JP2003306336A - Metal mold for forming optical device - Google Patents

Metal mold for forming optical device

Info

Publication number
JP2003306336A
JP2003306336A JP2002111692A JP2002111692A JP2003306336A JP 2003306336 A JP2003306336 A JP 2003306336A JP 2002111692 A JP2002111692 A JP 2002111692A JP 2002111692 A JP2002111692 A JP 2002111692A JP 2003306336 A JP2003306336 A JP 2003306336A
Authority
JP
Japan
Prior art keywords
base material
functional layer
molding die
optical element
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002111692A
Other languages
Japanese (ja)
Inventor
Takashi Kashiwabara
隆司 柏原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002111692A priority Critical patent/JP2003306336A/en
Publication of JP2003306336A publication Critical patent/JP2003306336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for processing the lens press surface of a hard metal alloy mold for forming a lens with a large diameter in a short period of time and at a low cost, for which mirror surface finishing with high precision is required. <P>SOLUTION: An optical cutting film is formed on the base of the hard metal alloy mold, where a buffer film is laid between the base of the hard metal alloy mold and the optical cutting film to mitigate thermal expansion stress for eliminating the formation of cracks. The high-precision mold for forming a lens is speedily manufactured by precisely grinding the optical cutting film. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は光学素子成形金型に
関するものである。
TECHNICAL FIELD The present invention relates to an optical element molding die.

【0002】[0002]

【従来の技術】一般的にガラスレンズ成形用金型の母材
には、ガラス軟化温度(600℃)近辺において、大き
なプレス圧が掛かっても変形しないような、硬度のある
材料が用いられる。一般的な合金鋼ではガラス軟化点温
度ぐらいになると、硬度が低下し大きなプレス圧が加わ
ると微小量ながら塑性変形する。光学レンズに要求され
る形状精度からすると、この微小量の塑性変形は許容で
きないレベルとなることがある。したがって多くの場
合、ガラスレンズの成形用金型材料として、焼結創生し
た超硬合金が用いられている。超硬合金はガラス成形を
行う高温環境下でも必要な硬度が維持され、要求される
諸元を満たしている。しかし加工という面からすると硬
いが故に、ダイヤモンドや超硬のバイトで切削加工がで
きない。そのため加工はほとんどが砥石による研削・研
磨加工になる。
2. Description of the Related Art Generally, as a base material of a glass lens molding die, a material having a hardness that does not deform even when a large press pressure is applied in the vicinity of a glass softening temperature (600 ° C.) is used. In a general alloy steel, when the glass softening point temperature is reached, the hardness decreases, and when a large press pressure is applied, it plastically deforms with a small amount. In view of the shape accuracy required for the optical lens, this minute amount of plastic deformation may reach an unacceptable level. Therefore, in many cases, cemented carbide produced by sintering is used as a mold material for molding glass lenses. Cemented carbide maintains the required hardness even under the high temperature environment where glass is formed, and satisfies the required specifications. However, it is hard from the point of view of machining, so it cannot be cut with a diamond or carbide tool. Therefore, most of the processing is grinding and polishing with a grindstone.

【0003】特にレンズプレス面の形状精度は、サブミ
クロンの加工精度に仕上げる必要があり、また面の表面
粗さは鏡面状態が必要とされる。成形レンズの直径がφ
50mmを越えるような大きな成形金型の場合、超硬合
金の焼結上がり後の粗形状から、上記したようなプレス
面状態に仕上げるには多大な時間と加工コストが掛かっ
ている。
Particularly, the shape accuracy of the lens press surface needs to be finished to a processing accuracy of submicron, and the surface roughness of the surface is required to be a mirror surface state. The diameter of the molded lens is φ
In the case of a large molding die of more than 50 mm, it takes a lot of time and processing cost to finish the pressed surface state as described above from the rough shape of the cemented carbide after sintering.

【0004】[0004]

【発明が解決しようとする課題】前述したように超硬合
金金型の加工には多大な時間とコストが掛かる。特にレ
ンズプレス面の形状精度をサブミクロンの精度(±0.
1μm以下)にまで、研削・研磨加工するには超高精度
曲面加工機を長時間占有使用することになり、最も加工
時間と加工コストを要するところである。
As described above, processing a cemented carbide die requires a great deal of time and cost. Especially, the shape accuracy of the lens press surface is submicron accuracy (± 0.
Up to 1 μm or less), an ultra-high precision curved surface processing machine is occupied for a long time for grinding and polishing, which requires the most processing time and processing cost.

【0005】本発明は上記の点に鑑み、大口径レンズ成
形金型のレンズプレス面の加工を短時間でかつ低コスト
で加工する方法を提供するものである。
In view of the above points, the present invention provides a method for processing a lens press surface of a large-diameter lens molding die in a short time and at low cost.

【0006】[0006]

【課題を解決するための手段】超硬合金金型母材のレン
ズプレス面に、切削加工可能でかつ切削加工後研磨する
と鏡面が得られる光学用切削膜を、メッキあるいはスパ
ッタ等で形成する。膜厚は10〜100μmの範囲が好
ましい。必要に応じてもっと厚く積層してもかまわな
い。成膜後、この光学用切削膜を膜厚の範囲内でダイヤ
モンドターニング加工などで旋削加工を行い目的の球面
あるいは非球面形状に仕上げる。
[Means for Solving the Problems] An optical cutting film which can be machined and has a mirror surface by polishing after the machining is formed on a lens press surface of a cemented carbide die base material by plating or sputtering. The film thickness is preferably in the range of 10 to 100 μm. It may be stacked thicker if necessary. After the film formation, this optical cutting film is turned by diamond turning or the like within the range of the film thickness to finish the target spherical or aspherical shape.

【0007】光学用切削膜成膜前の超硬合金金型母材の
レンズプレス面は、鏡面に仕上げておく必要はない。光
沢のない梨地状の仕上がりでもよい。また面形状精度
は、目的形状に対して±10μm程度の範囲に仕上がっ
ていればよい。この程度の仕上がり精度・品位にまで加
工するのであれば、超硬合金でも比較的短時間で行うこ
とが出来る。
The lens press surface of the cemented carbide die base material before forming the optical cutting film need not be mirror finished. A matte finish without matte finish is also acceptable. Further, the surface shape accuracy may be finished within a range of about ± 10 μm with respect to the target shape. As long as it is processed to such a degree of finishing accuracy and quality, it can be carried out in a relatively short time even with cemented carbide.

【0008】高精度な面形状に仕上げるには、前述した
メッキあるいはスパッタ等で成膜した光学用切削膜を、
ごく少量、膜厚の範囲内で旋削加工(ダイヤモンドター
ニングが望ましい)すれば、極めて高精度にしかも迅速
に加工が行える。
In order to finish the surface shape with high precision, the optical cutting film formed by the above-mentioned plating or sputtering is used.
If turning (diamond turning is desirable) within a very small amount and within the range of film thickness, it is possible to perform processing with extremely high precision and speed.

【0009】さてガラス成形金型は、ガラス成形温度で
ある600℃近くまで加熱され、成形後は室温近くまで
冷却される。この成形温度サイクルが多数回繰り返され
る。超硬合金母材に直接光学用切削膜を成膜すると、超
硬合金母材と光学用切削膜の熱膨張率の差が大きい場
合、成形温度サイクルの繰り返しによって、光学用切削
膜に細かなクラックが発生する。クラックが発生すると
成形金型として使用できない。そこで本発明は、超硬合
金母材と光学用切削膜との間に柔かい金属の薄膜を介在
させて、両者の熱膨張率の差によって起きる僅かな伸縮
の差を吸収緩和し、光学用切削膜に起きるクラックを防
止するようにしたものである。
Now, the glass molding die is heated to near the glass molding temperature of 600 ° C. and cooled to near room temperature after molding. This molding temperature cycle is repeated many times. If the optical cutting film is formed directly on the cemented carbide base material, if the difference in the coefficient of thermal expansion between the cemented carbide base material and the optical cutting film is large, the optical cutting film can be finely divided by repeating the molding temperature cycle. Cracks occur. If a crack occurs, it cannot be used as a molding die. Therefore, the present invention, by interposing a thin film of a soft metal between the cemented carbide base material and the cutting film for optics, absorbs and relaxes a slight difference in expansion and contraction caused by the difference in the coefficient of thermal expansion between the two, thereby cutting the It is designed to prevent cracks occurring in the film.

【0010】[0010]

【発明の実施の形態】以下本発明の実施の形態につい
て、図を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は、一般的なレンズ成形金型ユニット
の構成を示した断面図である。1は胴型、2は下パンチ
型、3は上パンチ型である。4は金型キャビティ空間で
あり、この空間に成形ガラスレンズになるガラス硝材5
が載置される。
FIG. 1 is a sectional view showing the structure of a general lens molding die unit. 1 is a barrel type, 2 is a lower punch type, and 3 is an upper punch type. Reference numeral 4 is a mold cavity space, and a glass material 5 to be a molded glass lens in this space.
Is placed.

【0012】図2は、超硬合金母材6に、光学用切削膜
7を成膜した時の成形金型の断面図を示したものであ
る。図2では説明のため光学用切削膜7の厚さを誇張し
て図示しているが、実際には10〜100μm程度の層
厚である。
FIG. 2 shows a sectional view of a molding die when an optical cutting film 7 is formed on a cemented carbide base material 6. Although the thickness of the optical cutting film 7 is exaggerated in FIG. 2 for the sake of explanation, the actual thickness is about 10 to 100 μm.

【0013】さて金型の超硬合金母材6は、タングステ
ンカーバイドを主成分とする焼結合金などで造られてい
る。そして光学用切削膜7として、ニッケル−燐の無電
解メッキが施されている。この無電解メッキ層をごく僅
かな量だけ超精密旋削加工を行い目的の面形状に仕上げ
る。旋削加工後はダイヤモンドペースト等で研磨を行い
鏡面に仕上げる。
The cemented carbide base material 6 of the die is made of a sintered alloy containing tungsten carbide as a main component. Then, as the optical cutting film 7, electroless plating of nickel-phosphorus is applied. The electroless plating layer is subjected to ultra-precision turning by a very small amount to finish the target surface shape. After turning, polish with diamond paste or the like to give a mirror finish.

【0014】この超硬合金母材の室温〜600℃までの
平均熱膨張率は、6×10-6/℃であり、ニッケル−燐
(Ni−P)の無電解メッキの平均熱膨張率は、12×
10 -6/℃である。
The temperature of this cemented carbide base material is from room temperature to 600 ° C.
The average coefficient of thermal expansion is 6 × 10-6/ ° C, nickel-phosphorus
The average thermal expansion coefficient of electroless plating of (Ni-P) is 12x.
10 -6/ ° C.

【0015】図2に示す様に、超硬合金母材6の上に直
接光学用切削膜7(ニッケル−燐の無電解メッキ)を行
うと、両者の熱膨張率の違いによって前記したような成
形温度サイクルが繰り返されると、光学用切削膜7にク
ラックが発生する。
As shown in FIG. 2, when an optical cutting film 7 (electroless plating of nickel-phosphorus) is directly formed on the cemented carbide base material 6, the above-mentioned difference in the coefficient of thermal expansion causes the difference. When the molding temperature cycle is repeated, cracks occur in the optical cutting film 7.

【0016】この様な困難な問題点があるため、今まで
大口径の超硬合金金型に、光学用切削膜をメッキ等で形
成し、それを超精密旋削加工で仕上げて光学レンズのプ
レス転写面にする方法は実用化されていない。
Due to such a difficult problem, an optical cutting film has been formed on a large-diameter cemented carbide die by plating or the like, and then finished by ultraprecision turning to press an optical lens. The method of making a transfer surface has not been put to practical use.

【0017】以上の様な点に鑑み本発明では、図3に示
すように、超硬合金母材8と光学用切削膜9との間に、
両者の熱膨張収縮の差を緩和吸収する緩衝膜10を介在
させている。緩衝膜10の材料としては、超硬合金や光
学用切削膜より柔らかい材料を用いる。たとえばニッケ
ル(Hv:96)や銅(Hv:46)などが好ましい。
In view of the above points, in the present invention, as shown in FIG. 3, between the cemented carbide base material 8 and the optical cutting film 9,
A buffer film 10 that relaxes and absorbs the difference in thermal expansion and contraction between the two is interposed. As a material of the buffer film 10, a material softer than a cemented carbide or an optical cutting film is used. For example, nickel (Hv: 96) and copper (Hv: 46) are preferable.

【0018】またもう一つの方法として(図3参照)、
緩衝膜10の材料として、超硬合金母材8や光学用切削
膜9より、熱膨張率の大きな材料を用いる。この様に構
成することで、金型が温度上昇すると超硬合金母材8、
緩衝膜10とも熱膨張をするが、両者は界面で密着して
いるため、超硬合金母材8より膨張率の大きな緩衝膜1
0は、自由に膨張が出来ず、膨張率の小さな母材8に拘
束される。したがって本来の膨張量より小さな膨張量に
留まることとなる。この膨張量は光学用切削膜9の膨張
量に近くなり、緩衝膜10と光学用切削膜9の膨張量が
ほぼ揃うため、両者間に生じる熱膨張ストレスが極めて
少なくなり、光学用切削膜9のクラック発生を解消でき
る。緩衝膜の材料としては銅(膨張率:17×10-6
cm)などが考えられる。
As another method (see FIG. 3),
As the material of the buffer film 10, a material having a higher coefficient of thermal expansion than the cemented carbide base material 8 and the optical cutting film 9 is used. With this structure, when the temperature of the mold rises, the cemented carbide base material 8,
Although the buffer film 10 also thermally expands, the buffer film 1 having a larger expansion coefficient than the cemented carbide base material 8 because they are in close contact with each other at the interface.
0 cannot be expanded freely and is restricted by the base material 8 having a small expansion coefficient. Therefore, the expansion amount is smaller than the original expansion amount. This expansion amount is close to the expansion amount of the optical cutting film 9, and the expansion amounts of the buffer film 10 and the optical cutting film 9 are almost the same, so that the thermal expansion stress generated between them is extremely small, and the optical cutting film 9 is very small. It is possible to eliminate the occurrence of cracks. The material of the buffer film is copper (expansion rate: 17 × 10 −6 /
cm) is considered.

【0019】[0019]

【発明の効果】以上説明したように、超硬合金を母材と
して用いる大口径のガラスレンズ成形金型のコストダウ
ンを図るには、加工時間を短縮する必要がある。加工コ
ストの大部分は、レンズプレス面を高精度にかつ鏡面に
加工するために要している。したがって加工時間の短縮
(=金型のコストダウン)を図るには、このレンズプレ
ス面の加工を効率化しなければならない。
As described above, in order to reduce the cost of a large-diameter glass lens molding die using cemented carbide as a base material, it is necessary to shorten the processing time. Most of the processing cost is required to process the lens press surface with high accuracy and a mirror surface. Therefore, in order to shorten the processing time (= reduce the cost of the mold), the processing of this lens press surface must be made efficient.

【0020】そこで本発明では、超硬合金母材にメッキ
などの方法で、切削加工できる光学用切削膜を施し、そ
れをダイヤモンド工具などで旋削加工することで、飛躍
的に加工時間の短縮を行うと共に高精度な仕上がりを可
能とした。しかし光学用切削膜を直接超硬合金母材の上
に成膜したのでは、両者の膨張率の違いによって生じる
熱膨張ストレスにより、光学用切削膜にクラックが発生
する。そこで本発明では、超硬合金母材と光学用切削膜
との間に緩衝膜を設けることで熱膨張ストレスを生じな
いようにせしめ、クラックの発生を解消している。
Therefore, in the present invention, an optical cutting film that can be cut is applied to a cemented carbide base material by a method such as plating, and the cutting film is turned with a diamond tool or the like, thereby dramatically reducing the processing time. It is possible to achieve high-precision finish as well. However, if the optical cutting film is formed directly on the cemented carbide base material, cracks occur in the optical cutting film due to thermal expansion stress caused by the difference in expansion coefficient between the two. Therefore, in the present invention, a buffer film is provided between the cemented carbide base material and the optical cutting film so that thermal expansion stress is not generated and cracks are eliminated.

【0021】以上述べたように本発明によると、超硬合
金を母材とする大口径のレンズ成形金型を従来より格段
に安価なコストで製作することが可能である。
As described above, according to the present invention, it is possible to manufacture a large-diameter lens molding die using a cemented carbide as a base material at a significantly lower cost than conventional ones.

【図面の簡単な説明】[Brief description of drawings]

【図1】一般的なレンズ成形金型ユニットの構成を示し
た断面図
FIG. 1 is a cross-sectional view showing a configuration of a general lens molding die unit.

【図2】超硬合金母材に、光学用切削膜を成膜した状態
を示す断面図
FIG. 2 is a sectional view showing a state in which an optical cutting film is formed on a cemented carbide base material.

【図3】超硬合金母材に、緩衝膜と光学用切削膜を積層
成膜した状態を示す断面図
FIG. 3 is a cross-sectional view showing a state in which a buffer film and an optical cutting film are laminated and formed on a cemented carbide base material.

【符号の説明】[Explanation of symbols]

1 胴型 2 下パンチ型 3 上パンチ型 4 金型キャビティ空間 5 ガラス硝材 6 超硬合金母材 7 光学用切削膜 8 超硬合金母材 9 光学用切削膜 10 緩衝膜 1 body type 2 Lower punch type 3 Upper punch type 4 Mold cavity space 5 glass material 6 Cemented Carbide Base Material 7 Optical cutting film 8 Cemented Carbide Base Material 9 Optical cutting film 10 buffer film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ガラス軟化点以上の耐熱性があり、プレ
ス成形に耐えられる母材と、前記母材のプレス面および
その周辺域に、メッキ、スパッタ等で第1の機能層を形
成し、さらに前記第1の機能層を覆うように、メッキ、
スパッタ等で第2の機能層を形成した光学素子成形金型
において、前記第1の機能層は、金型母材および前記第
2の機能層より柔らかい単一金属材料、または金属合金
材料、または複数の金属材料の混合体で形成されたこと
を特徴とする光学素子成形金型。
1. A base material having heat resistance equal to or higher than a glass softening point and capable of withstanding press molding, and a first functional layer is formed on a press surface of the base material and a peripheral area thereof by plating, sputtering, or the like. Further, plating is performed so as to cover the first functional layer,
In the optical element molding die in which the second functional layer is formed by sputtering or the like, the first functional layer is a single metal material softer than the die base material and the second functional layer, or a metal alloy material, or An optical element molding die, which is formed of a mixture of a plurality of metal materials.
【請求項2】 ガラス軟化点以上の耐熱性があり、プレ
ス成形に耐えられる母材と、前記母材のプレス面および
その周辺域に、メッキ、スパッタ等で第1の機能層を形
成し、さらに前記第1の機能層を覆うように、メッキ、
スパッタ等で第2の機能層を形成した光学素子成形金型
において、前記第1の機能層は、金型母材および前記第
2の機能層より熱膨張率の大きな金属材料、または金属
合金材料、または複数の金属材料の混合体で形成された
ことを特徴とする光学素子成形金型。
2. A base material having heat resistance equal to or higher than the glass softening point and capable of withstanding press molding, and a first functional layer is formed on the press surface of the base material and its peripheral region by plating, sputtering, or the like. Further, plating is performed so as to cover the first functional layer,
In the optical element molding die in which the second functional layer is formed by sputtering or the like, the first functional layer has a metal material or a metal alloy material having a thermal expansion coefficient higher than those of the die base material and the second functional layer. Or a mixture of a plurality of metal materials, an optical element molding die.
【請求項3】 ガラス軟化点以上の耐熱性があり、プレ
ス成形に耐えられる母材と、前記母材のプレス面および
その周辺域に、メッキ、スパッタ等で第1の機能層を形
成し、さらに前記第1の機能層を覆うように、メッキ、
スパッタ等で第2の機能層を形成した光学素子成形金型
において、前記第1の機能層は、金型母材および前記第
2の機能層より柔らかく且つ熱膨張率の大きな単一金属
材料、または金属合金材料、または複数の金属材料の混
合体で形成されたことを特徴とする光学素子成形金型。
3. A base material having heat resistance equal to or higher than the glass softening point and capable of withstanding press molding, and a first functional layer is formed on the press surface of the base material and its peripheral area by plating, sputtering, or the like. Further, plating is performed so as to cover the first functional layer,
In an optical element molding die in which a second functional layer is formed by sputtering or the like, the first functional layer is a single metal material that is softer than the die base material and the second functional layer and has a large coefficient of thermal expansion. Alternatively, an optical element molding die formed of a metal alloy material or a mixture of a plurality of metal materials.
【請求項4】 プレス成形用金型の母材が、タングステ
ンカーバイド(WC)を主成分とする超硬合金、チタン
カーバイド(TiC)またはチタンナイトライド(Ti
N)を主成分とするサーメット、またはWC焼結体から
選ばれる物質である請求項1記載の光学素子成形金型。
4. A base material of a press-molding die is a cemented carbide containing tungsten carbide (WC) as a main component, titanium carbide (TiC) or titanium nitride (Ti).
The optical element molding die according to claim 1, which is a material selected from a cermet containing N) as a main component or a WC sintered body.
【請求項5】 プレス成形用金型の母材が、タングステ
ンカーバイド(WC)を主成分とする超硬合金、チタン
カーバイド(TiC)またはチタンナイトライド(Ti
N)を主成分とするサーメット、またはWC焼結体から
選ばれる物質である請求項2記載の光学素子成形金型。
5. A base material of a press-molding die is cemented carbide containing tungsten carbide (WC) as a main component, titanium carbide (TiC) or titanium nitride (Ti).
The optical element molding die according to claim 2, which is a material selected from cermet containing N) as a main component or a WC sintered body.
【請求項6】 プレス成形用金型の母材が、タングステ
ンカーバイド(WC)を主成分とする超硬合金、チタン
カーバイド(TiC)またはチタンナイトライド(Ti
N)を主成分とするサーメット、またはWC焼結体から
選ばれる物質である請求項3記載の光学素子成形金型。
6. A base material of a press-molding die is a cemented carbide containing tungsten carbide (WC) as a main component, titanium carbide (TiC) or titanium nitride (Ti).
The optical element molding die according to claim 3, which is a material selected from a cermet containing N) as a main component or a WC sintered body.
JP2002111692A 2002-04-15 2002-04-15 Metal mold for forming optical device Pending JP2003306336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111692A JP2003306336A (en) 2002-04-15 2002-04-15 Metal mold for forming optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111692A JP2003306336A (en) 2002-04-15 2002-04-15 Metal mold for forming optical device

Publications (1)

Publication Number Publication Date
JP2003306336A true JP2003306336A (en) 2003-10-28

Family

ID=29394417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111692A Pending JP2003306336A (en) 2002-04-15 2002-04-15 Metal mold for forming optical device

Country Status (1)

Country Link
JP (1) JP2003306336A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100582292C (en) * 2005-04-15 2010-01-20 鸿富锦精密工业(深圳)有限公司 Sputtering apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100582292C (en) * 2005-04-15 2010-01-20 鸿富锦精密工业(深圳)有限公司 Sputtering apparatus

Similar Documents

Publication Publication Date Title
US20100022174A1 (en) Grinding tool and method for fabricating the same
JPH0616433A (en) Die for press-forming optical element
US7428828B2 (en) Press die of disk with shaft shaped portion
JP2004223700A (en) Processing method of transfer optical surface, processing machine, die for optical element molding and diamond tool
JP2004359481A (en) Method for manufacturing replica pattern for lens molding
JP2003306336A (en) Metal mold for forming optical device
JP4373257B2 (en) Optical element molding die, method for manufacturing the same, and optical element
JPH0451495B2 (en)
CN108779013B (en) Glass material, method for producing glass material, and method for producing glass substrate for magnetic disk
JP3109219B2 (en) Glass optical element molding die and method of manufacturing the same
JP2003154529A (en) Molding die for optical element
JPH11268920A (en) Forming mold for forming optical element and its production
JP2004210550A (en) Molding mold
JP2009073693A (en) Optical element-molding die, and method for producing the same
US20100192635A1 (en) Molding die and manufacturing method of optical element
JPH11246229A (en) Mold for molding optical element
JPH10166368A (en) Manufacture of mold for molding, and mold for molding
JP5476276B2 (en) Glass blank manufacturing method for magnetic recording medium glass substrate, magnetic recording medium glass substrate manufacturing method, magnetic recording medium manufacturing method, glass blank manufacturing apparatus for magnetic recording medium glass substrate
JPH04170331A (en) Mold for molding optical element and production thereof and production of optical glass element
JPH09286624A (en) Die for forming optical element
JP3199825B2 (en) Optical element molding method
JP2006124214A (en) Method of molding optical device and die for molding optical device
JP2004352584A (en) Mold for shaping and its manufacturing method
JPH02102136A (en) Mold for molding optical element and production thereof
JP4227382B2 (en) Glass blank, information recording medium substrate, and information recording medium manufacturing method