)+m ・・・・(2)
熱搬送流体とボアホール壁とのボアホール熱抵抗Rbは、下記の(3)式の関係が成立する。
【0021】
Tf−Tb=Rb・Q/H ・・・(3)
但し、Tf:対数平均温度 Tb:ボアホール壁温度 で明らかとなる。
【0022】
図3のごとく、T1とT2の対数平均温度Tfの経過時間の対数ln(t)をあらわすと、ある経過時間以降はTfの変化の傾きはほぼ一定となる。このときの傾きから、熱移動特性を判断できる。すなわち、地中の平均的な有効熱伝導率λは、加熱量Q、ボアホール深さH、前述の傾きkがわかれば、次式から求めることができる。
【0023】
すなわち、λ=Q/(4πkH)により有効熱伝導率λの値を求めることができる。
【0024】
この求められた有効熱伝導率λから採熱能力を予測することができるので、地中熱利用によって、建物の暖冷房や給湯、または融雪などを行う際に、対象となる規模の熱量を確保できる地中熱交換器の総延長を決定するのに利用でき、熱交換器設計精度の向上とコストの縮減を図ることを可能とするものである。
【0025】
したがって、パイプ9に供給した液体である温水の吐出温度である第1温度T1、戻り温度である第2温度T2を、従来の大掛かりな装置を使わなくても、簡単、かつ容易に測定することができる。
【0026】
この地中採熱試験を精密に試験を行うためには長時間にわたって地中に一定の熱量を連続的に加えることが重要であり、そのために、従来は電気ヒータを使っていたが、燃焼制御可能な灯油ボイラー19とクッションタンク37を使うことで、山間部や僻地のリゾートなどの建設予定地、また、都市部の工事現場などにおいて試験をする場合にも、配電設備がなかったり、また、あった場合でも使用電力が限られる場合が多いので、外から電力供給を受けなくても試験を無人独自で運転でき、かつ精密に試験できる。従来の大掛かりな装置に比べて装置本体を軽量に製作ができると共にコンパクトで頑丈なパッケージに収められ、持ち運や、設置を容易にすることができる。
【0027】
また、精密制御可能な灯油ボイラ19と第1温度センサ39との間に、クッションタンク37が備えられているから、電気ヒータで一定加熱したのと同程度の精度で加熱量を得ることができ、しかも、流体の温度および流量のバラツキをなくし、均一化を図ることができる。
【0028】
無線通信手段である例えば携帯電話53を用いて転送することにより、測定したデータも自動的に遠隔地でも監視することができる。なお、燃料タンク23として90L用、バッテリ25の補充電源としてPV29を用いることで、1〜2週間連続して稼働することが可能である。なお、パソコン51にてデータを保存せしめることができる。
【0029】
なお、この発明は前述した実施の形態に限定されることなく、適宜な変更を行うことによりその他の態様で実施し得るものである。
【0030】
【発明の効果】
以上のごとき発明の実施の形態の説明から理解されるように、請求項1の発明によれば、地中内のパイプに供給した流体の吐出温度である第1温度T1、戻り温度である第2温度を、従来の大掛かりな装置を使わなくても、簡単、かつ容易に測定することができる。しかも、山間部や僻地のリゾートなどの建設予定地、また、都市部の工事現場などにおいて試験をする場合にも、配電設備がなかったり、また、あった場合でも使用電力が限られる場合が多いので、外から電力供給を受けなくても試験を独立して、かつ精密に試験できる。従来の大掛かりな装置に比べて装置本体を軽量に製作ができると共にコンパクトでコンパクトで頑丈なパッケージに収められ、持ち運びや、設置を容易にすることができる。
【0031】
無線通信手段である例えば携帯電話を用いることで、測定したデータも自動的に遠隔地でも監視することができる。さらに、電気設備としては燃料タンクと灯油ボイラと電源とで加熱ユニットが構成されているから、従来のような大掛かりな電気設備が必要でなく、自立型の地中採熱試験装置を提供することができる。
【0032】
請求項2の発明によれば、精密制御可能な灯油ボイラと第1温度センサとの間に、クッションタンクが備えられているから、電気ヒータで一定加熱したのと同程度の精度で加熱量を得ることができ、流体の温度および流量のバラツキをなくし、均一化を図ることができる。
【図面の簡単な説明】
【図1】この発明の地中採熱試験装置の正面図である。
【図2】測定時間に対する第1温度センサ、第2温度センサで測定された第1温度、第2温度の関係を示したグラフである。
【図3】対数時間における平均流体温度分布を示したグラフである。
【符号の説明】
1 地中採熱試験装置
3 地中
5 ボアホール
9 パイプ(熱交換器)
11、15 継ぎ手
13 入り側用パイプ
17 出側用パイプ
19 灯油ボイラ
21 燃料配管
23 燃料タンク
24 DC/ACインバータ
25 バッテリ
26 AC/DCインバータ(蓄電制御付)
27 AC入力出力部
28 チャージコントローラ
29 PV(太陽光発電パネル)
31 電源
33 加熱ユニット
35 循環ポンプ
37 クッションタンク
39 第1温度センサ
41 精密流量計
43 第2温度センサ
47 温度変換器
49 計測装置(演算手段)
51 パソコン
53 携帯電話(無線通信手段)
55 外気温センサ[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, the effective thermal conductivity of the formation and the thermal resistance between the underground heat exchanger and the soil necessary for estimating the available amount of underground heat can be independently and automatically determined without receiving electric power. The present invention relates to an underground heat sampling test device that can be measured simply, easily, and precisely.
[0002]
[Prior art]
Systems that use underground heat for heating or cooling a building or melting snow have been actually used overseas for more than two decades, and are rapidly spreading. On the other hand, in Japan, geothermal heat utilization systems have recently been introduced, but the number is still small.
[0003]
When using underground heat, it is important to grasp the amount of heat that can be taken from the ground.However, underground heat test equipment to grasp the amount of heat taken generally requires a large power supply. There is no test device in Japan or overseas that is large or large-scale and can perform tests independently without receiving power supply.
[0004]
[Patent Document 1]
JP-A-2002-5594
[0005]
[Problems to be solved by the invention]
By the way, in Sweden, Germany and the United States, underground heat sampling test equipment using an electric heater as a heat source has been developed and used, but the heater capacity is as large as 3 kW to 12 kW. To do this, a place equipped with electric facilities or a large-sized generator that can be operated for several days is required, and there is no underground heat sampling test device that can easily perform tests anywhere.
[0006]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and the object is not to use a conventional large-scale device, but the device body is housed in a lightweight, compact, and rugged package. It is an object of the present invention to provide an underground heat sampling test apparatus that is easy, can perform a test operation independently without receiving power supply, and can automatically transfer data wirelessly and remotely monitor the data.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an underground heat sampling test apparatus according to the present invention according to claim 1 includes a heating unit provided with a fuel tank, a kerosene boiler, and a power supply, and a fluid heated by the heating unit is placed underground. A circulating pump for sending to the pipe, a first temperature sensor for measuring a first temperature of the fluid sent to the pipe underground, and a second temperature for measuring a second temperature of the fluid returned from the pipe underground. A sensor, a flow meter for measuring a flow rate of a fluid circulated through the underground pipe and the heating unit, a first temperature and a second temperature measured by the first and second temperature sensors, and The present invention is characterized in that it comprises a calculating means for calculating the difference to obtain the thermal conductivity in the ground, and a wireless communication means for transferring the calculation result of the calculating means to data.
[0008]
According to a second aspect of the present invention, there is provided an underground heat testing apparatus according to the first aspect, wherein a temperature and a flow rate of a fluid are provided between the kerosene boiler in the heating unit and the first temperature sensor. And a cushion tank for equalizing the pressure.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
Referring to FIG. 1, as an underground heat sampling test apparatus 1, a borehole 5 of, for example, about 60 to 200φ is dug in the underground 3 at a depth of about 100 m from the ground surface, for example. A U-shaped pipe 9 as a heat exchanger is embedded. One end of the pipe 9 is connected to one end of an inlet pipe 13 via a joint 11 such as a quick coupler, and the other end of the pipe 9 is connected to an outlet pipe 17 via a joint 15 such as a quick coupler. Are connected at one end. The other end of the inlet pipe 13 and the other end of the outlet pipe 17 are connected to a kerosene boiler 19.
[0011]
A 90 L fuel tank 23 is connected to the kerosene boiler 19 via a fuel pipe 21. Further, a DC / AC inverter 24 and a battery 25 are connected to the kerosene boiler 19 via a switch S1, and an AC / DC inverter 26 and an AC input / output unit 27 are sequentially connected in series via a switch S2. A PV (photovoltaic power generation panel) 29 is connected to the battery 25 via a charge controller 28. The DC / AC inverter 24, battery 25, DC / AC inverter 26, AC input / output unit 27, charge controller 28, and PV 29 are collectively referred to as a power supply 31. The fuel tank 23, the kerosene boiler 19, and the power supply 31 constitute a heating unit 33.
[0012]
When the switch S1 is switched to the AC input / output unit 27 side as a method of using the power supply 31, the AC input / output unit 27 is connected to the kerosene boiler 19 and used. Also, as shown in FIG. 1, the switch S1 is switched to the DC / AC inverter 24 side and the switch S2 is turned off, so that the battery 25 charged by the PV 29 or the AC / DC input / output unit 27 becomes a DC / AC converter. It is connected to the kerosene boiler 19 via the / AC inverter 24 and used. As described above, the power supply 31 can be used in two ways as needed. When the switch S2 is turned on, the battery 25 is charged by connecting the AC input / output unit 27 to the battery 25 via the AC / DC inverter 26, and from the PV 29 via the charge controller 28 during daylight hours such as fine weather. Charged and filled.
[0013]
A circulation pump 35, for example, a 20-liter cushion tank 37, and a first temperature sensor 39 are sequentially provided in series on the entrance side pipe 13 from the kerosene boiler 19 side. Further, a precision flow meter 41 and a second temperature sensor 43 are provided in series in the middle of the outlet pipe 15 from the kerosene boiler 19 side.
[0014]
A temperature converter 47 is connected to the first temperature sensor 39 and the second temperature sensor 43. The temperature converter 47 is connected to a measuring device 49 as arithmetic means, and the precision flow meter 41 and the outside air temperature sensor 55 are also connected to the measuring device 49. A personal computer 51 is connected to the measuring device 49, and a mobile phone 53 as a wireless communication means for transferring data is connected to the personal computer 51, for example.
[0015]
With the above configuration, when the power supply 31 is turned on in one of two ways, kerosene is supplied from the fuel tank 23 to the kerosene boiler 19, and the kerosene boiler 19 operates. The circulation pump 35 is operated, and a fluid such as antifreeze or water is sent to the inlet pipe 13, and further sent to the pipe 9 via the cushion tank 37 and the first temperature sensor 39. The fluid passes through the pipe 9 and returns to the kerosene boiler 19 via the second temperature sensor 43 and the precision flow meter 41. Thus, the fluid is circulated in the pipe 9 while the circulation pump 35 is operated. Therefore, it is important to control the combustion of the kerosene boiler 19 and use the cushion tank 37 in order to obtain the same constant heating performance as when using the conventional electric heater.
[0016]
Then, when the fluid is circulating in the pipe 9, a change in the temperature of the circulating liquid in the pipe 9 is measured. That is, periodically, the first temperature T1 sent into the pipe 9 is measured by the first temperature sensor 39, and the second temperature T2 sent from the inside of the pipe 9 is measured by the second temperature sensor 41. The first temperature T1 measured by the first temperature sensor 39 and the second temperature T2 measured by the second temperature sensor 43 are sent to the measuring device 49 at certain time intervals via the temperature converter 47, and a precise flow rate is obtained. The flow rate measured by the total 41 is sent to the measuring device 49.
[0017]
In this measuring device 49, as shown in FIG. 2, a change in the first temperature T1 and the second temperature T2 is graphed. The logarithm of elapsed time ln (t) is plotted on the horizontal axis, and the logarithmic average temperature Tf of T1 and T2 is plotted on the vertical axis, as shown by the solid line in FIG. The test time requires several tens of hours after the change width of Tf with respect to 1n (t) reaches a constant value, and usually requires continuous heat injection for 60 to 72 hours.
[0018]
Here, the theory of a linear heat source (Kelvin's source theory) is already known. Based on this theory, when performing constant long-term continuous heating of the borehole, the following expression is obtained.
[0019]
(Equation 1)
Figure 2004301750
Tf: logarithmic average temperature a: thermal diffusion coefficient (λ / c: specific heat)
Q: Heating amount ro: Borehole radius λ: Effective thermal conductivity γ: Euler number (0.5772)
H: borehole depth Rb: thermal resistance t: time Tsur: ground temperature In the above equation (1), the total thermal resistance is affected by various conditions around the borehole, such as the thermal resistance of the ground and natural convection. As shown in FIG. 2, the following linear relationship holds between Tf and ln (t).
[0020]
Tf = kln (t) + m (2)
The following equation (3) holds true for the borehole thermal resistance Rb between the heat transfer fluid and the borehole wall.
[0021]
Tf−Tb = Rb · Q / H (3)
However, it becomes clear from Tf: logarithmic average temperature, Tb: borehole wall temperature.
[0022]
As shown in FIG. 3, when the logarithm ln (t) of the elapsed time of the logarithmic average temperature Tf of T1 and T2 is represented, the slope of the change in Tf becomes substantially constant after a certain elapsed time. The heat transfer characteristic can be determined from the inclination at this time. That is, the average effective thermal conductivity λ in the ground can be obtained from the following equation if the heating amount Q, the borehole depth H, and the aforementioned slope k are known.
[0023]
That is, the value of the effective thermal conductivity λ can be obtained from λ = Q / (4πkH).
[0024]
Since the heat collection capacity can be predicted from the obtained effective thermal conductivity λ, the amount of heat of the target scale is secured when heating and cooling the building, supplying hot water, or melting snow by using underground heat. It can be used to determine the total length of possible underground heat exchangers, and it is possible to improve the design accuracy of heat exchangers and reduce costs.
[0025]
Therefore, it is possible to easily and easily measure the first temperature T1 which is the discharge temperature of the hot water which is the liquid supplied to the pipe 9, and the second temperature T2 which is the return temperature without using a conventional large-scale apparatus. Can be.
[0026]
It is important to apply a constant amount of heat to the ground for a long time in order to perform this underground heat collection test accurately. For this reason, electric heaters were conventionally used. By using a possible kerosene boiler 19 and cushion tank 37, there is no power distribution equipment when conducting tests at construction sites such as mountainous and remote resorts and construction sites in urban areas. Even in the case where the power is used, the power consumption is often limited, so that the test can be performed independently and without any power supply from outside, and the test can be performed precisely. Compared with a conventional large-scale device, the device main body can be manufactured in a lighter weight, and can be housed in a compact and sturdy package, and can be easily carried and installed.
[0027]
Further, since the cushion tank 37 is provided between the kerosene boiler 19 that can be precisely controlled and the first temperature sensor 39, the heating amount can be obtained with the same accuracy as that of the case where constant heating is performed by the electric heater. Moreover, variations in the temperature and the flow rate of the fluid can be eliminated, and the fluid can be made uniform.
[0028]
By transferring the data using, for example, the mobile phone 53 which is a wireless communication means, the measured data can also be automatically monitored at a remote place. In addition, it is possible to operate continuously for 1 to 2 weeks by using 90L for the fuel tank 23 and PV29 as a power supply for replenishing the battery 25. The data can be stored in the personal computer 51.
[0029]
The present invention is not limited to the above-described embodiment, but can be embodied in other modes by making appropriate changes.
[0030]
【The invention's effect】
As understood from the above description of the embodiment of the invention, according to the invention of claim 1, the first temperature T1, which is the discharge temperature of the fluid supplied to the pipe underground, and the first temperature T1, which is the return temperature. The two temperatures can be measured simply and easily without using a conventional large-scale device. In addition, when conducting a test at a construction site such as a mountain or remote resort, or at a construction site in an urban area, there is often no power distribution equipment, and even if there is, power consumption is often limited. Therefore, the test can be performed independently and precisely without receiving power supply from outside. Compared to a conventional large-scale device, the device main body can be manufactured in a lighter weight, and can be housed in a compact, compact, and rugged package, and can be easily carried and installed.
[0031]
By using a wireless communication means such as a mobile phone, the measured data can also be automatically monitored at a remote location. Furthermore, since the heating unit is composed of a fuel tank, a kerosene boiler, and a power supply as the electric equipment, a large-scale electric equipment as in the related art is not required, and a self-standing underground heat sampling test apparatus is provided. Can be.
[0032]
According to the second aspect of the present invention, since the cushion tank is provided between the kerosene boiler that can be precisely controlled and the first temperature sensor, the heating amount can be reduced with the same accuracy as that of the constant heating by the electric heater. Thus, variations in the temperature and the flow rate of the fluid can be eliminated, and uniformity can be achieved.
[Brief description of the drawings]
FIG. 1 is a front view of an underground heat sampling test apparatus according to the present invention.
FIG. 2 is a graph showing a relationship between a first temperature and a second temperature measured by a first temperature sensor and a second temperature sensor with respect to a measurement time.
FIG. 3 is a graph showing an average fluid temperature distribution in logarithmic time.
[Explanation of symbols]
1 underground heat sampling test equipment 3 underground 5 borehole 9 pipe (heat exchanger)
11, 15 Joint 13 Inlet pipe 17 Outlet pipe 19 Kerosene boiler 21 Fuel pipe 23 Fuel tank 24 DC / AC inverter 25 Battery 26 AC / DC inverter (with power storage control)
27 AC input / output unit 28 Charge controller 29 PV (Solar power generation panel)
31 Power supply 33 Heating unit 35 Circulation pump 37 Cushion tank 39 First temperature sensor 41 Precision flow meter 43 Second temperature sensor 47 Temperature converter 49 Measuring device (arithmetic means)
51 PC 53 Mobile phone (wireless communication means)
55 Outside temperature sensor

Claims (2)

燃料タンクと灯油ボイラと電源とを備えた加熱ユニットと、この加熱ユニットで加熱された流体を地中内のパイプへ送るための循環ポンプと、地中内のパイプへ送られる流体の第1温度を測定する第1温度センサと、地中内のパイプから戻される流体の第2温度を測定する第2温度センサと、前記地中内のパイプと加熱ユニットとを循環される流体の流量を測定する流量計と、前記第1、第2温度センサで測定された第1温度と第2温度および、それらの差を演算して地中の熱伝導率を求めるための演算手段と、この演算手段の演算結果をデータ転送する無線通信手段と、を備えたことを特徴とする地中採熱試験装置。A heating unit having a fuel tank, a kerosene boiler, and a power supply, a circulation pump for sending the fluid heated by the heating unit to an underground pipe, and a first temperature of the fluid sent to the underground pipe And a second temperature sensor for measuring a second temperature of the fluid returned from the underground pipe, and for measuring a flow rate of the fluid circulated through the underground pipe and the heating unit. Flow meter, calculating means for calculating the underground thermal conductivity by calculating the first temperature and the second temperature measured by the first and second temperature sensors, and their difference, and the calculating means And a wireless communication means for transferring the calculation result of (1). 加熱ユニットの中の灯油ボイラと第1温度センサとの間に、流体の温度および流量を均一化するためのクッションタンクを備えていることを特徴とする請求項1記載の地中採熱試験装置。2. The underground heat sampling test apparatus according to claim 1, further comprising a cushion tank between the kerosene boiler in the heating unit and the first temperature sensor for equalizing the temperature and flow rate of the fluid. .
JP2003096656A 2003-03-31 2003-03-31 Underground heat sampling test equipment Expired - Fee Related JP4034220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096656A JP4034220B2 (en) 2003-03-31 2003-03-31 Underground heat sampling test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096656A JP4034220B2 (en) 2003-03-31 2003-03-31 Underground heat sampling test equipment

Publications (2)

Publication Number Publication Date
JP2004301750A true JP2004301750A (en) 2004-10-28
JP4034220B2 JP4034220B2 (en) 2008-01-16

Family

ID=33408648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096656A Expired - Fee Related JP4034220B2 (en) 2003-03-31 2003-03-31 Underground heat sampling test equipment

Country Status (1)

Country Link
JP (1) JP4034220B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643716B1 (en) 2005-07-22 2006-11-10 (주) 소암컨설턴트 The judgmentt methods of the grouting-result using the heating device and the temperature-monitoring equipments
KR100838232B1 (en) * 2006-07-12 2008-06-17 제인상사(주) Method of evaluating ground thermal conductivity
JP2009145204A (en) * 2007-12-14 2009-07-02 Asahi Kasei Homes Co Probe for measuring underground thermal conductivity, underground thermal conductivity measuring device, and underground thermal conductivity measuring method
KR200447992Y1 (en) * 2008-03-05 2010-03-08 한국에너지기술연구원 In-Situ Geothermal Characteristics Tester
CN101105467B (en) * 2007-08-07 2011-04-27 东华大学 Soil thermal conductivity factor detection device and its method
JP2012233669A (en) * 2011-05-09 2012-11-29 Nippon Steel Engineering Co Ltd Method and device for analyzing ground heat characteristic in soil heat source heat pump system, method and device for adjusting operation of soil heat source heat pump system, and program
CN103149234A (en) * 2013-03-20 2013-06-12 上海理工大学 Movable ground source heat pump thermal response test instrument and testing method
CN115561279A (en) * 2022-12-05 2023-01-03 中国煤炭地质总局勘查研究总院 Simulation experiment device for formation deep gas-heat co-production and use method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643716B1 (en) 2005-07-22 2006-11-10 (주) 소암컨설턴트 The judgmentt methods of the grouting-result using the heating device and the temperature-monitoring equipments
KR100838232B1 (en) * 2006-07-12 2008-06-17 제인상사(주) Method of evaluating ground thermal conductivity
CN101105467B (en) * 2007-08-07 2011-04-27 东华大学 Soil thermal conductivity factor detection device and its method
JP2009145204A (en) * 2007-12-14 2009-07-02 Asahi Kasei Homes Co Probe for measuring underground thermal conductivity, underground thermal conductivity measuring device, and underground thermal conductivity measuring method
KR200447992Y1 (en) * 2008-03-05 2010-03-08 한국에너지기술연구원 In-Situ Geothermal Characteristics Tester
JP2012233669A (en) * 2011-05-09 2012-11-29 Nippon Steel Engineering Co Ltd Method and device for analyzing ground heat characteristic in soil heat source heat pump system, method and device for adjusting operation of soil heat source heat pump system, and program
CN103149234A (en) * 2013-03-20 2013-06-12 上海理工大学 Movable ground source heat pump thermal response test instrument and testing method
CN115561279A (en) * 2022-12-05 2023-01-03 中国煤炭地质总局勘查研究总院 Simulation experiment device for formation deep gas-heat co-production and use method

Also Published As

Publication number Publication date
JP4034220B2 (en) 2008-01-16

Similar Documents

Publication Publication Date Title
Wang et al. Improved method and case study of thermal response test for borehole heat exchangers of ground source heat pump system
Naghavi et al. Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes
Acuña Improvements of U-pipe borehole heat exchangers
Hoivik et al. Demonstration of EnergyNest thermal energy storage (TES) technology
WO2021254421A1 (en) Distributed soil body thermal conductivity coefficient testing method and system
US20070061104A1 (en) Performance prediction program and performance prediction system for ground source heat pump system
Sharqawy et al. Energy, exergy and uncertainty analyses of the thermal response test for a ground heat exchanger
CN102243192B (en) Multifunctional rock-soil body thermal-physical property testing device for ground source heat pump
JP4034220B2 (en) Underground heat sampling test equipment
JP2006118851A (en) Performance prediction program and performance prediction system for ground source heat pump system
CN201166615Y (en) Tester for exchanging heat of buried tube of earth source heat pump
JP2003004680A (en) Method and device for testing thermal response of underground heat exchanger
CN206235584U (en) A kind of experimental system for verifying energy stake Calculation of Heat Transfer model under the conditions of seepage action of ground water
Akhmetov et al. A novel hybrid approach for in-situ determining the thermal properties of subsurface layers around borehole heat exchanger
Loveridge et al. Group thermal response testing for energy piles
CN207081677U (en) Rock And Soil thermal property tester for earth-source hot-pump system
KR101398823B1 (en) Cogeneration system
KR100818769B1 (en) Device of evaluating ground thermal conductivity
Georgiev et al. In-situ measurements of ground thermal properties around borehole heat exchangers in Plovdiv, Bulgaria
CN107543841A (en) The novel portable measuring instrument of flow thermal conductivity coefficient in a kind of measuring cell
KR101420615B1 (en) A system for measurement of ground thermal performance and conductivity, and the method
CN206517319U (en) The system that a kind of utilization heat pipe temperature difference generates electricity
Tsubaki et al. Performance of ground-source heat exchangers using short residential foundation piles
CN201680930U (en) Heat metering system
CN214585035U (en) Waste water pipeline heat loss simulation test device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees