JP4036670B2 - Heat transfer device - Google Patents

Heat transfer device Download PDF

Info

Publication number
JP4036670B2
JP4036670B2 JP2002113134A JP2002113134A JP4036670B2 JP 4036670 B2 JP4036670 B2 JP 4036670B2 JP 2002113134 A JP2002113134 A JP 2002113134A JP 2002113134 A JP2002113134 A JP 2002113134A JP 4036670 B2 JP4036670 B2 JP 4036670B2
Authority
JP
Japan
Prior art keywords
heat transfer
pipe
heat
transfer medium
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002113134A
Other languages
Japanese (ja)
Other versions
JP2003307377A (en
Inventor
隆広 中村
大 金井
弘志 関谷
政隆 八田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002113134A priority Critical patent/JP4036670B2/en
Publication of JP2003307377A publication Critical patent/JP2003307377A/en
Application granted granted Critical
Publication of JP4036670B2 publication Critical patent/JP4036670B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、熱利用機器から戻った熱搬送媒体の気液分離を確実に行えるようにした熱搬送装置に関する。
【0002】
【従来の技術】
スターリング冷凍機は、小型化が可能、成績係数や冷凍効率が高い、発生する温度範囲が広い、近年の地球環境問題におけるフロン代替が容易等の多くの優れた特徴を持っている。
【0003】
そして、かかるスターリング冷凍機で発生した冷熱は、熱搬送装置により冷熱利用機器に搬送して利用される。
【0004】
図4は熱搬送装置を冷熱供給部分(冷熱搬送ユニット101)の回路図を示し、図5はその立体模式図である。なお、図4及び図5におけるa,b,…は、配管の接続部を示している。
【0005】
この熱搬送装置は、スターリング冷凍機のような冷熱源と熱搬送媒体とが熱交換する冷熱源側熱交換器110、該熱搬送媒体を圧送する搬送ポンプ111、熱搬送媒体と冷熱利用機器とが熱交換する図示しない負荷側熱交換器、搬送ポンプ111に液体の熱搬送媒体のみが供給されるように気液分離する気液分離器112、余剰の熱搬送媒体を貯留するタンク113等を主要構成としている。
【0006】
そして、冷熱源側熱交換器110、搬送ポンプ111、気液分離器112及びタンク113等が冷熱搬送ユニット101としてユニット化されている。
【0007】
これにより冷熱利用機器から戻ってきた熱搬送媒体は、冷熱搬送ユニット101の入口管121からユニット内に流入して、搬送ポンプ111、冷熱源側熱交換器110を介して出口管122から冷熱利用機器に供給される。
【0008】
このとき冷熱搬送ユニット101に戻った熱搬送媒体に気体成分が含まれると、冷熱源での熱交換を効率的に行うことが困難となり冷熱搬送効率が低下してしまう等の理由から、戻ってきた熱搬送媒体を気液分離器112で気液分離して液体の熱搬送媒体のみが循環路を循環するようにしている。
【0009】
このような気液分離器112は、鉛直方向に配設された分離管123を備えて、該分離管123の下端部近傍に入口管121が接続(b点)されることにより、当該入口管121を介して戻ってきた熱搬送媒体のうち気体の熱搬送媒体は分離管123内で浮上して(2重点線矢印)、分離管123のコ字状部(c点)に溜まる。また、液体の熱搬送媒体は分離管123の下端に向って流下(2重実線矢印)する。これにより気液分離が行なわれる。
【0010】
タンク113は、分離管123の頂上部側の端が上部に接続されて分離管123のc点で溢れた気体又は液体がタンク113の頭部(e点)から流入して貯留される。
【0011】
また、分離管123の頂上部側の端は、分離管123の下端と搬送ポンプ111とを繋ぐ循環路配管にr点で接続されている。
【0012】
【発明が解決しようとする課題】
しかしながら、上記構成では、熱搬送媒体の循環量を増大させると液体の熱搬送媒体が分離管123に多量に侵入して、気液分離が正常に行えなくなる事態が発生する問題があった。
【0013】
即ち、分離管123での気液分離点(b点)と、液戻管124の接続部(r点)との間の距離が長く、かつ、冷熱搬送ユニット101を小型化する等の要請がありこの間に複数の屈曲部(配管の曲り部分)が存在するため、気液分離点(b点)と液戻管124の接続部(r点)との間で大きな圧力損失が発生する。
【0014】
このような圧力損失が発生する状態で、熱搬送媒体の循環量を増大させるとこの循環量の増加に伴って気液分離点(c点)と液戻管124の接続部(r点)との差圧が大きくなる。
【0015】
この結果、接続部(r点)の圧力が下がり、反対側となる分離管123のc点が低圧となり液体の熱搬送媒体が吸上げられ、分離管123の頂上部側に侵入してしまう事態が生じる。
【0016】
そこで、本発明は、熱搬送媒体の循環量を増大させても正常に気液分離が行えるようにした熱搬送装置を提供することを目的とする。
【0017】
【課題を解決するための手段】
上記課題を解決するため、本発明は、熱搬送媒体と冷熱源との間で熱交換を行わせる冷熱源側熱交換器と、該熱搬送媒体を熱利用機器側に圧送する搬送ポンプとを有して、これらが循環路配管により順に接続されて冷熱搬送ユニットとしてユニット化され、熱利用機器から戻ってきた熱搬送媒体が冷熱搬送ユニットに入る入口管と、熱搬送媒体を熱利用機器に供給する出口管とを備える熱搬送装置において、鉛直方向に配設された分離管を備えて、該分離管の下端部近傍に入口管が直交して接続されることにより、当該入口管を介して戻ってきた熱搬送媒体のうち気体が分離管内を浮上し、液体が当該分離管内を下端に向って流下して気液分離を行う気液分離器を設け、分離管の上端頂上を曲げ戻した後、第1の端と第2の端とに分け、搬送ポンプの吐出側の循環路配管から回収管を下部につなげて熱搬送媒体を貯留するタンクの上部に第1の端を接続し、第2の端を分離管の下端近傍に接続すると共に、タンク内の液体の熱搬送媒体を浄化フィルタを介して搬送ポンプの入力側の循環路配管に導く管路とを有することを特徴とする。
【0018】
【発明の実施の形態】
本発明の実施の形態を図を参照して説明する。図1は、本発明の実施の形態の説明に適用される冷熱搬送ユニット1の回路図を示し、図2はその立体模式図である。
【0019】
この熱搬送装置は、スターリング冷凍機のような冷熱源と熱搬送媒体とが熱交換する冷熱源側熱交換器10、該熱搬送媒体を圧送する搬送ポンプ11、熱搬送媒体と冷熱利用機器とが熱交換する負荷側熱交換器、搬送ポンプ11に液体の熱搬送媒体のみが供給されるように気液分離する気液分離器12、余剰の熱搬送媒体を貯留するタンク13、該タンク13に貯留されている液体の熱搬送媒体を回路に戻す際に、清浄化して戻すようにするフィルタ14等を主要構成としている。
【0020】
そして、冷熱源側熱交換器10、搬送ポンプ11、気液分離器12、タンク13及びフィルタ14等が冷熱搬送ユニット1としてユニット化されて、当該冷熱搬送ユニット1には冷熱利用機器から戻ってきた熱搬送媒体がユニット内に戻る入口管21と、搬送ポンプ11、冷熱源側熱交換器10を介して冷熱利用機器に供給される出口管22とが設けられている。
【0021】
なお、冷熱搬送ユニット1の小型化等の要請からタンク13はフィルタ14の上方に配置されており、当該タンク13に貯留された液体の熱搬送媒体が重力の作用で配管29を介して流下してフィルタ14に供給され、当該フィルタ14で浄化されて液戻管24にf点で合流した後循環路配管に戻るようになっている。
【0022】
気液分離器12は、鉛直方向に配設された分離管23により形成されて、該分離管23の下端近傍に入口管21が直交して接続(b点)され、下端部(g点)は搬送ポンプ11につながる循環路配管に接続されている。なお、入口管21及び出口管22は、水平方向に向って設けられている。
【0023】
分離管23は上端を略U字状、略コ字状、略V字状等の頂上を形成して曲げ戻し、その上端d点で第1の端と第2の端とに分け、第1の端はe点を介してタンク13の一部につながっている。第2の端は液戻管24を介して下端部(g点)に接続されている。この接続は、下端部(g点)の近傍であってもよい。
【0024】
これにより入口管21を介して冷熱搬送ユニット1に戻ってきた熱搬送媒体のうち気体の熱搬送媒体は分離管23の頂部側に向って管内を浮上し(c点方向)、また液体の熱搬送媒体は下流(g点方向)して気液分離が行なわれる。
【0025】
分離管23内を浮上してきた気体の熱搬送媒体量が増えると、その頂部近傍(頂部であっても良い)のe点から気体導路管25(第1の端)を通ってタンク13へ導かれる。
【0026】
従って、気液分離された気体の熱搬送媒体は、タンク13の頂部から当該タンク13に流入して貯留される。
【0027】
このタンク13の底部は回収管27が設けられて、搬送ポンプ11と冷熱源側熱交換器10との間の循環路配管26を電磁弁(開閉弁)28を介して接続している。
【0028】
この電磁弁28は、例えば1分間に0.1秒〜数秒間開き、定期的に搬送ポンプ11から吐出される熱搬送媒体を一定量タンク13へ供給する。
【0029】
このタンク13に供給された熱搬送媒体は、タンク13の底部n点に接続された配管29を介してフィルタ14に至り浄化された後、液戻管24のf点を経て循環路配管に戻される。
【0030】
なお、フィルタ14は開閉弁V1〜V3を閉じることにより交換可能となっている。
【0031】
このように液戻管24の接続部(g点)を入口管の接続部(b点)に設けることにより、それ以降の循環路配管に複数の屈曲部が存在して大きな圧力損失が発生するような系であっても、液戻管24の接続部(g点)と入口管の接続部(b点)との間では殆ど圧力損失が発生しないので、熱搬送媒体の循環量を増大させても分離管23のc点が極端な低圧となることなく、液体の熱搬送媒体が分離管23を多量に上昇してしまう事態が防止でき、気液分離作用が阻害されてしまうことが無くなる。
【0032】
なお、タンク13にはq点を介してタンク13内部が高圧となった際のトラップ部及び圧力逃し機が設けられ、p点には熱搬送媒体の注入機構が設けられている。
【0033】
図3は、図4及び図5に示す従来構造と、図1及び図2に示す本発明に係る構造とにおける液柱差を熱搬送媒体の流量に対して示した図である。
【0034】
なお、液柱差とは分離管23と液戻管24との管内に貯まった液体の熱搬送媒体量における液柱の差をいい、タンク13とフィルタ14との据付け構造からこの液柱差は30cm以内にしなければならない。
【0035】
この図から分るように、図3等における従来構成の場合には、分離管23と液戻管24との間に複数の屈曲部(w1〜w4)が存在しているため、流量が3リットル/分になると、液柱差が30cmを超えてしまうが、本発明に係る構成によればこれらの間に屈曲部が存在しないので約10cmに納めることが可能になっている。
【0036】
【発明の効果】
以上説明したように本発明によれば、鉛直方向に配設された分離管を備えて、該分離管の下端部近傍に入口管が直交して接続されることにより、当該入口管を介して戻ってきた熱搬送媒体のうち気体が分離管内を浮上し、液体が当該分離管内を下端に向って流下して気液分離を行う気液分離器を設け、分離管の上端頂上を曲げ戻した後、第1の端と第2の端とに分け、第1の端を搬送ポンプの吐出側の循環路配管から回収管を下部につなげて熱搬送媒体を貯留するタンクの上部に接続し、第2の端を分離管の下端近傍に接続すると共に、タンク内の液体の熱搬送媒体を浄化フィルタを介して搬送ポンプの入力側の循環路配管に導く管路とを設けたので、熱搬送媒体の循環量を増大させても正常に気液分離が行えるようになり、信頼性が向上する。
【図面の簡単な説明】
【図1】本発明の実施の形態の説明に適用される冷熱搬送ユニットの回路図である。
【図2】冷熱搬送ユニットの立体模式図である。
【図3】従来構造と、本発明に係る構造とにおける液柱差を熱搬送媒体の流量に対して示した図である。
【図4】従来の技術の説明に適用される冷熱搬送ユニットの回路図である。
【図5】図4の冷熱搬送ユニットの立体模式図である。
【符号の説明】
1 冷熱搬送ユニット
12 気液分離器
22 出口管
23 分離管
24 液戻管
25 気体導路管
26 循環路配管
27 回収管
28 電磁弁
29 接続管
31 搬送ポンプ
32 タンク
35 入口管
39 フィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat transfer device that can reliably perform gas-liquid separation of a heat transfer medium returned from a heat utilization device.
[0002]
[Prior art]
The Stirling refrigerator has many excellent features such as being able to be miniaturized, having a high coefficient of performance and refrigeration efficiency, a wide range of generated temperatures, and being able to easily replace chlorofluorocarbons in recent global environmental problems.
[0003]
And the cold heat which generate | occur | produced in this Stirling refrigerator is conveyed and utilized by cold heat utilization apparatus with a heat conveying apparatus.
[0004]
FIG. 4 is a circuit diagram of a cold heat supply portion (cold heat transfer unit 101) of the heat transfer device, and FIG. 5 is a three-dimensional schematic diagram thereof. In addition, a, b, ... in FIG.4 and FIG.5 has shown the connection part of piping.
[0005]
This heat transfer device includes a cold heat source side heat exchanger 110 that exchanges heat between a cold heat source and a heat transfer medium such as a Stirling refrigerator, a transfer pump 111 that pumps the heat transfer medium, a heat transfer medium and a cold heat utilization device, A heat exchanger (not shown) that exchanges heat, a gas-liquid separator 112 that performs gas-liquid separation so that only the liquid heat transfer medium is supplied to the transfer pump 111, a tank 113 that stores excess heat transfer medium, and the like. The main structure.
[0006]
The cold heat source side heat exchanger 110, the transfer pump 111, the gas-liquid separator 112, the tank 113, and the like are unitized as the cold transfer unit 101.
[0007]
As a result, the heat transfer medium returned from the cold energy utilization device flows into the unit from the inlet pipe 121 of the cold heat conveyance unit 101 and uses the cold heat from the outlet pipe 122 via the conveyance pump 111 and the cold heat source side heat exchanger 110. Supplied to the equipment.
[0008]
At this time, if a gas component is included in the heat transfer medium that has returned to the cold heat transfer unit 101, it is difficult to efficiently perform heat exchange with the cold heat source, and the heat transfer efficiency is lowered. The heat transfer medium is gas-liquid separated by the gas-liquid separator 112 so that only the liquid heat transfer medium circulates in the circulation path.
[0009]
Such a gas-liquid separator 112 includes a separation pipe 123 arranged in a vertical direction, and an inlet pipe 121 is connected (point b) in the vicinity of the lower end of the separation pipe 123, whereby the inlet pipe Of the heat transfer medium returned through 121, the gaseous heat transfer medium floats in the separation tube 123 (double-pointed arrow) and accumulates in the U-shaped portion (point c) of the separation tube 123. Further, the liquid heat transfer medium flows down toward the lower end of the separation tube 123 (double solid arrow). Thereby, gas-liquid separation is performed.
[0010]
In the tank 113, the top end of the separation pipe 123 is connected to the top, and the gas or liquid overflowing at the point c of the separation pipe 123 flows from the head (point e) of the tank 113 and is stored.
[0011]
In addition, the top end of the separation pipe 123 is connected to a circulation line pipe connecting the lower end of the separation pipe 123 and the transport pump 111 at the point r.
[0012]
[Problems to be solved by the invention]
However, in the above configuration, when the circulation amount of the heat transfer medium is increased, there is a problem that a large amount of the liquid heat transfer medium enters the separation pipe 123 and gas-liquid separation cannot be normally performed.
[0013]
That is, there is a demand for a long distance between the gas-liquid separation point (point b) in the separation pipe 123 and the connection portion (point r) of the liquid return pipe 124 and downsizing of the cooling / heating transport unit 101. Since there are a plurality of bent portions (bent portions of the piping) between them, a large pressure loss occurs between the gas-liquid separation point (point b) and the connection portion (point r) of the liquid return pipe 124.
[0014]
When the circulation amount of the heat transfer medium is increased in a state where such pressure loss occurs, the gas-liquid separation point (point c) and the connection portion (point r) of the liquid return pipe 124 are increased with the increase of the circulation amount. The differential pressure increases.
[0015]
As a result, the pressure at the connecting portion (point r) decreases, the point c of the separation pipe 123 on the opposite side becomes low, the liquid heat transfer medium is sucked up, and enters the top of the separation pipe 123. Occurs.
[0016]
In view of the above, an object of the present invention is to provide a heat transfer device that can normally perform gas-liquid separation even when the circulation amount of the heat transfer medium is increased.
[0017]
[Means for Solving the Problems]
In order to solve the above problems, the present invention includes a cold heat source side heat exchanger that exchanges heat between a heat transfer medium and a cold heat source, and a transfer pump that pumps the heat transfer medium to the heat utilization device side. These are connected in order by a circulation pipe and unitized as a cold transfer unit, and the heat transfer medium returned from the heat utilization device enters the cold transfer unit, and the heat transfer medium is used as the heat utilization device. In the heat transfer device including the outlet pipe to be supplied, the separation pipe arranged in the vertical direction is provided, and the inlet pipe is connected orthogonally to the vicinity of the lower end portion of the separation pipe so that the inlet pipe passes through the inlet pipe. A gas-liquid separator that performs gas-liquid separation by allowing gas to rise inside the separation tube and flowing down toward the lower end of the separation tube and bending the top of the upper end of the separation tube is returned. And then split into a first end and a second end The recovery pipe from the discharge side of the circulation path pipe pump by connecting the lower connecting the first end to the top of the tank for storing the heat-carrying medium, with connecting the second end in the vicinity of the lower end of the separation pipe, tank And a conduit that guides the heat transfer medium of the liquid to a circulation line pipe on the input side of the transfer pump through a purification filter.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a circuit diagram of a cooling and conveying unit 1 applied to the description of the embodiment of the present invention, and FIG. 2 is a three-dimensional schematic diagram thereof.
[0019]
This heat transfer device includes a cold heat source side heat exchanger 10 for exchanging heat between a cold heat source and a heat transfer medium such as a Stirling refrigerator, a transfer pump 11 for pumping the heat transfer medium, a heat transfer medium and a device for using cold heat, A heat exchanger that exchanges heat, a gas-liquid separator 12 that performs gas-liquid separation so that only the liquid heat transfer medium is supplied to the transfer pump 11, a tank 13 that stores excess heat transfer medium, and the tank 13 The filter 14 and the like that are cleaned and returned when the liquid heat transfer medium stored in is returned to the circuit are the main components.
[0020]
Then, the cold heat source side heat exchanger 10, the transfer pump 11, the gas-liquid separator 12, the tank 13, the filter 14, and the like are unitized as the cold heat transfer unit 1, and the cold heat transfer unit 1 returns from the cold energy utilization device. An inlet pipe 21 through which the heat transfer medium returns to the unit, and an outlet pipe 22 that is supplied to the cold energy utilization device via the transfer pump 11 and the cold heat source side heat exchanger 10 are provided.
[0021]
The tank 13 is disposed above the filter 14 because of a request for downsizing of the cold transfer unit 1 and the liquid heat transfer medium stored in the tank 13 flows down through the pipe 29 by the action of gravity. Is supplied to the filter 14, purified by the filter 14, joined to the liquid return pipe 24 at the point f, and then returned to the circulation pipe.
[0022]
The gas-liquid separator 12 is formed by a separation pipe 23 arranged in a vertical direction, and an inlet pipe 21 is orthogonally connected to the vicinity of the lower end of the separation pipe 23 (point b), and the lower end (point g). Is connected to a circulation pipe connected to the transport pump 11. The inlet pipe 21 and the outlet pipe 22 are provided in the horizontal direction.
[0023]
The separation tube 23 is bent back by forming the top end of a substantially U shape, a substantially U shape, a substantially V shape, etc., and divided into a first end and a second end at the upper end d point. Is connected to a part of the tank 13 through a point e. The second end is connected to the lower end (point g) via the liquid return pipe 24. This connection may be in the vicinity of the lower end (point g).
[0024]
As a result, of the heat transfer medium that has returned to the cold transfer unit 1 via the inlet pipe 21, the gaseous heat transfer medium floats in the pipe toward the top of the separation pipe 23 (point c direction), and the heat of the liquid. The carrier medium is downstream (in the direction of the point g) and gas-liquid separation is performed.
[0025]
When the amount of the heat transfer medium of the gas that has floated in the separation pipe 23 increases, the point e near the top (or the top) may pass through the gas conduit 25 (first end) to the tank 13. Led.
[0026]
Accordingly, the gas heat-transfer medium that has been gas-liquid separated flows into the tank 13 from the top of the tank 13 and is stored therein.
[0027]
A recovery pipe 27 is provided at the bottom of the tank 13, and a circulation path pipe 26 between the transport pump 11 and the cold heat source side heat exchanger 10 is connected via an electromagnetic valve (open / close valve) 28.
[0028]
The electromagnetic valve 28 opens, for example, for 0.1 second to several seconds per minute, and periodically supplies the heat transfer medium discharged from the transfer pump 11 to the fixed amount tank 13.
[0029]
The heat transfer medium supplied to the tank 13 reaches the filter 14 via the pipe 29 connected to the bottom n point of the tank 13 and is purified, and then returns to the circulation line pipe through the point f of the liquid return pipe 24. It is.
[0030]
The filter 14 can be replaced by closing the on-off valves V1 to V3.
[0031]
By providing the connection part (point g) of the liquid return pipe 24 at the connection part (point b) of the inlet pipe in this way, a large pressure loss occurs due to the presence of a plurality of bent portions in the subsequent circulation line piping. Even in such a system, there is almost no pressure loss between the connection part (point g) of the liquid return pipe 24 and the connection part (point b) of the inlet pipe, so that the circulation amount of the heat transfer medium is increased. However, the point c of the separation tube 23 does not become an extremely low pressure, and it is possible to prevent a situation where the liquid heat transfer medium rises in a large amount through the separation tube 23 and the gas-liquid separation action is not hindered. .
[0032]
The tank 13 is provided with a trap portion and a pressure relief device when the inside of the tank 13 becomes high pressure through the point q, and a heat transfer medium injection mechanism is provided at the point p.
[0033]
FIG. 3 is a diagram showing the liquid column difference between the conventional structure shown in FIGS. 4 and 5 and the structure according to the present invention shown in FIGS. 1 and 2 with respect to the flow rate of the heat transfer medium.
[0034]
The liquid column difference is a difference in the liquid column in the amount of the heat transfer medium of the liquid stored in the separation tube 23 and the liquid return tube 24. This liquid column difference is due to the installation structure of the tank 13 and the filter 14. Must be within 30 cm.
[0035]
As can be seen from this figure, in the case of the conventional configuration in FIG. 3 and the like, a plurality of bent portions (w1 to w4) exist between the separation pipe 23 and the liquid return pipe 24, so that the flow rate is 3 At liters / minute, the liquid column difference exceeds 30 cm, but according to the configuration of the present invention, there is no bent portion between them, so that it can be accommodated in about 10 cm.
[0036]
【The invention's effect】
As described above, according to the present invention, the separation pipe arranged in the vertical direction is provided, and the inlet pipe is orthogonally connected in the vicinity of the lower end portion of the separation pipe. Of the returned heat transfer medium, gas floats in the separation tube, and a gas-liquid separator is provided to perform gas-liquid separation by flowing down the liquid toward the lower end of the separation tube, and the top of the upper end of the separation tube is bent back. After that, it is divided into a first end and a second end, the first end is connected to the upper part of the tank for storing the heat transfer medium by connecting the recovery pipe from the circulation line pipe on the discharge side of the transfer pump to the lower part , Since the second end is connected to the vicinity of the lower end of the separation pipe, and a pipe for guiding the heat transfer medium of the liquid in the tank to the circulation line pipe on the input side of the transfer pump through the purification filter is provided. Even if the circulation rate of the medium is increased, the gas-liquid separation can be performed normally and the reliability is improved. .
[Brief description of the drawings]
FIG. 1 is a circuit diagram of a cooling and conveying unit applied to the description of an embodiment of the present invention.
FIG. 2 is a three-dimensional schematic diagram of a cold heat transfer unit.
FIG. 3 is a diagram showing a liquid column difference between a conventional structure and a structure according to the present invention with respect to a flow rate of a heat transfer medium.
FIG. 4 is a circuit diagram of a cooling / heating transport unit applied to the description of a conventional technique.
FIG. 5 is a three-dimensional schematic diagram of the cold transfer unit of FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cold transfer unit 12 Gas-liquid separator 22 Outlet pipe 23 Separation pipe 24 Liquid return pipe 25 Gas conduit pipe 26 Circulation path pipe 27 Recovery pipe 28 Solenoid valve 29 Connection pipe 31 Transport pump 32 Tank 35 Inlet pipe 39 Filter

Claims (1)

熱搬送媒体と冷熱源との間で熱交換を行わせる冷熱源側熱交換器と、該熱搬送媒体を熱利用機器側に圧送する搬送ポンプとを有して、これらが循環路配管により順に接続されて冷熱搬送ユニットとしてユニット化され、前記熱利用機器から戻ってきた前記熱搬送媒体が前記冷熱搬送ユニットに入る入口管と、前記熱搬送媒体を前記熱利用機器に供給する出口管とを備える熱搬送装置において、
鉛直方向に配設された分離管を備えて、該分離管の下端部近傍に前記入口管が直交して接続されることにより、当該入口管を介して戻ってきた熱搬送媒体のうち気体が前記分離管内を浮上し、液体が当該分離管内を下端に向って流下して気液分離を行う気液分離器を設け、前記分離管の上端頂上を曲げ戻した後、第1の端と第2の端とに分け、前記搬送ポンプの吐出側の循環路配管から回収管を下部につなげて前記熱搬送媒体を貯留するタンクの上部に第1の端を接続し、第2の端を前記分離管の下端近傍に接続すると共に、前記タンク内の液体の熱搬送媒体を浄化フィルタを介して前記搬送ポンプの入力側の循環路配管に導く管路とを有することを特徴とする熱搬送装置。
A heat source side heat exchanger that exchanges heat between the heat transfer medium and the cold heat source, and a transfer pump that pumps the heat transfer medium to the heat utilization device side, and these are sequentially connected by a circulation line pipe An inlet pipe that is connected and unitized as a cold transfer unit and the heat transfer medium returned from the heat utilization device enters the cold heat transfer unit, and an outlet tube that supplies the heat transfer medium to the heat utilization device In the heat transfer device provided,
A separation pipe arranged in the vertical direction is provided, and the inlet pipe is connected orthogonally to the vicinity of the lower end of the separation pipe, so that the gas in the heat transfer medium returned through the inlet pipe A gas-liquid separator is provided that floats in the separation tube and flows down in the separation tube toward the lower end to perform gas-liquid separation. After bending the top of the upper end of the separation tube back, the first end and the first end The first end is connected to the upper part of the tank for storing the heat transfer medium by connecting the recovery pipe to the lower part from the circulation line pipe on the discharge side of the transfer pump, and the second end is connected to the end of the transfer pump. A heat transfer device connected to the vicinity of the lower end of the separation pipe and having a pipe for guiding the heat transfer medium of the liquid in the tank to a circulation pipe on the input side of the transfer pump through a purification filter .
JP2002113134A 2002-04-16 2002-04-16 Heat transfer device Expired - Fee Related JP4036670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113134A JP4036670B2 (en) 2002-04-16 2002-04-16 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113134A JP4036670B2 (en) 2002-04-16 2002-04-16 Heat transfer device

Publications (2)

Publication Number Publication Date
JP2003307377A JP2003307377A (en) 2003-10-31
JP4036670B2 true JP4036670B2 (en) 2008-01-23

Family

ID=29395402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113134A Expired - Fee Related JP4036670B2 (en) 2002-04-16 2002-04-16 Heat transfer device

Country Status (1)

Country Link
JP (1) JP4036670B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112611118B (en) * 2020-12-07 2022-05-06 上海泰坦科技股份有限公司 Low-temperature cooling liquid circulating pump

Also Published As

Publication number Publication date
JP2003307377A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
JP4324187B2 (en) Heat storage device
EP3193571B1 (en) Heat pipe based cooling system and power equipment
CN103376004B (en) Heat-exchangers of the plate type and manufacture method thereof and heat pump assembly
US8011196B2 (en) Refrigerant control of a heat-recovery chiller
CN106322805A (en) Refrigeration system and purification method thereof
US20060242969A1 (en) System and method for vaporizing cryogenic liquids using a naturally circulating intermediate refrigerant
KR102076696B1 (en) Condensate Recovery Equipment with Different Pressure in Closed Loop Circulating Steam Boiler
CN105258373B (en) Injection oil return refrigeration system with oil-liquid separator
WO2021103735A1 (en) Condenser and air conditioner having same
JP4080605B2 (en) Full liquid cooler
JP4036670B2 (en) Heat transfer device
CN1204367C (en) Refrigerant storage device for absorption heating and refrigerating system
JP4542985B2 (en) Absorption heat pump
CN104567060A (en) Thermal siphon oil cooling system
EP0535158A1 (en) Single and multistage refrigeration system and method using hydrocarbons
JP5372901B2 (en) Cooling system for data center
EP1855047B1 (en) A system and method for vaporizing cryogenic liquids using a naturally circulating intermediate refrigerant
WO2004102085A1 (en) Absorption chiller
US5065594A (en) Automatic purger for absorption heat pump
JP2005029173A (en) Vapor gasoline reclaimer
JP2010043793A (en) Condensate recovering device
JP5214325B2 (en) Condensate recovery device
US20130133349A1 (en) Vacuum assisted ground source heat pump device and system
CN217783721U (en) Air compressor with waterway flow divider valve
CN214064892U (en) Temperature and pressure reducer integrated system for condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees