JP2003307377A - Heat transfer device - Google Patents

Heat transfer device

Info

Publication number
JP2003307377A
JP2003307377A JP2002113134A JP2002113134A JP2003307377A JP 2003307377 A JP2003307377 A JP 2003307377A JP 2002113134 A JP2002113134 A JP 2002113134A JP 2002113134 A JP2002113134 A JP 2002113134A JP 2003307377 A JP2003307377 A JP 2003307377A
Authority
JP
Japan
Prior art keywords
pipe
heat transfer
heat
transfer medium
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002113134A
Other languages
Japanese (ja)
Other versions
JP4036670B2 (en
Inventor
Takahiro Nakamura
隆広 中村
Masaru Kanai
大 金井
Hiroshi Sekiya
弘志 関谷
Masataka Hatta
政隆 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002113134A priority Critical patent/JP4036670B2/en
Publication of JP2003307377A publication Critical patent/JP2003307377A/en
Application granted granted Critical
Publication of JP4036670B2 publication Critical patent/JP4036670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To normally perform steam separation even if increasing a circulating amount of a heat transfer medium. <P>SOLUTION: When the liquid heat transfer medium stored in a tank 13 is purified and returned to a circulating passage via a liquid return pipe 24, the lower end (g point) of the liquid return pipe 24 is made to approach and connected to a connecting part (b point) of an inlet pipe 21. Even if a system produces a large pressure loss from the lower end (g point) of the return pipe 24 to a transfer pump, this constitution scarcely produce the pressure loss between the connecting part (g point) of the liquid return pipe 24 and the connecting part (b point) of the inlet pipe 21, so that if the circulation amount of the heat transfer medium is increased, this constitution can prevent the intrusion of a large amount of the liquid heat transfer medium into the separation pipe 23 so as to appropriately perform the steam separation. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、熱利用機器から戻
った熱搬送媒体の気液分離を確実に行えるようにした熱
搬送装置に関する。 【0002】 【従来の技術】スターリング冷凍機は、小型化が可能、
成績係数や冷凍効率が高い、発生する温度範囲が広い、
近年の地球環境問題におけるフロン代替が容易等の多く
の優れた特徴を持っている。 【0003】そして、かかるスターリング冷凍機で発生
した冷熱は、熱搬送装置により冷熱利用機器に搬送して
利用される。 【0004】図4は熱搬送装置を冷熱供給部分(冷熱搬
送ユニット101)の回路図を示し、図5はその立体模
式図である。なお、図4及び図5におけるa,b,…
は、配管の接続部を示している。 【0005】この熱搬送装置は、スターリング冷凍機の
ような冷熱源と熱搬送媒体とが熱交換する冷熱源側熱交
換器110、該熱搬送媒体を圧送する搬送ポンプ11
1、熱搬送媒体と冷熱利用機器とが熱交換する図示しな
い負荷側熱交換器、搬送ポンプ111に液体の熱搬送媒
体のみが供給されるように気液分離する気液分離器11
2、余剰の熱搬送媒体を貯留するタンク113等を主要
構成としている。 【0006】そして、冷熱源側熱交換器110、搬送ポ
ンプ111、気液分離器112及びタンク113等が冷
熱搬送ユニット101としてユニット化されている。 【0007】これにより冷熱利用機器から戻ってきた熱
搬送媒体は、冷熱搬送ユニット101の入口管121か
らユニット内に流入して、搬送ポンプ111、冷熱源側
熱交換器110を介して出口管122から冷熱利用機器
に供給される。 【0008】このとき冷熱搬送ユニット101に戻った
熱搬送媒体に気体成分が含まれると、冷熱源での熱交換
を効率的に行うことが困難となり冷熱搬送効率が低下し
てしまう等の理由から、戻ってきた熱搬送媒体を気液分
離器112で気液分離して液体の熱搬送媒体のみが循環
路を循環するようにしている。 【0009】このような気液分離器112は、鉛直方向
に配設された分離管123を備えて、該分離管123の
下端部近傍に入口管121が接続(b点)されることに
より、当該入口管121を介して戻ってきた熱搬送媒体
のうち気体の熱搬送媒体は分離管123内で浮上して
(2重点線矢印)、分離管123のコ字状部(c点)に
溜まる。また、液体の熱搬送媒体は分離管123の下端
に向って流下(2重実線矢印)する。これにより気液分
離が行なわれる。 【0010】タンク113は、分離管123の頂上部側
の端が上部に接続されて分離管123のc点で溢れた気
体又は液体がタンク113の頭部(e点)から流入して
貯留される。 【0011】また、分離管123の頂上部側の端は、分
離管123の下端と搬送ポンプ111とを繋ぐ循環路配
管にr点で接続されている。 【0012】 【発明が解決しようとする課題】しかしながら、上記構
成では、熱搬送媒体の循環量を増大させると液体の熱搬
送媒体が分離管123に多量に侵入して、気液分離が正
常に行えなくなる事態が発生する問題があった。 【0013】即ち、分離管123での気液分離点(b
点)と、液戻管124の接続部(r点)との間の距離が
長く、かつ、冷熱搬送ユニット101を小型化する等の
要請がありこの間に複数の屈曲部(配管の曲り部分)が
存在するため、気液分離点(b点)と液戻管124の接
続部(r点)との間で大きな圧力損失が発生する。 【0014】このような圧力損失が発生する状態で、熱
搬送媒体の循環量を増大させるとこの循環量の増加に伴
って気液分離点(c点)と液戻管124の接続部(r
点)との差圧が大きくなる。 【0015】この結果、接続部(r点)の圧力が下が
り、反対側となる分離管123のc点が低圧となり液体
の熱搬送媒体が吸上げられ、分離管123の頂上部側に
侵入してしまう事態が生じる。 【0016】そこで、本発明は、熱搬送媒体の循環量を
増大させても正常に気液分離が行えるようにした熱搬送
装置を提供することを目的とする。 【0017】 【課題を解決するための手段】上記課題を解決するた
め、本発明は、熱搬送媒体と冷熱源との間で熱交換を行
わせる冷熱源側熱交換器と、該熱搬送媒体を熱利用機器
側に圧送する搬送ポンプとを有して、これらが循環路配
管により順に接続されて冷熱搬送ユニットとしてユニッ
ト化され、熱利用機器から戻ってきた熱搬送媒体が冷熱
搬送ユニットに入る入口管と、冷熱搬送ユニットを熱利
用機器に供給する出口管とを備える熱搬送装置におい
て、鉛直方向に配設された分離管を備えて、該分離管の
下端部近傍に入口管が直交して接続されることにより、
当該入口管を介して戻ってきた熱搬送媒体のうち気体が
分離管内を浮上し、液体が当該分離管内を下端に向って
流下して気液分離を行う気液分離器を設け、分離管の上
端頂上を曲げ戻した後、第1の端と第2の端とに分け、
搬送ポンプの吐出側の循環路配管に下部からつながり熱
搬送媒体を貯留するタンクの上部に第1の端を接続し、
第2の端を分離管の下端近傍に接続すると共に、タンク
内の液体の熱搬送媒体を浄化フィルタを介して搬送ポン
プの入力側の循環路配管に導く管路とを有することを特
徴とする。 【0018】 【発明の実施の形態】本発明の実施の形態を図を参照し
て説明する。図1は、本発明の実施の形態の説明に適用
される冷熱搬送ユニット1の回路図を示し、図2はその
立体模式図である。 【0019】この熱搬送装置は、スターリング冷凍機の
ような冷熱源と熱搬送媒体とが熱交換する冷熱源側熱交
換器10、該熱搬送媒体を圧送する搬送ポンプ11、熱
搬送媒体と冷熱利用機器とが熱交換する負荷側熱交換
器、搬送ポンプ11に液体の熱搬送媒体のみが供給され
るように気液分離する気液分離器12、余剰の熱搬送媒
体を貯留するタンク13、該タンク13に貯留されてい
る液体の熱搬送媒体を回路に戻す際に、清浄化して戻す
ようにするフィルタ14等を主要構成としている。 【0020】そして、冷熱源側熱交換器10、搬送ポン
プ11、気液分離器12、タンク13及びフィルタ14
等が冷熱搬送ユニット1としてユニット化されて、当該
冷熱搬送ユニット1には冷熱利用機器から戻ってきた熱
搬送媒体がユニット内に戻る入口管21と、搬送ポンプ
11、冷熱源側熱交換器10を介して冷熱利用機器に供
給される出口管22とが設けられている。 【0021】なお、冷熱搬送ユニット1の小型化等の要
請からタンク13はフィルタ14の上方に配置されてお
り、当該タンク13に貯留された液体の熱搬送媒体が重
力の作用で配管29を介して流下してフィルタ14に供
給され、当該フィルタ14で浄化されて液戻管24にf
点で合流した後循環路配管に戻るようになっている。 【0022】気液分離器12は、鉛直方向に配設された
分離管23により形成されて、該分離管23の下端近傍
に入口管21が直交して接続(b点)され、下端部(g
点)は搬送ポンプ11につながる循環路配管に接続され
ている。なお、入口管21及び出口管22は、水平方向
に向って設けられている。 【0023】分離管23は上端を略U字状、略コ字状、
略V字状等の頂上を形成して曲げ戻し、その上端d点で
第1の端と第2の端とに分け、第1の端はe点を介して
タンク13の一部につながっている。第2の端は液戻管
24を介して下端部(g点)に接続されている。この接
続は、下端部(g点)の近傍であってもよい。 【0024】これにより入口管21を介して冷熱搬送ユ
ニット1に戻ってきた熱搬送媒体のうち気体の熱搬送媒
体は分離管23の頂部側に向って管内を浮上し(c点方
向)、また液体の熱搬送媒体は下流(g点方向)して気
液分離が行なわれる。 【0025】分離管23内を浮上してきた気体の熱搬送
媒体量が増えると、その頂部近傍(頂部であっても良
い)のe点から気体導路管25(第1の端)を通ってタ
ンク13へ導かれる。 【0026】従って、気液分離された気体の熱搬送媒体
は、タンク13の頂部から当該タンク13に流入して貯
留される。 【0027】このタンク13の底部は回収管27が設け
られて、搬送ポンプ11と冷熱源側熱交換器10との間
の循環路配管26を電磁弁(開閉弁)28を介して接続
している。 【0028】この電磁弁28は、例えば1分間に0.1
秒〜数秒間開き、定期的に搬送ポンプ11から吐出され
る熱搬送媒体を一定量タンク13へ供給する。 【0029】このタンク13に供給された熱搬送媒体
は、タンク13の底部n点に接続された配管29を介し
てフィルタ14に至り浄化された後、液戻管24のf点
を経て循環路配管に戻される。 【0030】なお、フィルタ14は開閉弁V1〜V3を
閉じることにより交換可能となっている。 【0031】このように液戻管24の接続部(g点)を
入口管の接続部(b点)に設けることにより、それ以降
の循環路配管に複数の屈曲部が存在して大きな圧力損失
が発生するような系であっても、液戻管24の接続部
(g点)と入口管の接続部(b点)との間では殆ど圧力
損失が発生しないので、熱搬送媒体の循環量を増大させ
ても分離管23のc点が極端な低圧となることなく、液
体の熱搬送媒体が分離管23を多量に上昇してしまう事
態が防止でき、気液分離作用が阻害されてしまうことが
無くなる。 【0032】なお、タンク13にはq点を介してタンク
13内部が高圧となった際のトラップ部及び圧力逃し機
が設けられ、p点には熱搬送媒体の注入機構が設けられ
ている。 【0033】図3は、図4及び図5に示す従来構造と、
図1及び図2に示す本発明に係る構造とにおける液柱差
を熱搬送媒体の流量に対して示した図である。 【0034】なお、液柱差とは分離管23と液戻管24
との管内に貯まった液体の熱搬送媒体量における液柱の
差をいい、タンク13とフィルタ14との据付け構造か
らこの液柱差は30cm以内にしなければならない。 【0035】この図から分るように、図3等における従
来構成の場合には、分離管23と液戻管24との間に複
数の屈曲部(w1〜w4)が存在しているため、流量が
3リットル/分になると、液柱差が30cmを超えてし
まうが、本発明に係る構成によればこれらの間に屈曲部
が存在しないので約10cmに納めることが可能になっ
ている。 【0036】 【発明の効果】以上説明したように本発明によれば、鉛
直方向に配設された分離管を備えて、該分離管の下端部
近傍に入口管が直交して接続されることにより、当該入
口管を介して戻ってきた熱搬送媒体のうち気体が分離管
内を浮上し、液体が当該分離管内を下端に向って流下し
て気液分離を行う気液分離器を設け、分離管の上端頂上
を曲げ戻した後、第1の端と第2の端とに分け、第1の
端を搬送ポンプの吐出側の循環路配管に下部からつなが
り熱搬送媒体を貯留するタンクの上部に接続し、第2の
端を分離管の下端近傍に接続すると共に、タンク内の液
体の熱搬送媒体を浄化フィルタを介して搬送ポンプの入
力側の循環路配管に導く管路とを設けたので、熱搬送媒
体の循環量を増大させても正常に気液分離が行えるよう
になり、信頼性が向上する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer device which can surely perform gas-liquid separation of a heat transfer medium returned from heat utilization equipment. [0002] Stirling refrigerators can be miniaturized.
High coefficient of performance and refrigeration efficiency, wide temperature range to generate,
It has many excellent features such as easy replacement of CFCs in global environmental problems in recent years. [0003] The cold generated by the Stirling refrigerator is conveyed to a cold utilization device by a heat transfer device and used. FIG. 4 is a circuit diagram of a cold-heat supply portion (cold-heat transfer unit 101) of the heat transfer device, and FIG. 5 is a three-dimensional schematic diagram thereof. In addition, a, b, ... in FIG. 4 and FIG.
Indicates a pipe connection part. The heat transfer apparatus includes a cold heat source side heat exchanger 110 for exchanging heat between a cold heat source such as a Stirling refrigerator and a heat transfer medium, and a transfer pump 11 for pressure-feeding the heat transfer medium.
1. Load-side heat exchanger (not shown) for exchanging heat between the heat transfer medium and the cold heat utilizing equipment, and a gas-liquid separator 11 for separating gas and liquid so that only the liquid heat transfer medium is supplied to the transfer pump 111
2. The main structure is a tank 113 for storing an excess heat transfer medium. [0006] The cold heat source side heat exchanger 110, the transfer pump 111, the gas-liquid separator 112, the tank 113, and the like are unitized as a cold heat transfer unit 101. [0007] As a result, the heat transfer medium returned from the cold heat utilization device flows into the cold transfer unit 101 from the inlet pipe 121 into the unit and passes through the transfer pump 111 and the cold heat source side heat exchanger 110 to the outlet pipe 122. Is supplied to the cold heat utilization equipment. At this time, if a gas component is contained in the heat transfer medium returned to the cold transfer unit 101, it is difficult to efficiently perform heat exchange in the cold heat source, and the cold transfer efficiency is reduced. Then, the returned heat transport medium is gas-liquid separated by the gas-liquid separator 112 so that only the liquid heat transport medium circulates in the circulation path. Such a gas-liquid separator 112 has a separation pipe 123 disposed in a vertical direction, and an inlet pipe 121 is connected near the lower end of the separation pipe 123 (point b). The gaseous heat transfer medium of the heat transfer medium returned via the inlet pipe 121 floats in the separation pipe 123 (double point arrow) and accumulates in the U-shaped portion (point c) of the separation pipe 123. . Further, the liquid heat transfer medium flows down (double solid line arrow) toward the lower end of the separation tube 123. Thereby, gas-liquid separation is performed. In the tank 113, the top end of the separation tube 123 is connected to the upper portion, and gas or liquid overflowing at the point c of the separation tube 123 flows from the head (point e) of the tank 113 and is stored therein. You. The top end of the separation pipe 123 is connected to a circulation pipe connecting the lower end of the separation pipe 123 and the transport pump 111 at a point r. However, in the above configuration, when the circulation amount of the heat transfer medium is increased, a large amount of the liquid heat transfer medium enters the separation tube 123, and the gas-liquid separation is performed normally. There was a problem that a situation where it could not be performed occurred. That is, the gas-liquid separation point (b
(Point r) and the connecting portion (point r) of the liquid return pipe 124, and there is a demand for downsizing the cold and heat transfer unit 101, and a plurality of bent portions (bent portions of the pipe) are required during this time. Is present, a large pressure loss occurs between the gas-liquid separation point (point b) and the connection part of the liquid return pipe 124 (point r). If the circulation amount of the heat transfer medium is increased in a state where such a pressure loss occurs, the connection portion (r) between the gas-liquid separation point (point c) and the liquid return pipe 124 is increased with the increase in the circulation amount.
Point) and the pressure difference increases. As a result, the pressure at the connection portion (point r) decreases, and the pressure at the point c of the separation tube 123 on the opposite side becomes low, so that the liquid heat transfer medium is sucked up and enters the top of the separation tube 123. Situation occurs. SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat transfer apparatus capable of performing normal gas-liquid separation even if the circulation amount of the heat transfer medium is increased. [0017] In order to solve the above-mentioned problems, the present invention provides a heat source side heat exchanger for exchanging heat between a heat transfer medium and a cold heat source, and the heat transfer medium. And a transfer pump for pressure-feeding the heat to the heat utilization device side, these are sequentially connected by a circulation path pipe to form a unit as a cold heat transfer unit, and the heat transfer medium returned from the heat use device enters the cold heat transfer unit. In a heat transfer device including an inlet pipe and an outlet pipe that supplies a cold and heat transfer unit to heat utilization equipment, the heat transfer apparatus includes a separation pipe disposed in a vertical direction, and the inlet pipe is orthogonal to a vicinity of a lower end portion of the separation pipe. By being connected
Among the heat transfer medium returned via the inlet pipe, a gas floats in the separation pipe, and a gas-liquid separator is provided in which liquid flows down to the lower end of the separation pipe toward the lower end to perform gas-liquid separation. After bending back the top end, it is divided into a first end and a second end,
A first end is connected to an upper part of a tank which is connected to a circulation path pipe on a discharge side of the transfer pump from a lower part and stores the heat transfer medium,
A second end connected to the vicinity of the lower end of the separation pipe, and a conduit for guiding a liquid heat transfer medium in the tank to a circulation pipe on an input side of the transfer pump through a purification filter. . Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram of a cold and hot transfer unit 1 applied to the description of an embodiment of the present invention, and FIG. 2 is a three-dimensional schematic diagram thereof. This heat transfer device includes a cold heat source side heat exchanger 10 such as a Stirling refrigerator for exchanging heat between a cold heat source and a heat transfer medium, a transfer pump 11 for pumping the heat transfer medium, a heat transfer medium and a cold heat transfer medium. A load-side heat exchanger that exchanges heat with the utilization equipment, a gas-liquid separator 12 that separates gas and liquid so that only the liquid heat transfer medium is supplied to the transfer pump 11, a tank 13 that stores excess heat transfer medium, When returning the liquid heat transfer medium stored in the tank 13 to the circuit, a filter 14 and the like for cleaning and returning the liquid heat transfer medium are mainly used. The heat source-side heat exchanger 10, the transport pump 11, the gas-liquid separator 12, the tank 13, and the filter 14
And the like are unitized as the cold and heat transfer unit 1, and the cold and heat transfer unit 1 has an inlet pipe 21 for returning the heat transfer medium returned from the cold utilization device into the unit, a transfer pump 11, and a cold and heat source side heat exchanger 10. And an outlet pipe 22 that is supplied to the cold heat utilization device through the outlet pipe 22. The tank 13 is disposed above the filter 14 in order to reduce the size of the cold and heat transfer unit 1 and the like, and the liquid heat transfer medium stored in the tank 13 passes through the pipe 29 by the action of gravity. And is supplied to the filter 14, purified by the filter 14, and supplied to the liquid return pipe 24.
After merging at the point, it returns to the circulation pipe. The gas-liquid separator 12 is formed by a separation pipe 23 disposed in a vertical direction, and an inlet pipe 21 is connected to the vicinity of the lower end of the separation pipe 23 orthogonally (point b). g
The point () is connected to a circulation pipe connected to the transport pump 11. In addition, the inlet pipe 21 and the outlet pipe 22 are provided in the horizontal direction. The upper end of the separation tube 23 is substantially U-shaped, substantially U-shaped,
A top having a substantially V-shape or the like is formed and bent back, and the upper end is divided into a first end and a second end at point d, and the first end is connected to a part of the tank 13 via point e. I have. The second end is connected to the lower end (point g) via a liquid return pipe 24. This connection may be near the lower end (point g). As a result, the gaseous heat transfer medium of the heat transfer medium returning to the cold and heat transfer unit 1 via the inlet pipe 21 floats in the pipe toward the top of the separation pipe 23 (in the direction of point c). The liquid heat transfer medium is downstream (in the direction of point g) to perform gas-liquid separation. When the amount of the heat transfer medium of the gas floating in the separation pipe 23 increases, the gas flows from the point e near the top (or the top) through the gas conduit 25 (first end). It is led to the tank 13. Accordingly, the gaseous heat transfer medium separated into gas and liquid flows into the tank 13 from the top of the tank 13 and is stored therein. A recovery pipe 27 is provided at the bottom of the tank 13, and a circulation pipe 26 between the transfer pump 11 and the heat source-side heat exchanger 10 is connected via an electromagnetic valve (open / close valve) 28. I have. The solenoid valve 28 is operated, for example, at 0.1
It opens for a few seconds to several seconds, and supplies a constant amount of the heat transfer medium discharged from the transfer pump 11 to the tank 13. The heat transfer medium supplied to the tank 13 reaches the filter 14 via a pipe 29 connected to the bottom point n of the tank 13 and is purified. Returned to piping. The filter 14 can be replaced by closing the on-off valves V1 to V3. By providing the connection part (point g) of the liquid return pipe 24 at the connection part (point b) of the inlet pipe as described above, a plurality of bent parts are present in the subsequent circulating pipe so that a large pressure loss occurs. Is generated, almost no pressure loss occurs between the connection part (point g) of the liquid return pipe 24 and the connection part (point b) of the inlet pipe. Even if the temperature is increased, the point c of the separation tube 23 does not become an extremely low pressure, a situation in which the liquid heat transfer medium rises a large amount in the separation tube 23 can be prevented, and the gas-liquid separation action is hindered. Is lost. The tank 13 is provided with a trap portion and a pressure relief device when the inside of the tank 13 becomes high pressure via the point q, and a heat transfer medium injection mechanism is provided at the point p. FIG. 3 shows the conventional structure shown in FIGS. 4 and 5,
FIG. 3 is a diagram showing a liquid column difference in the structure according to the present invention shown in FIGS. 1 and 2 with respect to a flow rate of a heat transfer medium. The difference between the liquid columns means the separation pipe 23 and the liquid return pipe 24.
Means the difference between the liquid columns in the amount of the heat transfer medium of the liquid stored in the pipe, and this liquid column difference must be within 30 cm from the installation structure of the tank 13 and the filter 14. As can be seen from the figure, in the case of the conventional configuration shown in FIG. 3 and the like, since a plurality of bent portions (w1 to w4) exist between the separation pipe 23 and the liquid return pipe 24, When the flow rate is 3 liters / minute, the liquid column difference exceeds 30 cm. However, according to the configuration of the present invention, since there is no bent portion between them, it is possible to fit in about 10 cm. As described above, according to the present invention, the separation pipe is provided in the vertical direction, and the inlet pipe is orthogonally connected near the lower end of the separation pipe. Thereby, a gas of the heat transfer medium returned via the inlet pipe floats in the separation pipe, and a gas-liquid separator for performing liquid-gas separation by flowing liquid toward the lower end in the separation pipe is provided. After the top of the pipe is bent back, it is divided into a first end and a second end, and the first end is connected to the circulation path piping on the discharge side of the transfer pump from the bottom and the upper part of the tank for storing the heat transfer medium. And a second end connected to the vicinity of the lower end of the separation pipe, and a pipe for guiding the liquid heat transfer medium in the tank to a circulation pipe on the input side of the transfer pump via a purification filter. Therefore, gas-liquid separation can be performed normally even if the circulation amount of the heat transfer medium is increased. Reliability is improved.

【図面の簡単な説明】 【図1】本発明の実施の形態の説明に適用される冷熱搬
送ユニットの回路図である。 【図2】冷熱搬送ユニットの立体模式図である。 【図3】従来構造と、本発明に係る構造とにおける液柱
差を熱搬送媒体の流量に対して示した図である。 【図4】従来の技術の説明に適用される冷熱搬送ユニッ
トの回路図である。 【図5】図4の冷熱搬送ユニットの立体模式図である。 【符号の説明】 1 冷熱搬送ユニット 12 気液分離器 22 出口管 23 分離管 24 液戻管 25 気体導路管 26 循環路配管 27 回収管 28 電磁弁 29 接続管 31 搬送ポンプ 32 タンク 35 入口管 39 フィルタ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a cold and heat transfer unit applied to an embodiment of the present invention. FIG. 2 is a three-dimensional schematic view of the cold and hot transport unit. FIG. 3 is a diagram showing a liquid column difference between a conventional structure and a structure according to the present invention with respect to a flow rate of a heat transfer medium. FIG. 4 is a circuit diagram of a cold and heat transfer unit applied to the description of the related art. FIG. 5 is a schematic three-dimensional view of the cold and heat transfer unit of FIG. 4; [Description of Signs] 1 Cold and hot transfer unit 12 Gas-liquid separator 22 Outlet pipe 23 Separator pipe 24 Liquid return pipe 25 Gas conduit pipe 26 Circulation pipe pipe 27 Recovery pipe 28 Solenoid valve 29 Connection pipe 31 Transport pump 32 Tank 35 Inlet pipe 39 Filter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関谷 弘志 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 八田 政隆 東京都港区赤坂五丁目3番6号 TBS放 送センター 東京エレクトロン株式会社内 Fターム(参考) 3L044 AA04 DB02 KA01 KA05    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Hiroshi Sekiya             2-5-5 Keihanhondori, Moriguchi-shi, Osaka 3             Yo Electric Co., Ltd. (72) Inventor Masataka Hatta             TBS release at 5-3-6 Akasaka, Minato-ku, Tokyo             Transmission Center Tokyo Electron Limited F term (reference) 3L044 AA04 DB02 KA01 KA05

Claims (1)

【特許請求の範囲】 【請求項1】 熱搬送媒体と冷熱源との間で熱交換を行
わせる冷熱源側熱交換器と、該熱搬送媒体を熱利用機器
側に圧送する搬送ポンプとを有して、これらが循環路配
管により順に接続されて冷熱搬送ユニットとしてユニッ
ト化され、前記熱利用機器から戻ってきた前記熱搬送媒
体が前記冷熱搬送ユニットに入る入口管と、前記冷熱搬
送ユニットを前記熱利用機器に供給する出口管とを備え
る熱搬送装置において、 鉛直方向に配設された分離管を備えて、該分離管の下端
部近傍に前記入口管が直交して接続されることにより、
当該入口管を介して戻ってきた熱搬送媒体のうち気体が
前記分離管内を浮上し、液体が当該分離管内を下端に向
って流下して気液分離を行う気液分離器を設け、前記分
離管の上端頂上を曲げ戻した後、第1の端と第2の端と
に分け、前記搬送ポンプの吐出側の循環路配管に下部か
らつながり前記熱搬送媒体を貯留するタンクの上部に第
1の端を接続し、第2の端を前記分離管の下端近傍に接
続すると共に、前記タンク内の液体の熱搬送媒体を浄化
フィルタを介して前記搬送ポンプの入力側の循環路配管
に導く管路とを有することを特徴とする熱搬送装置。
Claims: 1. A heat source side heat exchanger for exchanging heat between a heat transfer medium and a cold heat source, and a transfer pump for pressure-feeding the heat transfer medium to a heat utilization device side. Having an inlet pipe into which the heat transfer medium returned from the heat utilization device enters the cold heat transfer unit, and a cold transfer unit, An outlet pipe for supplying heat to the heat utilization device, wherein the heat pipe includes a vertically separated separation pipe, and the inlet pipe is orthogonally connected near a lower end of the separation pipe. ,
A gas-liquid separator for performing gas-liquid separation in which a gas of the heat transfer medium returned via the inlet pipe floats in the separation pipe, and a liquid flows down the separation pipe toward a lower end thereof to perform gas-liquid separation; After the top of the pipe is bent back, the pipe is divided into a first end and a second end. And a second end connected near the lower end of the separation pipe, and a pipe that guides the liquid heat transfer medium in the tank to a circulation path pipe on the input side of the transfer pump through a purification filter. A heat transfer device having a path.
JP2002113134A 2002-04-16 2002-04-16 Heat transfer device Expired - Fee Related JP4036670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113134A JP4036670B2 (en) 2002-04-16 2002-04-16 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113134A JP4036670B2 (en) 2002-04-16 2002-04-16 Heat transfer device

Publications (2)

Publication Number Publication Date
JP2003307377A true JP2003307377A (en) 2003-10-31
JP4036670B2 JP4036670B2 (en) 2008-01-23

Family

ID=29395402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113134A Expired - Fee Related JP4036670B2 (en) 2002-04-16 2002-04-16 Heat transfer device

Country Status (1)

Country Link
JP (1) JP4036670B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112611118A (en) * 2020-12-07 2021-04-06 上海泰坦科技股份有限公司 Low-temperature cooling liquid circulating pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112611118A (en) * 2020-12-07 2021-04-06 上海泰坦科技股份有限公司 Low-temperature cooling liquid circulating pump

Also Published As

Publication number Publication date
JP4036670B2 (en) 2008-01-23

Similar Documents

Publication Publication Date Title
US8011196B2 (en) Refrigerant control of a heat-recovery chiller
JP2006138744A (en) Reactor cooling device
CN105258373B (en) Injection oil return refrigeration system with oil-liquid separator
EP3042127B1 (en) Integrated separator-distributor for falling film evaporator
WO2021103735A1 (en) Condenser and air conditioner having same
JPS60259877A (en) Refrigerant suction accumulator
JP2003307377A (en) Heat transfer device
CN1358974A (en) Refrigerant storage device for absorption heating and refrigerating system
JP4542985B2 (en) Absorption heat pump
JPH07332810A (en) Oil mist separator for refrigerator
JP5372901B2 (en) Cooling system for data center
CN113800140A (en) System and method for managing pressure in an underground cryogenic liquid storage tank
US4456456A (en) Hot-water heating system having an air eliminator
JP2006284135A (en) Refrigerating cycle device
CN103052861B (en) U-tube vaporizer
US5065594A (en) Automatic purger for absorption heat pump
KR100378531B1 (en) coolant and oil separating/ collecting device of turbo chiller
WO2024060570A1 (en) Liquid cooling system and control method therefor
US3224217A (en) Refrigerating system including an accumulator
CN100495581C (en) Nuclear facility and method for operating a nuclear facility
JP2009275997A (en) Condensate recovery device
US6938427B1 (en) Systems and methods for closed system cooling
JP2007263461A (en) Absorption refrigerating machine
JP2005169166A (en) Condensed water neutralizing apparatus
JPH02287068A (en) Gas extracting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Effective date: 20070403

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Effective date: 20070620

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20071002

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20071030

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101109

LAPS Cancellation because of no payment of annual fees