JP2003303618A - Non-aqueous electrolyte battery - Google Patents
Non-aqueous electrolyte batteryInfo
- Publication number
- JP2003303618A JP2003303618A JP2002107921A JP2002107921A JP2003303618A JP 2003303618 A JP2003303618 A JP 2003303618A JP 2002107921 A JP2002107921 A JP 2002107921A JP 2002107921 A JP2002107921 A JP 2002107921A JP 2003303618 A JP2003303618 A JP 2003303618A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- lithium
- negative electrode
- secondary battery
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0569—Liquid materials characterised by the solvents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、二次電池、特にリ
チウム二次電池、及び前記二次電池の生成方法に関する
ものである。TECHNICAL FIELD The present invention relates to a secondary battery, particularly a lithium secondary battery, and a method for producing the secondary battery.
【0002】[0002]
【従来の技術】携帯電話やノートパソコン等のモバイル
端末の普及により、その電力源となる二次電池の役割が
重要視されている。これらの二次電池には小型、軽量、
かつ高容量であり、充放電を繰り返しても、劣化しにく
い性能が求められる。これらの二次電池の負極には、高
エネルギー密度、かつ軽量という観点から金属リチウム
が用いられることもあるが、金属リチウム負極は、充放
電サイクルの進行に伴い、充電時にリチウム表面に針状
結晶(デンドライト)が析出し、この結晶がセパレータ
を貫通して内部短絡を起こし、電池の寿命が短くなると
いう課題があった。2. Description of the Related Art With the widespread use of mobile terminals such as mobile phones and notebook computers, the role of a secondary battery serving as a power source thereof has been emphasized. These secondary batteries are small, lightweight,
Moreover, it is required to have a high capacity and to be resistant to deterioration even after repeated charging and discharging. Metal lithium may be used for the negative electrode of these secondary batteries from the viewpoint of high energy density and light weight, but the metal lithium negative electrode has needle-like crystals on the lithium surface during charging as the charge / discharge cycle progresses. (Dendrite) is deposited, and this crystal penetrates the separator to cause an internal short circuit, which shortens the life of the battery.
【0003】また、組成式がLixM(Mは、Al等の
金属)で表されるリチウム合金を負極として用いること
も検討されているが、リチウム合金負極は、単位体積当
りのリチウムイオンの吸蔵・放出量が多く、高容量であ
るものの、リチウムイオンの吸蔵・放出に伴って膨脹収
縮するために充放電サイクルの進行に伴って微粉化が進
行し、充放電サイクル寿命が短いという課題があった。
さらに、リチウムイオンを吸蔵、及び放出可能な黒鉛や
ハードカーボン等の炭素材料を負極として用いた場合、
充放電サイクルは良好であるが、黒鉛材料は金属リチウ
ム、リチウム合金と比較して容量が小さく、ハードカー
ボンは初回充放電における不可逆容量が大きく、充放電
効率が低いためエネルギー密度が小さくなるという課題
があった。Further, it has been considered to use a lithium alloy represented by a composition formula of Li x M (M is a metal such as Al) as a negative electrode. However, the lithium alloy negative electrode has a lithium ion content per unit volume of lithium ions. Although it has a large amount of occlusion / desorption and a high capacity, it expands and contracts due to the occlusion / release of lithium ions, which causes pulverization along with the progress of charge / discharge cycles, which leads to the problem of short charge / discharge cycle life. there were.
Furthermore, when a carbon material such as graphite or hard carbon capable of inserting and extracting lithium ions is used as the negative electrode,
Charge and discharge cycles are good, but graphite materials have a smaller capacity than metallic lithium and lithium alloys, and hard carbon has a large irreversible capacity in the first charge and discharge, and the energy density is small due to low charge and discharge efficiency. was there.
【0004】そこで負極の改善を目的として多くの検討
が行われてきた。特開2000−21392号公報には、炭素材
料とSi、Ge、Sn等の金属、またはその酸化物を含
有する負極に、電池作製時に金属リチウムを電気的に接
触させることが開示されており、耐過放電特性、及びサ
イクル特性の改善が提案されている。特開平11−135120
号公報には、Al、Sn、Sb等の粒子を炭素質材料に
て被覆した材料を負極として用いることが開示されてお
り、高容量、高電圧、及びサイクル特性の改善が提案さ
れている。Therefore, many studies have been conducted for the purpose of improving the negative electrode. Japanese Unexamined Patent Application Publication No. 2000-21392 discloses that metallic lithium is electrically brought into contact with a negative electrode containing a carbon material and a metal such as Si, Ge, Sn, or an oxide thereof when manufacturing a battery, Improvements in over-discharge resistance and cycle characteristics have been proposed. JP-A-11-135120
The publication discloses that a material obtained by coating particles of Al, Sn, Sb or the like with a carbonaceous material is used as a negative electrode, and proposes improvement of high capacity, high voltage and cycle characteristics.
【0005】特開平10−21964号公報には、Sn、A
l、Si等のカルコゲン化合物、またはその酸化物を主
体とする材料を負極として用いることが開示されてお
り、高容量、サイクル特性の向上、及び生産効率の改善
が提案されている。特開2000−182602号公報には、リチ
ウムを吸蔵、放出可能な非晶質酸化物からなる負極シー
トにリチウムを主体とした金属箔が貼付された二次電池
用負極が開示されており、高容量、及び耐過充電特性の
改善が提案されている。特開2001−15172号公報には、
炭素材料からなる負極シートにリチウムを主体とした金
属箔が貼付された二次電池用負極が開示されており、高
容量、及び充放電効率の改善が提案されている。Japanese Patent Laid-Open No. 10-21964 discloses Sn, A
It has been disclosed to use a material mainly composed of a chalcogen compound such as l or Si or an oxide thereof as a negative electrode, and it has been proposed to improve the capacity, cycle characteristics, and production efficiency. Japanese Patent Laid-Open No. 2000-182602 discloses a negative electrode for a secondary battery in which a metal foil mainly composed of lithium is attached to a negative electrode sheet made of an amorphous oxide capable of occluding and releasing lithium. Improvements in capacity and overcharge resistance have been proposed. Japanese Patent Laid-Open No. 2001-15172,
A negative electrode for a secondary battery in which a metal foil mainly containing lithium is attached to a negative electrode sheet made of a carbon material has been disclosed, and high capacity and improvement of charge / discharge efficiency have been proposed.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、従来技
術には、以下のような課題がある。特開2000−21392号
公報、特開平11−135120号公報、及び特開平10−21964
号公報に記載の技術では、金属、及び金属酸化物は、初
回充放電における不可逆容量、及び、負極重量が大きい
ため、電池のエネルギー密度を充分高くすることが困難
である。また、金属と炭素系材料を混合した場合、放電
曲線において炭素より高い電圧に金属特有の電圧平坦部
を形成するため、負極として炭素のみを使用した場合と
比較して動作電圧が低くなり、高い動作電圧が得られに
くい。リチウム二次電池は用途に応じて下限電圧が定め
られており、動作電圧が低くなると使用可能領域が狭く
なり、結果として、実際に電池が使用される領域におい
て容量増加を図ることは困難になる。However, the prior art has the following problems. JP-A-2000-21392, JP-A-11-135120, and JP-A-10-21964
According to the technique described in the publication, the metal and the metal oxide have a large irreversible capacity in the first charge and discharge and a large weight of the negative electrode, so that it is difficult to sufficiently increase the energy density of the battery. In addition, when a metal and a carbon-based material are mixed, a voltage flat portion peculiar to the metal is formed in the discharge curve at a voltage higher than that of carbon, so that the operating voltage is lower and higher than that when only carbon is used as the negative electrode. It is difficult to obtain operating voltage. The lower limit voltage of the lithium secondary battery is set according to the application, and the lower the operating voltage, the narrower the usable area becomes. As a result, it is difficult to increase the capacity in the area where the battery is actually used. .
【0007】特開2000−21392号公報に記載の方法で
は、加えたリチウムが炭素表面の活性な官能基や炭素表
面吸着水、あるいは電解液溶媒や電解液中に含まれる水
分と反応して負極表面に皮膜を形成し、このような皮膜
に含まれるリチウムは、電気化学的に不活性であり、電
池の充放電容量に寄与することができないため、充放電
効率の改善は不十分である。また、これらの皮膜は電気
抵抗が大きく、電池の抵抗が増大するため、電池の実効
容量はむしろ減少する。特開2000−182602号公報、及び
特開2001−15172号公報に記載の方法では、非晶質材
料、及び炭素材料負極シートは、ともに電極の結着剤が
リチウム金属箔と直に接触して結着剤とリチウム金属箔
の一部が反応し、高抵抗の皮膜を生じる。また、非晶質
材料からなるシートでは、微視的スケールにおいて金属
分布が不均一となることは避けられず、結果として電界
の局所的集中が発生する。これらの理由により、高水準
のサイクル特性を維持することは困難である。In the method described in JP-A-2000-21392, the added lithium reacts with active functional groups on the carbon surface, water adsorbed on the carbon surface, or water contained in the electrolytic solution solvent or electrolytic solution to form a negative electrode. Since a film is formed on the surface and lithium contained in such a film is electrochemically inactive and cannot contribute to the charge / discharge capacity of the battery, the charge / discharge efficiency is not sufficiently improved. Further, these coatings have a large electric resistance and increase the resistance of the battery, so that the effective capacity of the battery is rather reduced. In the method described in JP-A-2000-182602, and JP-A-2001-15172, the amorphous material, and the carbon material negative electrode sheet, both the electrode binder is in direct contact with the lithium metal foil The binder and a part of the lithium metal foil react to form a high resistance film. Further, in the case of a sheet made of an amorphous material, it is inevitable that the metal distribution is nonuniform on a microscopic scale, and as a result, local concentration of the electric field occurs. For these reasons, it is difficult to maintain high level cycle characteristics.
【0008】電解液に関しては前記各公報中に次のよう
な記載がある。つまり特開2000−21392号公報には、65.
5重量部の炭酸ジエチルと22重量部の炭酸エチレンより
なる混合溶媒に0.4重量部のLiBF4と12.1重量部のL
iPF6を溶解してなる電解液が、特開平11−135120号
公報には、エチレンカーボネートとジメチルカーボネー
トの体積比1:1混合溶媒にLiPF6を1mol/l
溶解してなる電解液が、特開平10−21964号公報には、
エチレンカーボネートとジエチルカーボネートの体積比
2:8混合溶媒にLiPF6を1mol/l溶解してな
る電解液が、特開2000−182602号公報には、65.3gの炭
酸ジエチルと22.2gの炭酸エチレンよりなる混合溶媒に
0.4gのLiBF4と12.1gのLiPF6を溶解してなる
電解液が、特開2001−15172号公報には、65.3gのジエ
チルカーボネートと22.2gのエチレンカーボネートより
なる混合溶媒に0.4gのLiBF4と12.1gのLiPF6
を溶解し、さらに1、2−ビス(エトキシカルボニル)
−1、2−ジメチルヒドラジン等の添加剤を溶解してな
る電解液が、各々実施例中に記載されている。また、本
文中には、種々の溶媒が列記され、電解液として使用可
能であることが記載されている。しかしながら、電解液
の溶媒組成、混合体積比、及びリチウム塩濃度の最適値
・範囲に関して詳細に検討した記載はなされていない。Regarding the electrolytic solution, the following descriptions are given in the respective publications. That is, JP-A-2000-21392 discloses 65.
0.4 parts by weight of LiBF 4 and 12.1 parts by weight of L in a mixed solvent consisting of 5 parts by weight of diethyl carbonate and 22 parts by weight of ethylene carbonate.
An electrolytic solution obtained by dissolving iPF 6 is disclosed in JP-A No. 11-135120, and 1 mol / l of LiPF 6 is added to a mixed solvent of ethylene carbonate and dimethyl carbonate at a volume ratio of 1: 1.
Dissolved electrolytic solution, JP-A-10-21964,
An electrolytic solution prepared by dissolving 1 mol / l of LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 2: 8 is disclosed in Japanese Patent Laid-Open No. 2000-182602 in which 65.3 g of diethyl carbonate and 22.2 g of ethylene carbonate are used. In mixed solvent
An electrolytic solution obtained by dissolving 0.4 g of LiBF 4 and 12.1 g of LiPF 6 is disclosed in JP 2001-15172 A, in which 0.4 g of LiBF is mixed with a mixed solvent of 65.3 g of diethyl carbonate and 22.2 g of ethylene carbonate. 4 and 12.1 g of LiPF 6
Dissolved in 1,2-bis (ethoxycarbonyl)
An electrolytic solution prepared by dissolving an additive such as -1,2-dimethylhydrazine is described in each Example. In addition, various solvents are listed in the text, and it is described that they can be used as an electrolytic solution. However, no detailed description has been made regarding the solvent composition of the electrolytic solution, the mixing volume ratio, and the optimum value / range of the lithium salt concentration.
【0009】本発明は、上記従来技術の有する課題に鑑
み、高い充放電効率、及び良好なサイクル特性を維持し
つつ、実際に電池が使用される電圧範囲において電池容
量を実質的に向上させたリチウム二次電池を提供するこ
とを目的とする。In view of the above problems of the prior art, the present invention substantially improves the battery capacity in the voltage range in which the battery is actually used while maintaining high charge / discharge efficiency and good cycle characteristics. It is intended to provide a lithium secondary battery.
【0010】[0010]
【課題を解決するための手段】本発明によれば、(i)
リチウム含有複合酸化物を含む正極と、(ii)炭素を主
成分とする第一の層(21)と、リチウムイオン伝導性を
有しかつリチウムイオンを吸蔵、及び放出することので
きる材料を主成分とする第二の層(22)とを含む多層構
造を有する負極、及び(iii)比誘電率30以上、かつ、
粘度1cP以上の第1の非水溶媒と、比誘電率10以下、
かつ、粘度1cP未満の第2の非水溶媒を2:8から
6:4の体積比で含む混合溶媒であって、リチウム塩を
0.5〜1.5mol/lの範囲内で溶解させた非水電解
液とを含んで成ることを特徴とするリチウム二次電池、
及び(i)リチウム含有複合酸化物を含む正極と、(i
i)炭素を主成分とする第一の層と、リチウムイオン伝
導性を有しかつリチウムイオンを吸蔵、及び放出するこ
とのできる材料を主成分とする第二の層、及びリチウム
を含有しかつ前記第一の層と直接接触しない第三の層と
を含む多層構造を有する負極、及び(iii)比誘電率30
以上、かつ、粘度1cP以上の第1の非水溶媒と、比誘
電率10以下、かつ粘度1cP未満の第2の非水溶媒を
2:8から6:4の体積比で含む混合溶媒であって、リ
チウム塩を0.5〜1.5mol/lの範囲内で溶解させ
た非水電解液とを含んで成ることを特徴とするリチウム
二次電池が提供される。According to the present invention, (i)
Mainly composed of a positive electrode containing a lithium-containing composite oxide, (ii) a first layer (21) containing carbon as a main component, and a material having lithium ion conductivity and capable of inserting and extracting lithium ions. A negative electrode having a multilayer structure including a second layer (22) as a component, and (iii) a relative dielectric constant of 30 or more, and
A first non-aqueous solvent having a viscosity of 1 cP or more, a relative dielectric constant of 10 or less,
A mixed solvent containing a second non-aqueous solvent having a viscosity of less than 1 cP in a volume ratio of 2: 8 to 6: 4 and a lithium salt dissolved in a range of 0.5 to 1.5 mol / l. A lithium secondary battery comprising a non-aqueous electrolyte,
And (i) a positive electrode containing a lithium-containing composite oxide, (i
i) a first layer containing carbon as a main component, a second layer containing a material having lithium ion conductivity and capable of absorbing and releasing lithium ions as a main component, and lithium. A negative electrode having a multilayer structure including a third layer that does not come into direct contact with the first layer, and (iii) a relative dielectric constant 30
A mixed solvent containing the first non-aqueous solvent having a viscosity of 1 cP or more and the second non-aqueous solvent having a relative dielectric constant of 10 or less and a viscosity of less than 1 cP in a volume ratio of 2: 8 to 6: 4. And a non-aqueous electrolyte solution in which a lithium salt is dissolved in the range of 0.5 to 1.5 mol / l.
【0011】以下本発明を詳細に説明する。前述した従
来技術の通り、負極用炭素材料と金属酸化物等のリチウ
ム吸蔵・放出量の大きい材料とを組み合わせた負極を使
用することによって、高いリチウム吸蔵・放出量と充放
電効率を両立させることが理論的に可能と推測できる。
更に負極用炭素材料に予め負極不可逆容量分の金属リチ
ウムを加えれば、電池の不可逆容量が減少し、エネルギ
ー密度を向上できると考えられる。しかしながら単にこ
れらの材料を組み合わせただけでは実際に電池のエネル
ギー密度を向上させることは困難であり、この点につい
ては、従来技術の項で述べたとおりである。The present invention will be described in detail below. As described above, by using a negative electrode in which a carbon material for a negative electrode and a material having a large lithium absorption / desorption amount such as a metal oxide are used, it is possible to achieve both a high lithium absorption / desorption amount and charge / discharge efficiency. Can be inferred theoretically possible.
Furthermore, it is considered that the irreversible capacity of the battery is reduced and the energy density can be improved by adding metallic lithium in an amount corresponding to the irreversible capacity of the negative electrode to the carbon material for the negative electrode. However, it is difficult to actually improve the energy density of the battery simply by combining these materials, and this point is as described in the section of the prior art.
【0012】そこで本発明においては、負極の構造とし
て、炭素を主成分とする第一の層と、(a)リチウムイ
オン伝導性を有し、かつ、リチウムイオンを吸蔵、及び
放出することのできる材料を主成分とする第二の層とを
含む多層構造、または、(b)前記第二の層、さらに、
リチウム、またはリチウム含有化合物よりなる第三の層
とを含み、かつ第一の層と第三の層とが直接接触しない
ように配置された多層構造を採用している。つまり炭素
を主成分とする層と、炭素以外のリチウムイオンを吸
蔵、及び放出することのできる材料を主成分とする層と
を各々形成している。Therefore, in the present invention, as the structure of the negative electrode, the first layer containing carbon as the main component, and (a) lithium ion conductivity, and capable of absorbing and desorbing lithium ions. A multilayer structure including a second layer containing a material as a main component, or (b) the second layer, and
A multi-layered structure including a third layer made of lithium or a lithium-containing compound and arranged so that the first layer and the third layer are not in direct contact with each other is adopted. That is, a layer containing carbon as its main component and a layer containing as its main component a material capable of inserting and extracting lithium ions other than carbon are formed.
【0013】このような構成からなる本発明の二次電池
では、膜状材料を用いることにより、活物質が負極上に
均一に存在することとなり、正極−負極間の電界分布が
均一になる。このため電界の局所的集中が起こり難く、
サイクルを経ても集電体から活物質が剥離する等の破損
が発生せず安定した電池特性が得られる。電界分布が不
均一な場合、リチウム吸蔵層が局所的に体積膨脹するこ
とがあり、電池特性の劣化を引き起こす原因となる。ま
た結着剤等の不純物は金属リチウムと反応し抵抗の高い
皮膜を形成し電池特性を悪化させることがある。膜状材
料を用いる本発明に係る負極は、このような問題も解決
することができる。In the secondary battery of the present invention having such a structure, by using the film material, the active material is uniformly present on the negative electrode, and the electric field distribution between the positive electrode and the negative electrode becomes uniform. Therefore, local concentration of the electric field is unlikely to occur,
Stable battery characteristics can be obtained without damage such as peeling of the active material from the current collector even after a cycle. When the electric field distribution is not uniform, the lithium storage layer may locally expand in volume, which causes deterioration of battery characteristics. Impurities such as a binder may react with metallic lithium to form a film having high resistance and deteriorate battery characteristics. The negative electrode according to the present invention using a film material can solve such a problem.
【0014】上記(b)の第三の層を含む態様の場合、
第一の層と第三の層の間の第二の層が、炭素負極表面の
活性なサイトと金属リチウムとが直接反応することを抑
制し、加えたリチウムが炭素負極不可逆容量の補填に有
効に働くようにしている。また、加えたリチウムの一部
は、リチウムイオン伝導性を持つ材料にドープされ、そ
れにより膜状材料のリチウムイオン濃度を高め、膜状材
料中の電荷キャリアー数が増加するため、リチウムイオ
ン伝導性がさらに向上する。それにより電池の抵抗を減
少させることができ電池の実効容量はさらに向上する。
また、満充電状態において理論組成よりも過剰なリチウ
ムを含有する領域を備えたリチウム二次電池用負極も提
供可能である。In the case of the embodiment including the third layer of (b) above,
The second layer between the first layer and the third layer suppresses the direct reaction between the active sites on the surface of the carbon negative electrode and metallic lithium, and the added lithium is effective for filling the irreversible capacity of the carbon negative electrode. I am trying to work. In addition, a part of the added lithium is doped into a material having lithium ion conductivity, which increases the lithium ion concentration of the film material and increases the number of charge carriers in the film material. Is further improved. Thereby, the resistance of the battery can be reduced and the effective capacity of the battery is further improved.
It is also possible to provide a negative electrode for a lithium secondary battery, which has a region containing lithium in excess of the theoretical composition in a fully charged state.
【0015】前記第一の層と第三の層の間に第二の層を
配置した負極を充電すると、第三の層を構成するリチウ
ムの一部が第二の層へドープされる。この現象を利用す
ることにより、正極中に含まれるリチウムを消費するこ
となく、満充電状態において第二の層に飽和量を超える
リチウムがドープされ、第二の層にリチウムがドープし
た負極を得ることができる。前記第一から第三の層を含
む多層構造の負極に充放電を繰り返すと、第三の層に含
まれるリチウムが、第一の層と第二の層にドープされ、
第三の層が次第に消失していくが、この過程で、リチウ
ムを含んだ第二の層が生成される。このようなリチウム
を含んだ第二の層を持つ負極は、三層構造のものとは異
なる観点から、それ自体、優れた電池性能の実現に寄与
する。When the negative electrode in which the second layer is arranged between the first layer and the third layer is charged, a part of lithium constituting the third layer is doped into the second layer. By utilizing this phenomenon, the second layer is doped with lithium in excess of the saturation amount in a fully charged state without consuming the lithium contained in the positive electrode, and the negative electrode in which the second layer is doped with lithium is obtained. be able to. When charge and discharge are repeated for a negative electrode having a multilayer structure including the first to third layers, lithium contained in the third layer is doped in the first layer and the second layer,
The third layer gradually disappears, and in the process, the second layer containing lithium is formed. Such a negative electrode having the second layer containing lithium contributes to the realization of excellent battery performance by itself from the viewpoint different from that of the three-layer structure.
【0016】このようにして生成するリチウム二次電池
は、電池作製時に、負極に金属リチウムを電気的に接触
させる従来技術と異なり、電気抵抗の大きい皮膜形成が
生じないため、電池の実効容量を高めることが可能にな
る。炭素含有層とリチウム含有層とを積層した構造は、
両者の長所を活かすことにより、デンドライトを生じさ
せることなく高いリチウム吸蔵量を実現し得る。In the lithium secondary battery thus produced, unlike the prior art in which metallic lithium is brought into electrical contact with the negative electrode during battery production, a film with a large electric resistance is not formed, so the effective capacity of the battery is increased. It becomes possible to raise. The structure in which the carbon-containing layer and the lithium-containing layer are laminated,
By utilizing the advantages of both, a high lithium storage amount can be realized without causing dendrites.
【0017】しかしながら、従来技術の項で述べたよう
に、炭素層にリチウム層が直接接触する構造では、その
界面においてリチウムと炭素が反応し、絶縁性の高い皮
膜が形成されるため、電池特性の低下が問題となる。こ
の問題は、リチウム層に代えてリチウム合金層を適用す
ることにより軽減されるが、この場合もやはり、リチウ
ム合金中のリチウムが炭素層と反応することによる電池
性能の低下が問題となる。これに対し第三の層を含むリ
チウム二次電池に係る本発明の第二の層は、もともとリ
チウムイオン伝導性を有し、充放電によってリチウムが
ドープされることにより、さらにリチウムイオン伝導性
が向上する。このようなリチウムイオン伝導性が高い皮
膜は、充放電反応を妨げることはなく、むしろ保護膜と
して電解液と活物質の副反応を抑制し、電池特性を向上
させる。すなわち、炭素を主成分とする第一の層上に第
二の層、さらには第三の層を膜状に設けることにより、
リチウムイオンが溶媒和された状態で炭素層間にインタ
ーカレーションすることが抑制され、炭素層の劣化を防
ぎ、サイクル特性の改善に効果を発揮する。However, as described in the section of the prior art, in the structure in which the lithium layer is in direct contact with the carbon layer, lithium and carbon react at the interface to form a highly insulating film, which results in battery characteristics. Is a problem. This problem is mitigated by applying a lithium alloy layer instead of the lithium layer, but in this case also, there is a problem in that the battery performance is deteriorated due to the reaction of lithium in the lithium alloy with the carbon layer. On the other hand, the second layer of the present invention related to the lithium secondary battery including the third layer originally has lithium ion conductivity, and lithium is doped by charge / discharge to further improve lithium ion conductivity. improves. Such a film having high lithium ion conductivity does not hinder the charge / discharge reaction, but rather suppresses a side reaction between the electrolytic solution and the active material as a protective film and improves battery characteristics. That is, by providing the second layer, and further the third layer in a film shape on the first layer containing carbon as a main component,
Intercalation between carbon layers in the state where lithium ions are solvated is suppressed, deterioration of the carbon layer is prevented, and cycle characteristics are improved.
【0018】しかしながらその一方、炭素を主成分とす
る第一の層上に第二の層、さらには第三の層を膜状に設
けたことにより、比誘電率30以上、かつ、粘度1cP以
上の非水溶媒のみを電解液溶媒とした場合、電解液の粘
性が高く、電解液の第一の層までの浸透が困難であり、
電極界面抵抗が上昇して、電池の性能を充分に引き出す
ことができなくなる。また、比誘電率10以下、かつ、粘
度1cP未満の非水溶媒のみを電解液溶媒とした場合、
溶媒は第一の層まで容易に到達するが、比誘電率が低い
ためにリチウム塩の解離が不十分であり、電解液のイオ
ン伝導性が不足するため、電池の内部抵抗が上昇し、電
池の性能を十分に引き出すことができなくなる。本発明
者らは検討の結果、前述した積層構造では、比誘電率30
以上、かつ、粘度1cP以上の第1の非水溶媒と、比誘
電率10以下、かつ、粘度1cP未満の第2の非水溶媒を
各々少なくとも1種類以上用い、第1非水溶媒と第2非
水溶媒との混合体積比が、2:8から6:4の範囲内で
ある混合溶媒にリチウム塩を0.5mol/lから1.5mo
l/lの範囲内で溶解させてなる非水電解液を用いるこ
とで、電解液の浸透とリチウム塩の解離を両立できるこ
とを見出した。従って本発明では、このような構成から
成る非水電解液を使用する。On the other hand, however, by providing the second layer and the third layer in the form of a film on the first layer containing carbon as a main component, the relative dielectric constant is 30 or more and the viscosity is 1 cP or more. When using only the non-aqueous solvent of the electrolytic solution solvent, the viscosity of the electrolytic solution is high, it is difficult to penetrate the first layer of the electrolytic solution,
The interfacial resistance of the electrodes rises, and the battery performance cannot be fully obtained. Further, when only a non-aqueous solvent having a relative dielectric constant of 10 or less and a viscosity of less than 1 cP is used as the electrolyte solvent,
Although the solvent easily reaches the first layer, the dissociation of the lithium salt is insufficient due to the low relative dielectric constant, and the ionic conductivity of the electrolyte is insufficient, increasing the internal resistance of the battery and Will not be able to bring out the full performance of. As a result of investigations by the present inventors, in the above-described laminated structure, the relative dielectric constant of 30
The first non-aqueous solvent and the second non-aqueous solvent having a viscosity of 1 cP or more and a second non-aqueous solvent having a relative dielectric constant of 10 or less and a viscosity of less than 1 cP are used respectively. The mixing volume ratio of the non-aqueous solvent is within the range of 2: 8 to 6: 4, and the lithium salt is added in an amount of 0.5 mol / l to 1.5 mo.
It has been found that the use of a non-aqueous electrolytic solution that is dissolved within the range of 1 / l makes it possible to achieve both penetration of the electrolytic solution and dissociation of the lithium salt. Therefore, in the present invention, the non-aqueous electrolytic solution having such a structure is used.
【0019】[0019]
【発明の実施の形態】本発明の二次電池の形状は、特に
制限はないが、例えば、円筒型、角型、コイン型等が挙
げられる。本発明において、第一、第二、及び第三の層
は、各々炭素、膜状リチウム吸蔵材料、及びリチウム、
またはリチウムを含有する化合物を主成分としている
が、添加剤等を適宜含んでいても良い。又本発明で、主
成分とは、50重量%超で100%までの含有量の場合をい
う。各層はいずれも単数でも複数でもよいが、原則とし
て以下に示す構成は含まない。BEST MODE FOR CARRYING OUT THE INVENTION The shape of the secondary battery of the present invention is not particularly limited, and examples thereof include a cylindrical type, a square type, and a coin type. In the present invention, the first, second, and third layers are carbon, a film-like lithium storage material, and lithium,
Alternatively, a compound containing lithium is contained as a main component, but an additive or the like may be contained as appropriate. Further, in the present invention, the main component means a case where the content is more than 50% by weight and up to 100%. Each layer may be singular or plural, but in principle, does not include the configurations shown below.
【0020】(i)第一の層と第三の層が直接接触した
構成。
(ii)第一の層が負極最表面に配置された構成。(I) A structure in which the first layer and the third layer are in direct contact with each other. (Ii) A configuration in which the first layer is arranged on the outermost surface of the negative electrode.
【0021】上記の構成以外であれば積層順序は任意で
あり、例えば、第一の層上部、及び下部に第二、第三の
層を順次積層した構成等が可能で、高い充放電効率、及
び良好なサイクル特性を維持しつつ、電池容量を一層向
上させることができる。The stacking order is arbitrary except the above-mentioned structure. For example, a structure in which the second layer and the third layer are sequentially stacked on the upper part and the lower part of the first layer is possible. In addition, the battery capacity can be further improved while maintaining good cycle characteristics.
【0022】本発明において第二の層は、リチウムイオ
ン伝導性を有する膜状材料を主成分とする。なおここ
で、リチウムイオン伝導性とは、リチウムイオンを電荷
の担い手として、物質に電流が流れる性質をいう。膜状
材料とは、粒子状材料と異なり、ほぼ均一な組成で膜を
構成している材料を意味し、例えば蒸着法、CVD法ま
たはスパッタリング法等の方法により成膜されたものを
いう。例えばリチウムイオン伝導性を有する粒子状材料
を結着剤で固めたものは、本発明における膜状材料には
含まれない。In the present invention, the second layer is mainly composed of a film material having lithium ion conductivity. Here, the lithium ion conductivity means a property in which a current flows through a substance using lithium ions as a carrier of electric charges. The film-like material means a material forming a film with a substantially uniform composition, unlike a particle-like material, and means a film formed by a method such as a vapor deposition method, a CVD method or a sputtering method. For example, a particulate material having lithium ion conductivity which is solidified with a binder is not included in the film material of the present invention.
【0023】前記第二の層は、前述したリチウム伝導性
を有する他に、リチウムイオンを吸蔵、及び放出するこ
とのできる材料からなるものであることが望ましい。リ
チウムイオンを吸蔵、及び放出することのできる材料と
は、リチウムを材料中に取り込むことのできる材料を指
し、リチウムを取り込む形態としては、合金等を形成す
る形態のほか、当該材料と合金を形成することなく構造
体中にリチウムを取り込む形態も含む。更に第二の層は
アモルファス構造であることが好ましい。アモルファス
構造への電気化学的なリチウムのドープ・脱ドープは、
結晶構造よりも卑な電位で起こるため、高い動作電圧、
及び高い充放電効率を維持しつつ、電池容量を増加させ
ることができる。ここで、アモルファスとは、CuKα
線を用いたX線回折法の2θ値で15から40度に頂点を有
するブロードな散乱帯を有するものを指す。アモルファ
ス構造は、結晶構造と比較して、結晶学的に等方である
ために外部からの応力に対する強度に優れ、かつ、化学
的に安定である。すなわち、充放電による負極の膨張収
縮の影響を受けにくく、かつ、電解液と反応を起こしに
くいため、充放電サイクルを繰り返した際の安定性に優
れ、容量劣化が発生しにくい。The second layer is preferably made of a material capable of inserting and extracting lithium ions, in addition to the above-mentioned lithium conductivity. A material capable of absorbing and releasing lithium ions refers to a material capable of incorporating lithium into the material. As a form of incorporating lithium, in addition to a form of forming an alloy or the like, an alloy with the material is formed. It also includes a form in which lithium is incorporated into the structure without doing so. Furthermore, the second layer preferably has an amorphous structure. Electrochemical lithium doping and dedoping of amorphous structure
Since it occurs at a potential lower than the crystal structure, a high operating voltage,
In addition, the battery capacity can be increased while maintaining high charge / discharge efficiency. Here, amorphous is CuKα
The X-ray diffraction method using X-rays has a broad scattering band having vertices at 15 to 40 degrees in the 2θ value. Since the amorphous structure is crystallographically isotropic as compared with the crystal structure, the amorphous structure has excellent strength against external stress and is chemically stable. That is, since it is unlikely to be affected by the expansion and contraction of the negative electrode due to charge and discharge and does not easily react with the electrolytic solution, the stability is excellent when the charge and discharge cycle is repeated, and the capacity deterioration is less likely to occur.
【0024】第二の層は、蒸着法、CVD法、またはス
パッタリング法により形成された層であることが好まし
い。これらの成膜法を用いた場合、アモルファス状のイ
オン伝導性膜が負極上に均一に得られる。この膜により
正極−負極間の電解分布は均一になる。このため電界の
局所的集中が起こらず、サイクルを経ても集電体から活
物質が剥離する等の破損が発生せず、安定した電池特性
が得られる。本発明における第二の層を構成する材料
は、リチウムイオン伝導性を有し、かつ、リチウムイオ
ンを吸蔵、及び放出することのできる材料であれば特に
制限はないが、Si、Ge、In、Sn、Pb、及びこ
れらの酸化物からなる群から選択される1または2以上
の元素等を含むものであることが好ましい。前記材料を
選択し、かつ、アモルファス構造を有することにより、
高い動作電圧、及び高い充放電効率を維持しつつ、電池
容量を増加させることができ、製造も容易となる。特
に、Si、Sn、及びこれらの酸化物は、リチウムを吸
蔵した際の構造変化が小さく、充放電を繰り返しても劣
化しにくいため、良好なサイクル特性が得られる。The second layer is preferably a layer formed by a vapor deposition method, a CVD method or a sputtering method. When these film forming methods are used, an amorphous ion conductive film is uniformly obtained on the negative electrode. This film makes the electrolytic distribution between the positive electrode and the negative electrode uniform. Therefore, local concentration of the electric field does not occur, damage such as peeling of the active material from the current collector does not occur even after a cycle, and stable battery characteristics can be obtained. The material forming the second layer in the present invention is not particularly limited as long as it has lithium ion conductivity and is capable of inserting and extracting lithium ions, but Si, Ge, In, It is preferable to contain one or more elements selected from the group consisting of Sn, Pb, and oxides thereof. By selecting the material and having an amorphous structure,
The battery capacity can be increased while maintaining a high operating voltage and a high charging / discharging efficiency, which facilitates manufacturing. In particular, Si, Sn, and oxides thereof have a small structural change when lithium is occluded, and are less likely to deteriorate even after repeated charging and discharging, and thus good cycle characteristics can be obtained.
【0025】本発明において、第三の層を構成する物質
はリチウム、またはリチウムを含有する化合物であれば
特に制限はないが、好ましくは金属リチウム、リチウム
合金、窒化リチウム、Li3-xMxN(M=Co、Ni、
Cu)、及びこれらの混合物である。このような材料は
電気化学的に多くのリチウムを放出することができるた
め、負極の不可逆容量を補い電池の充放電効率を向上さ
せることができる。第三の層を構成する物質はアモルフ
ァス構造であることが好ましい。アモルファス構造は、
結晶構造と比較して、結晶学的に等方であるために外部
からの応力に対する強度に優れ、かつ、化学的に安定で
あり、電解液と副反応を起こしにくいため、第三の層に
含まれるリチウムが効率よく負極の不可逆容量の補填に
利用される。第三の層を構成する物質は、蒸着法、CV
D法、またはスパッタリング法により形成された層であ
ることが好ましい。これらの成膜法を用いた場合、負極
全体に均一なアモルファス状の層を作製することができ
る。また溶媒を用いる必要がないため、副反応が起こり
にくく、より純度の高い層を作製することができ、第三
の層に含まれるリチウムが効率よく負極の不可逆容量の
補填に利用される。In the present invention, the substance constituting the third layer is not particularly limited as long as it is lithium or a compound containing lithium, but preferably metallic lithium, lithium alloy, lithium nitride, Li 3-x M x. N (M = Co, Ni,
Cu) and mixtures thereof. Since such a material can electrochemically release a large amount of lithium, it can supplement the irreversible capacity of the negative electrode and improve the charge / discharge efficiency of the battery. The substance forming the third layer preferably has an amorphous structure. The amorphous structure is
Compared with the crystal structure, it is crystallographically isotropic, so it has excellent strength against external stress, and it is chemically stable and does not easily cause side reactions with the electrolytic solution. Lithium contained is efficiently used to supplement the irreversible capacity of the negative electrode. The material forming the third layer is a vapor deposition method, CV
It is preferably a layer formed by the D method or the sputtering method. When these film forming methods are used, a uniform amorphous layer can be formed over the entire negative electrode. Further, since it is not necessary to use a solvent, a side reaction is unlikely to occur, and a layer of higher purity can be produced, and lithium contained in the third layer is efficiently used for filling the irreversible capacity of the negative electrode.
【0026】図1は、本発明の第1実施形態に係る多層
構造を有するリチウム二次電池の負極を例示する縦断面
図であり、図2は、本発明の第2実施形態に係る多層構
造を有するリチウム二次電池の負極を例示する縦断面図
である。図1は、負極集電体(20)上に、炭素を主成分
とする第一の層(21)と、リチウムイオン伝導性を有
し、かつリチウムイオンを吸蔵、及び放出することので
きる材料を主成分とする第二の層(22)を順に積層した
多層構造の負極を例示している。図2は、負極集電体
(20)上に、炭素を主成分とする第一の層(21)と、リ
チウムイオン伝導性を有し、かつリチウムイオンを吸
蔵、及び放出することのできる材料を主成分とする第二
の層(22)、更にリチウム、またはリチウム含有化合物
よりなる第三の層(23)とを順に積層し、かつ第一の層
(21)と第三の層(23)とが直接接触しないように配置
された多層構造を有する負極を例示している。FIG. 1 is a vertical cross-sectional view illustrating a negative electrode of a lithium secondary battery having a multilayer structure according to a first embodiment of the present invention, and FIG. 2 is a multilayer structure according to a second embodiment of the present invention. FIG. 3 is a vertical cross-sectional view illustrating a negative electrode of a lithium secondary battery having a. FIG. 1 shows a first layer (21) containing carbon as a main component on a negative electrode current collector (20) and a material having lithium ion conductivity and capable of inserting and extracting lithium ions. 3 illustrates a negative electrode having a multilayer structure in which a second layer (22) containing as a main component is sequentially stacked. FIG. 2 shows a first layer (21) containing carbon as a main component on a negative electrode current collector (20) and a material having lithium ion conductivity and capable of inserting and extracting lithium ions. And a third layer (23) made of lithium or a lithium-containing compound in that order, and a first layer (21) and a third layer (23). ) Illustrates a negative electrode having a multi-layer structure arranged so as not to come into direct contact with.
【0027】集電体(20)は、充放電の際、電流を電池
の外部に取り出したり、外部から電池内に電流を取り込
むための電極である。この集電体(20)は導電性の金属
箔であればよく、例えば、アルミニウム、銅、ステンレ
ス、金、タングステン、モリブデン等を用いることがで
きる。炭素負極層である第一の層(21)は、充放電の
際、リチウムを吸蔵、あるいは放出する負極部材であ
る。この炭素負極(21)は、リチウムを吸蔵可能な炭素
製であり、黒鉛、ハードカーボン、アモルファスカーボ
ン、フラーレン、カーボンナノチューブ、DLC、ある
いはこの混合物等を使用できる。The current collector (20) is an electrode for taking out an electric current to the outside of the battery or taking an electric current into the battery from the outside during charging and discharging. The current collector (20) may be any conductive metal foil, and for example, aluminum, copper, stainless steel, gold, tungsten, molybdenum, or the like can be used. The first layer (21), which is a carbon negative electrode layer, is a negative electrode member that occludes or releases lithium during charge and discharge. The carbon negative electrode (21) is made of carbon capable of occluding lithium, and graphite, hard carbon, amorphous carbon, fullerene, carbon nanotube, DLC, or a mixture thereof can be used.
【0028】負極第二の層(22)は、リチウムイオン伝
導性を有し、かつ、リチウムイオンを吸蔵、及び放出す
ることのできる材料からなる。このような材料として、
前述したSi、Ge、In、Sn、Pb、及びこれらの
酸化物の他に、酸化ホウ素、酸化リン、酸化アルミニウ
ム、及びこれらの複合酸化物等が挙げられ、これらを単
独、または1種以上を組み合わせて用いることができ
る。またこれらにハロゲン化リチウム、リチウムカルコ
ゲナイド等を添加しリチウムイオン伝導性を高くしても
よい。またこの材料は前述した通りアモルファスである
ことが好ましい。アモルファス材料を用いることによ
り、リチウムのドープ・脱ドープが起こる電位を結晶に
比べて卑にすることができ、この結果、電池の動作電圧
を高くすることができる。また負極第二の層(22)は、
前述した通りCVD法、蒸着法、またはスパッタリング
法により形成されることが好ましい。これらの方法を用
いることにより、アモルファス層を均一な膜質、及び膜
厚で形成することができる。さらに、負極第二の層(2
2)にB、P、As、Sbをドープして抵抗率を下げる
ことも可能である。The negative electrode second layer (22) is made of a material having lithium ion conductivity and capable of inserting and extracting lithium ions. As such a material,
In addition to Si, Ge, In, Sn, Pb, and their oxides described above, boron oxide, phosphorus oxide, aluminum oxide, and their composite oxides are listed. These may be used alone or in combination of one or more. It can be used in combination. Further, lithium halide, lithium chalcogenide, or the like may be added to these to increase the lithium ion conductivity. Further, this material is preferably amorphous as described above. By using an amorphous material, the potential at which lithium is doped or dedoped can be made lower than that of crystals, and as a result, the operating voltage of the battery can be increased. The negative electrode second layer (22) is
As described above, it is preferably formed by the CVD method, the vapor deposition method, or the sputtering method. By using these methods, the amorphous layer can be formed with uniform film quality and film thickness. In addition, the negative electrode second layer (2
It is also possible to dope B), P, As, and Sb into 2) to lower the resistivity.
【0029】負極第三の層(23)はリチウム、またはリ
チウムを含有する化合物からなる。このような材料とし
て、金属リチウム、リチウム合金、窒化リチウム、Li
3-xMxN(M=Co、Ni、Cu)、及びこれらの混合
物が挙げられ、これらを単独または1種以上を組み合わ
せて用いることができる。またこの材料はアモルファス
であることが好ましい。アモルファス材料を用いること
により、電解液との副反応を抑制し、材料中に含まれる
リチウムを効率よく不可逆容量の補填に利用することが
できる。この結果、電池の初回充放電効率が向上し、エ
ネルギー密度を高くすることができる。負極第三の層
(23)は、CVD法、蒸着法、またはスパッタリング法
により形成されることが好ましい。これらの方法を用い
ることにより、アモルファス層を均一な膜質、及び膜厚
で形成することができる。The third layer (23) of the negative electrode is made of lithium or a compound containing lithium. Such materials include metallic lithium, lithium alloys, lithium nitride, Li
3-x M x N (M = Co, Ni, Cu), and mixtures thereof, can be used in combination singly or one or more. Also, this material is preferably amorphous. By using an amorphous material, side reactions with the electrolytic solution can be suppressed, and lithium contained in the material can be efficiently used for filling the irreversible capacity. As a result, the initial charge / discharge efficiency of the battery is improved and the energy density can be increased. The negative electrode third layer (23) is preferably formed by a CVD method, a vapor deposition method, or a sputtering method. By using these methods, the amorphous layer can be formed with uniform film quality and film thickness.
【0030】図3は、本発明の第3実施形態に係る多層
構造を有するリチウム二次電池の負極を例示する縦断面
図であり、図4は、本発明の第4実施形態に係る多層構
造を有するリチウム二次電池の負極を例示する縦断面図
である。図3の実施形態は図1に示す第1実施形態に類
似し、集電体(20)の両面に炭素負極第一の層(21)と
負極第二の層(22)を順次積層した構造である。図4の
実施形態は図2に示す第2実施形態に類似し、集電体
(20)の両面に炭素負極第一の層(21)、負極第二の層
(22)及び負極第三の層(23)を順次積層した構造であ
る。FIG. 3 is a vertical cross-sectional view illustrating a negative electrode of a lithium secondary battery having a multi-layer structure according to the third embodiment of the present invention, and FIG. 4 is a multi-layer structure according to the fourth embodiment of the present invention. FIG. 3 is a vertical cross-sectional view illustrating a negative electrode of a lithium secondary battery having a. The embodiment of FIG. 3 is similar to the first embodiment shown in FIG. 1, and has a structure in which a carbon negative electrode first layer (21) and a negative electrode second layer (22) are sequentially laminated on both surfaces of a current collector (20). Is. The embodiment of FIG. 4 is similar to the second embodiment shown in FIG. 2, and has a carbon negative electrode first layer (21), a negative electrode second layer (22) and a negative electrode third layer on both sides of the current collector (20). It has a structure in which layers (23) are sequentially laminated.
【0031】図5は、本発明の第5実施形態に係る多層
構造を有するリチウム二次電池の負極を例示する縦断面
図である。この実施形態では、集電体(20)上に炭素負
極第一の層(21)が形成され、その上に飽和リチウム層
(24)が形成されている。飽和リチウム層(24)中に
は、満充電状態において飽和量を超えるリチウムを含有
する領域、すなわち、理論組成よりも過剰なリチウムを
含有する領域が形成される。リチウムの飽和量(理論組
成)とは、ある物質とリチウムが化合物を生成する際、
その化合物に含まれ得るリチウムの最大値をいう。なお
この飽和リチウム層(24)は第1〜第4実施形態の負極
第二の層(22)の相当し、本発明に含まれる。各種リチ
ウム合金におけるリチウム飽和量は、例えば、「電子材
料」(2001年4月号、第40巻第4号、78ページ、2001年
4月1日発行、発行所:株式会社工業調査会)に記載が
ある。以下に示す値は、リチウム合金組成の上限値であ
り、この組成比を超えたリチウムを含有する合金は、通
常の合金の製造方法では得ることができない。FIG. 5 is a vertical cross-sectional view illustrating a negative electrode of a lithium secondary battery having a multilayer structure according to a fifth embodiment of the present invention. In this embodiment, the carbon negative electrode first layer (21) is formed on the current collector (20), and the saturated lithium layer (24) is formed thereon. In the saturated lithium layer (24), a region containing lithium in excess of the saturation amount in a fully charged state, that is, a region containing lithium in excess of the theoretical composition is formed. The saturation amount (theoretical composition) of lithium means that when a substance and lithium form a compound,
The maximum value of lithium that can be contained in the compound. The saturated lithium layer (24) corresponds to the negative electrode second layer (22) of the first to fourth embodiments and is included in the present invention. The amount of lithium saturation in various lithium alloys can be found, for example, in “Electronic Materials” (April 2001, Vol. 40, No. 4, p. 78, issued April 1, 2001, published by the Industrial Research Board). There is a description. The values shown below are the upper limits of the lithium alloy composition, and alloys containing lithium in excess of this composition ratio cannot be obtained by ordinary alloy production methods.
【0032】LiSi合金:Li4Si LiAl合金:LiAl LiSn合金:Li4.4Sn LiCd合金:Li3Cd LiSb合金:Li3Sb LiPb合金:Li4.4Pb LiZn合金:LiZn LiBi合金:Li3BiLiSi alloy: Li 4 Si LiAl alloy: LiAl LiSn alloy: Li 4.4 Sn LiCd alloy: Li 3 Cd LiSb alloy: Li 3 Sb LiPb alloy: Li 4.4 Pb LiZn alloy: LiZn LiBi alloy: Li 3 Bi
【0033】図5の負極は、このような飽和量のリチウ
ムを含有するリチウム化合物を含む飽和リチウム層(2
4)を持つ。このようなリチウム化合物は、例えば、図
2に示した構造の負極に対し、所定条件下、充放電を行
うことにより得られる。なお、図5では炭素負極第一の
層(21)上に一様な飽和リチウム層(24)が形成された
例を示したが、この飽和リチウム層(24)表面にリチウ
ムからなる層が形成された構造等も本発明に含まれる。
本発明において電解液は、前述した通り、第1非水溶媒
と第2非水溶媒との混合体積比が、2:8から6:4の
範囲内である混合溶媒にリチウム塩を0.5mol/lか
ら1.5mol/lの範囲内で溶解させてなる非水電解液
とする。第1非水溶媒の比率が2を下回ると、混合溶媒
の比誘電率が低く、リチウム塩の解離が不十分となり、
電解液のイオン伝導性が不足するため、電池の内部抵抗
が上昇し、電池の性能を十分に引き出すことができな
い。第1非水溶媒の比率が6を上回ると、電解液の粘性
が高くなり、電解液の第一の層までの浸透が困難であ
り、電極界面抵抗が上昇して、電池の性能を充分に引き
出すことができない。また、リチウム塩の濃度が前記範
囲外となると、電解液の電気伝導性が不足するため、電
池の内部抵抗が上昇し、電池の性能を十分に引き出すこ
とができない。第1非水溶媒と第2非水溶媒の混合体積
比の特に好ましい範囲は、3:7から5:5であり、リ
チウム塩濃度の特に好ましい範囲は、0.8mol/lか
ら1.2mol/lである。The negative electrode of FIG. 5 has a saturated lithium layer (2) containing a lithium compound containing such a saturated amount of lithium.
4) have. Such a lithium compound is obtained, for example, by charging and discharging the negative electrode having the structure shown in FIG. 2 under predetermined conditions. Although FIG. 5 shows an example in which a uniform saturated lithium layer (24) is formed on the carbon negative electrode first layer (21), a layer made of lithium is formed on the surface of the saturated lithium layer (24). The formed structure and the like are also included in the present invention.
In the present invention, as described above, the electrolytic solution contains 0.5 mol / mol of lithium salt in the mixed solvent in which the mixing volume ratio of the first non-aqueous solvent and the second non-aqueous solvent is within the range of 2: 8 to 6: 4. The non-aqueous electrolytic solution is prepared by dissolving it within the range of 1 to 1.5 mol / l. If the ratio of the first non-aqueous solvent is less than 2, the relative permittivity of the mixed solvent is low, the dissociation of the lithium salt becomes insufficient,
Since the ionic conductivity of the electrolytic solution is insufficient, the internal resistance of the battery rises, and the battery performance cannot be fully obtained. When the ratio of the first non-aqueous solvent exceeds 6, the viscosity of the electrolytic solution becomes high, it is difficult for the electrolytic solution to permeate into the first layer, the electrode interface resistance increases, and the battery performance is sufficiently improved. I can't withdraw. On the other hand, if the concentration of the lithium salt is outside the above range, the electric conductivity of the electrolytic solution will be insufficient, and the internal resistance of the battery will increase, so that the battery performance cannot be fully obtained. The particularly preferable range of the mixing volume ratio of the first non-aqueous solvent and the second non-aqueous solvent is 3: 7 to 5: 5, and the particularly preferable range of the lithium salt concentration is 0.8 mol / l to 1.2 mol / l. is there.
【0034】本発明の第1非水溶媒としては、エチレン
カーボネート、プロピレンカーボネート、及びブチレン
カーボネート等が例示でき、第2非水溶媒としては、
1、2−ジメトキシエタン、ジメチルカーボネート、メ
チルエチルカーボネート、及びジエチルカーボネート等
が例示できる。本発明においてリチウム塩としては、L
iBF4、LiPF6、LiCl、LiBr、LiI、L
iN(CF3SO2)2、及びLiN(C2F5SO2)2等
が例示できる。Examples of the first non-aqueous solvent of the present invention include ethylene carbonate, propylene carbonate and butylene carbonate, and the second non-aqueous solvent includes
Examples include 1,2-dimethoxyethane, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate. In the present invention, the lithium salt is L
iBF 4 , LiPF 6 , LiCl, LiBr, LiI, L
Examples include iN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 .
【0035】本発明において正極は、LixMO2(M
は、少なくとも1つの遷移金属)であるリチウム含有複
合酸化物、例えば、LixCoO2、LixNiO2、Li
xMn2O4、LixMnO3、LixNiyC1-yO2等を、
カーボンブラック等の導電性物質、ポリフッ化ビニリデ
ン等の結着剤をN−メチル−2−ピロリドン等の溶剤と
分散混練したものをアルミニウム箔等の基体上に塗布し
たものを用いることができる。本発明においてセパレー
タは、ポリプロピレン、ポリエチレン等のポリオレフィ
ン、フッ素樹脂等の多孔性フィルムを用いることができ
る。In the present invention, the positive electrode is Li x MO 2 (M
Is at least one transition metal) lithium-containing composite oxide, such as Li x CoO 2 , Li x NiO 2 , Li
x Mn 2 O 4 , Li x MnO 3 , Li x Ni y C 1-y O 2, etc.
A conductive material such as carbon black, a binder such as polyvinylidene fluoride, and the like, which are dispersed and kneaded with a solvent such as N-methyl-2-pyrrolidone, and coated on a substrate such as an aluminum foil can be used. In the present invention, the separator may be a polyolefin such as polypropylene or polyethylene, or a porous film such as a fluororesin.
【0036】図6は、本発明の二次電池の構造を例示す
る断面図である。図中、正極は、正極活物質を含有する
層(12)を正極集電体(11)上に成膜して成り、負極
は、負極活物質を含有する層(13)を負極集電体(14)
上に成膜して成る。これらの正極と負極は、電解質水溶
液の電解液(30)、及び前記電解液(30)の中の多孔質
セパレータ(50)を介して対向配置してある。多孔質セ
パレータ(50)は、負極活物質を含有する層(13)に対
して略平行に配置されている。FIG. 6 is a sectional view illustrating the structure of the secondary battery of the present invention. In the figure, the positive electrode is formed by forming a layer (12) containing a positive electrode active material on a positive electrode current collector (11), and a negative electrode is a layer (13) containing a negative electrode active material. (14)
It is formed by forming a film on top. The positive electrode and the negative electrode are arranged so as to face each other with the electrolytic solution (30) of the aqueous electrolyte solution and the porous separator (50) in the electrolytic solution (30) interposed therebetween. The porous separator (50) is arranged substantially parallel to the layer (13) containing the negative electrode active material.
【0037】〔実施例〕以下に具体例を挙げ、本発明を
さらに詳しく説明するが、発明の趣旨を越えない限り、
本発明は実施例に限定されるものではない。EXAMPLES The present invention will be described in more detail with reference to the following specific examples. However, as long as the gist of the invention is not exceeded,
The invention is not limited to the examples.
【0038】[正極シート作製例]Li1.1Mn2O4と
導電付与剤とポリフッ化ビニリデンをN−メチル−2−
ピロリドンを用いて分散混練して得られたスラリーを、
正極集電体(11)として機能する厚み20μmのアルミニ
ウム箔上に塗布・乾燥して正極シートを作製した。正極
シートには、乾燥後、プレス機を用いて圧縮をした。[Example of Positive Electrode Sheet] Li 1.1 Mn 2 O 4 , a conductivity-imparting agent, and polyvinylidene fluoride were added to N-methyl-2-
The slurry obtained by dispersing and kneading using pyrrolidone,
A 20 μm-thick aluminum foil that functions as a positive electrode current collector (11) was coated and dried to prepare a positive electrode sheet. The positive electrode sheet was dried and then compressed using a pressing machine.
【0039】[負極第一の層作製例]黒鉛粉末と導電付
与剤とポリフッ化ビニリデンをN−メチル−2−ピロリ
ドンを用いて分散混練して得られたスラリーを、負極集
電体(20)として機能する厚み10μmの銅箔上に塗布・
乾燥して、負極第一層を作製した。負極第一層は、乾燥
後、プレス機を用いて圧縮した。[Example of Preparation of First Layer of Negative Electrode] A slurry obtained by dispersing and kneading graphite powder, a conductivity-imparting agent, and polyvinylidene fluoride with N-methyl-2-pyrrolidone was used as a negative electrode current collector (20). Applied on a copper foil with a thickness of 10 μm that functions as
It dried and produced the negative electrode 1st layer. The negative electrode first layer was dried and then compressed using a pressing machine.
【0040】[負極第二の層作製例−1]負極第一の層
作製例にて作製した負極第一の層上に、負極第二の層と
してSi層を真空蒸着法を用いて形成し、負極集電体、
負極第一の層、及び負極第二の層の順に積層された構造
を有する負極シートを作製した。[Negative Electrode Second Layer Preparation Example-1] A negative electrode second layer was formed on the negative electrode first layer prepared in the negative electrode first layer preparation example by a vacuum evaporation method. , Negative electrode current collector,
A negative electrode sheet having a structure in which a negative electrode first layer and a negative electrode second layer were laminated in this order was produced.
【0041】[負極第二の層作製例−2]負極第一の層
作製例にて作製した負極第一の層上に、負極第二の層と
してSi層をスパッタリング法を用いて形成し、負極集
電体、負極第一の層、及び負極第二の層の順に積層され
た構造を有する負極シートを作製した。[Negative Electrode Second Layer Preparation Example-2] A negative electrode second layer is formed on the negative electrode first layer prepared in the negative electrode first layer preparation example by a sputtering method, A negative electrode sheet having a structure in which a negative electrode current collector, a negative electrode first layer, and a negative electrode second layer were laminated in this order was produced.
【0042】[負極第二の層作製例−3]負極第一の層
作製例にて作製した負極第一の層上に、負極第二の層と
して酸化ホウ素層を真空蒸着法を用いて形成し、負極集
電体、負極第一の層、及び負極第二の層の順に積層され
た構造を有する負極シートを作製した。[Negative electrode second layer preparation example-3] A boron oxide layer is formed as a negative electrode second layer on the negative electrode first layer prepared in the negative electrode first layer preparation example by using a vacuum deposition method. Then, a negative electrode sheet having a structure in which the negative electrode current collector, the negative electrode first layer, and the negative electrode second layer were laminated in this order was produced.
【0043】[負極第三の層作製例−1]負極第二の層
作製例−1にて作製した負極シートの負極第二の層上
に、負極第三の層として金属リチウム層を真空蒸着法を
用いて形成し、負極集電体、負極第一の層、負極第二の
層、及び負極第三の層の順に積層された構造を有する負
極シートを作製した。[Negative Electrode Third Layer Preparation Example-1] On the negative electrode second layer of the negative electrode sheet prepared in the negative electrode second layer Preparation Example-1, a metallic lithium layer was vacuum-deposited as a negative electrode third layer. A negative electrode sheet having a structure in which a negative electrode current collector, a negative electrode first layer, a negative electrode second layer, and a negative electrode third layer were laminated in this order was manufactured.
【0044】[負極第三の層作製例−2]負極第二の層
作製例−2にて作製した負極シートの負極第二の層上
に、負極第三の層として金属リチウム層を真空蒸着法を
用いて形成し、負極集電体、負極第一の層、負極第二の
層、及び負極第三の層の順に積層された構造を有する負
極シートを作製した。[Negative Electrode Third Layer Preparation Example-2] On the negative electrode second layer of the negative electrode sheet prepared in Negative Electrode Second Layer Preparation Example-2, a metallic lithium layer was vacuum-deposited as a negative electrode third layer. A negative electrode sheet having a structure in which a negative electrode current collector, a negative electrode first layer, a negative electrode second layer, and a negative electrode third layer were laminated in this order was manufactured.
【0045】[負極第三の層作製例−3]負極第二の層
作製例−3にて作製した負極シートの負極第二の層上
に、負極第三の層として金属リチウム層を真空蒸着法を
用いて形成し、負極集電体、負極第一の層、負極第二の
層、及び負極第三の層の順に積層された構造を有する負
極シートを作製した。[Negative Electrode Third Layer Preparation Example-3] A negative electrode third layer was formed on the negative electrode second layer of the negative electrode second layer Preparation Example-3 by vacuum deposition of a metallic lithium layer as a negative electrode third layer. A negative electrode sheet having a structure in which a negative electrode current collector, a negative electrode first layer, a negative electrode second layer, and a negative electrode third layer were laminated in this order was manufactured.
【0046】[負極比較例シート作製例−1]黒鉛粉末
とSi粉末と導電付与剤とポリフッ化ビニリデンをN−
メチル−2−ピロリドンを用いて分散混練して得られた
スラリーを、負極集電体(20)として機能する厚み10μ
mの銅箔上に塗布・乾燥し、図7に示す、負極集電体
(20)上に、Si粉末(26)が分散して成る第一の層(2
1)を被覆した負極比較例シートを作製した。負極比較
例シートは、乾燥後、プレス機を用いて圧縮した。[Negative Electrode Comparative Example Sheet Preparation Example-1] Graphite powder, Si powder, conductivity-imparting agent, and polyvinylidene fluoride were added N-
The slurry obtained by dispersing and kneading with methyl-2-pyrrolidone has a thickness of 10 μm which functions as a negative electrode current collector (20).
The first layer (2) formed by coating and drying on a copper foil of m, and Si powder (26) dispersed on the negative electrode current collector (20) shown in FIG.
A negative electrode comparative sheet coated with 1) was prepared. The negative electrode comparative example sheet was dried and then compressed using a pressing machine.
【0047】[負極比較例シート作製例−2]負極第一
の層作製例にて作製した負極第一の層上に金属リチウム
層を真空蒸着法を用いて形成し、負極集電体、負極第一
の層、及び金属リチウム層の順に積層された構造を有す
る負極比較例シートを作製した。[Negative Electrode Comparative Example Sheet Preparation Example-2] A negative electrode current collector and a negative electrode were prepared by forming a metallic lithium layer on the negative electrode first layer prepared in the negative electrode first layer preparation example using a vacuum deposition method. A negative electrode comparative example sheet having a structure in which the first layer and the metallic lithium layer were laminated in this order was produced.
【0048】[実施例1]負極第二の層作製例−1にて
作製した負極シートと、ポリプロピレン不織布よりなる
セパレータと、正極シート作製例にて作製した正極シー
トとを積層し、図6に例示する構成の電池を作製した。
電解液は、エチレンカーボネートとジエチルカーボネー
トの混合溶媒(混合体積比=3:7)にLiPF6を1.0
mol/l溶解させたものを用いた。Example 1 Negative Electrode Second Layer Preparation Example 1 A negative electrode sheet prepared in Example 1, a separator made of polypropylene nonwoven fabric, and the positive electrode sheet prepared in the positive electrode sheet preparation example were laminated, and FIG. A battery having the exemplified constitution was produced.
The electrolytic solution was prepared by adding LiPF 6 to 1.0 in a mixed solvent of ethylene carbonate and diethyl carbonate (mixing volume ratio = 3: 7).
What was dissolved in mol / l was used.
【0049】[実施例2]負極に負極第二の層作製例−
2にて作製した負極シートを用いた以外は、実施例1と
同様の電池を作製した。[Example 2] Example of preparation of second layer of negative electrode on negative electrode-
A battery was prepared in the same manner as in Example 1 except that the negative electrode sheet prepared in 2 was used.
【0050】[実施例3]負極に負極第二の層作製例−
3にて作製した負極シートを用いた以外は、実施例1と
同様の電池を作製した。[Example 3] Example of preparation of second layer of negative electrode on negative electrode-
A battery was prepared in the same manner as in Example 1 except that the negative electrode sheet prepared in 3 was used.
【0051】[実施例4]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
2:8)にLiPF6を1.0mol/l溶解させたものを
用いた以外は、実施例1と同様の電池を作製した。[Example 4] A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was produced in the same manner as in Example 1 except that LiPF 6 was dissolved in 1.0 mol / l in 2: 8).
【0052】[実施例5]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
6:4)にLiPF6を1.0mol/l溶解させたものを
用いた以外は、実施例1と同様の電池を作製した。[Embodiment 5] A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was prepared in the same manner as in Example 1 except that LiPF 6 was dissolved in 6: 4) in an amount of 1.0 mol / l.
【0053】[実施例6]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
3:7)にLiPF6を0.5mol/l溶解させたものを
用いた以外は、実施例1と同様の電池を作製した。Example 6 A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was prepared in the same manner as in Example 1, except that 0.5 mol / l of LiPF 6 was dissolved in 3: 7).
【0054】[実施例7]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
3:7)にLiPF6を1.5mol/l溶解させたものを
用いた以外は、実施例1と同様の電池を作製した。Example 7 A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was produced in the same manner as in Example 1 except that 1.5 mol / l of LiPF 6 was dissolved in 3: 7).
【0055】[実施例8]電解液にエチレンカーボネー
トとジメチルカーボネートの混合溶媒(混合体積比=
3:7)にLiPF6を1.0mol/l溶解させたものを
用いた以外は、実施例1と同様の電池を作製した。[Embodiment 8] A mixed solvent of ethylene carbonate and dimethyl carbonate (mixed volume ratio =
A battery was produced in the same manner as in Example 1 except that LiPF 6 was dissolved in 1.0 mol / l in 3: 7).
【0056】[実施例9]電解液にエチレンカーボネー
トとジエチルカーボネートとメチルエチルカーボネート
の混合溶媒(混合体積比=3:5:2)にLiPF6を
1.0mol/l溶解させたものを用いた以外は、実施例
1と同様の電池を作製した。[Embodiment 9] LiPF 6 was added to the electrolytic solution as a mixed solvent of ethylene carbonate, diethyl carbonate and methyl ethyl carbonate (mixing volume ratio = 3: 5: 2).
A battery was prepared in the same manner as in Example 1 except that the solution of 1.0 mol / l was used.
【0057】[実施例10]電解液にエチレンカーボネー
トとジエチルカーボネートとメチルエチルカーボネート
の混合溶媒(混合体積比=3:2:5)にLiPF6を
1.0mol/l溶解させたものを用いた以外は、実施例
1と同様の電池を作製した。[Embodiment 10] LiPF 6 was added to an electrolytic solution in a mixed solvent of ethylene carbonate, diethyl carbonate and methyl ethyl carbonate (mixing volume ratio = 3: 2: 5).
A battery was prepared in the same manner as in Example 1 except that the solution of 1.0 mol / l was used.
【0058】[実施例11]電解液にエチレンカーボネー
トとプロピレンカーボネートとジエチルカーボネートの
混合溶媒(混合体積比=30:5:65)にLiPF6
を1.0mol/l溶解させたものを用いた以外は、実施
例1と同様の電池を作製した。[Embodiment 11] A mixed solvent of ethylene carbonate, propylene carbonate and diethyl carbonate (mixing volume ratio = 30: 5: 65) was used as an electrolytic solution and LiPF 6 was used.
A battery was prepared in the same manner as in Example 1 except that a solution of 1.0 mol / l was used.
【0059】[実施例12]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
3:7)にLiN(C2F5SO2)2を1.0mol/l溶
解させたものを用いた以外は、実施例1と同様の電池を
作製した。[Embodiment 12] A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was prepared in the same manner as in Example 1 except that LiN (C 2 F 5 SO 2 ) 2 was dissolved in 1.0 mol / l in 3: 7).
【0060】[実施例13]負極に負極第三の層作製例−
1にて作製した負極シートを用いた以外は、実施例1と
同様の電池を作製した。[Example 13] Example of preparation of third layer of negative electrode on negative electrode-
A battery was produced in the same manner as in Example 1 except that the negative electrode sheet produced in 1 was used.
【0061】[実施例14]負極に負極第三の層作製例−
2にて作製した負極シートを用いた以外は、実施例13と
同様の電池を作製した。[Example 14] Example of preparation of third layer of negative electrode on negative electrode-
A battery was produced in the same manner as in Example 13 except that the negative electrode sheet produced in 2 was used.
【0062】[実施例15]負極に負極第三の層作製例−
3にて作製した負極シートを用いた以外は、実施例13と
同様の電池を作製した。[Example 15] Example of preparation of third layer of negative electrode on negative electrode-
A battery was produced in the same manner as in Example 13 except that the negative electrode sheet produced in 3 was used.
【0063】[実施例16]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
2:8)にLiPF6を1.0mol/l溶解させたものを
用いた以外は、実施例13と同様の電池を作製した。[Example 16] A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was prepared in the same manner as in Example 13 except that LiPF 6 dissolved in 1.0 mol / l in 2: 8) was used.
【0064】[実施例17]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
6:4)にLiPF6を1.0mol/l溶解させたものを
用いた以外は、実施例13と同様の電池を作製した。Example 17 A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was prepared in the same manner as in Example 13 except that LiPF 6 was dissolved in 1.0 mol / l in 6: 4).
【0065】[実施例18]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
3:7)にLiPF6を0.5mol/l溶解させたものを
用いた以外は、実施例13と同様の電池を作製した。Example 18 A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was produced in the same manner as in Example 13 except that 0.5 mol / l of LiPF 6 dissolved in 3: 7) was used.
【0066】[実施例19]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
3:7)にLiPF6を1.5mol/l溶解させたものを
用いた以外は、実施例13と同様の電池を作製した。Example 19 A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was prepared in the same manner as in Example 13 except that 1.5 mol / l of LiPF 6 was dissolved in 3: 7).
【0067】[実施例20]電解液にエチレンカーボネー
トとジメチルカーボネートの混合溶媒(混合体積比=
3:7)にLiPF6を1.0mol/l溶解させたものを
用いた以外は、実施例13と同様の電池を作製した。Example 20 A mixed solvent of ethylene carbonate and dimethyl carbonate (mixed volume ratio =
A battery was produced in the same manner as in Example 13 except that LiPF 6 was dissolved in 1.0 mol / l in 3: 7).
【0068】[実施例21]電解液にエチレンカーボネー
トとジエチルカーボネートとメチルエチルカーボネート
の混合溶媒(混合体積比=3:5:2)にLiPF6を
1.0mol/l溶解させたものを用いた以外は、実施例1
3と同様の電池を作製した。[Example 21] LiPF 6 was added to an electrolytic solution in a mixed solvent of ethylene carbonate, diethyl carbonate and methyl ethyl carbonate (mixing volume ratio = 3: 5: 2).
Example 1 except that a solution of 1.0 mol / l was used.
A battery similar to that of 3 was manufactured.
【0069】[実施例22]電解液にエチレンカーボネー
トとジエチルカーボネートとメチルエチルカーボネート
の混合溶媒(混合体積比=3:2:5)にLiPF6を
1.0mol/l溶解させたものを用いた以外は、実施例1
3と同様の電池を作製した。[Embodiment 22] LiPF 6 was added to a mixed solvent of ethylene carbonate, diethyl carbonate and methyl ethyl carbonate (mixing volume ratio = 3: 2: 5) as an electrolytic solution.
Example 1 except that a solution of 1.0 mol / l was used.
A battery similar to that of 3 was manufactured.
【0070】[実施例23]電解液にエチレンカーボネー
トとプロピレンカーボネートとジエチルカーボネートの
混合溶媒(混合体積比=30:5:65)にLiPF6
を1.0mol/l溶解させたものを用いた以外は、実施
例13と同様の電池を作製した。[Example 23] LiPF 6 was added to an electrolytic solution in a mixed solvent of ethylene carbonate, propylene carbonate and diethyl carbonate (mixing volume ratio = 30: 5: 65).
A battery was prepared in the same manner as in Example 13 except that the solution of 1.0 mol / l was used.
【0071】[実施例24]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
3:7)にLiN(C2F5SO2)2を1.0mol/l溶
解させたものを用いた以外は、実施例13と同様の電池を
作製した。Example 24 A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was prepared in the same manner as in Example 13 except that LiN (C 2 F 5 SO 2 ) 2 dissolved in 1.03 mol / l was used in 3: 7).
【0072】[比較例1]負極に負極第一の層作製例に
て作製した負極シートを用いた以外は、実施例1と同様
の電池を作製した。[Comparative Example 1] A battery was manufactured in the same manner as in Example 1 except that the negative electrode sheet prepared in the first negative electrode layer preparation example was used as the negative electrode.
【0073】[比較例2]負極に負極比較例シート作製
例−1にて作製した負極シートを用いた以外は、実施例
1と同様の電池を作製した。[Comparative Example 2] A battery was prepared in the same manner as in Example 1 except that the negative electrode sheet prepared in the negative electrode comparative example sheet preparation example-1 was used as the negative electrode.
【0074】[比較例3]負極に負極比較例シート作製
例−2にて作製した負極シートを用いた以外は、実施例
1と同様の電池を作製した。[Comparative Example 3] A battery was prepared in the same manner as in Example 1 except that the negative electrode sheet prepared in the negative electrode comparative example sheet preparation example-2 was used as the negative electrode.
【0075】[比較例4]電解液にエチレンカーボネー
トとプロピレンカーボネートの混合溶媒(混合体積比=
1:1)にLiPF6を1.0mol/l溶解させたも
のを用いた以外は、実施例1と同様の電池を作製した。[Comparative Example 4] A mixed solvent of ethylene carbonate and propylene carbonate (mixed volume ratio =
A battery was prepared in the same manner as in Example 1 except that LiPF 6 was dissolved in 1.0 mol / l in 1: 1).
【0076】[比較例5]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
1:9)にLiPF6を1.0mol/l溶解させたも
のを用いた以外は、実施例1と同様の電池を作製した。[Comparative Example 5] A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was prepared in the same manner as in Example 1 except that LiPF 6 was dissolved in 1.0 mol / l in 1: 9).
【0077】[比較例6]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
7:3)にLi PF6を1.0mol/l溶解させたも
のを用いた以外は、実施例1と同様の電池を作製した。[Comparative Example 6] A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery similar to that of Example 1 was prepared, except that LiPF 6 was dissolved in 1.0 mol / l in 7: 3).
【0078】[比較例7]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
3:7)にLiPF6を0.4mol/l溶解させたも
のを用いた以外は、実施例1と同様の電池を作製した。[Comparative Example 7] A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was produced in the same manner as in Example 1 except that 0.4 mol / l of LiPF 6 was dissolved in 3: 7).
【0079】[比較例8]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
3:7)にLiPF6を1.6mol/l溶解させたも
のを用いた以外は、実施例1と同様の電池を作製した。[Comparative Example 8] A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was prepared in the same manner as in Example 1 except that 1.6 mol / l of LiPF 6 was dissolved in 3: 7).
【0080】[比較例9]電解液にエチレンカーボネー
トとプロピレンカーボネートの混合溶媒(混合体積比=
1:1)にLiPF6を1.0mol/l溶解させたも
のを用いた以外は、実施例13と同様の電池を作製した。[Comparative Example 9] A mixed solvent of ethylene carbonate and propylene carbonate (mixed volume ratio =
A battery was prepared in the same manner as in Example 13 except that 1: 1) LiPF 6 dissolved in 1.0 mol / l was used.
【0081】[比較例10]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
1:9)にLiPF6を1.0mol/l溶解させたも
のを用いた以外は、実施例13と同様の電池を作製した。[Comparative Example 10] A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was prepared in the same manner as in Example 13, except that 1.0 mol / l of LiPF 6 was dissolved in 1: 9).
【0082】[比較例11]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
7:3)にLiPF6を1.0mol/l溶解させたも
のを用いた以外は、実施例13と同様の電池を作製した。[Comparative Example 11] A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was prepared in the same manner as in Example 13 except that LiPF 6 was dissolved in 1.0 mol / l in 7: 3).
【0083】[比較例12]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
3:7)にLiPF6を0.4mol/l溶解させたも
のを用いた以外は、実施例13と同様の電池を作製した。[Comparative Example 12] A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was prepared in the same manner as in Example 13 except that 0.4 mol / l of LiPF 6 was dissolved in 3: 7).
【0084】[比較例13]電解液にエチレンカーボネー
トとジエチルカーボネートの混合溶媒(混合体積比=
3:7)にLiPF6を1.6mol/l溶解させたも
のを用いた以外は、実施例13と同様の電池を作製した。[Comparative Example 13] A mixed solvent of ethylene carbonate and diethyl carbonate (mixed volume ratio =
A battery was produced in the same manner as in Example 13, except that 1.6 mol / l of LiPF 6 was dissolved in 3: 7).
【0085】実施例1から24、及び比較例1から13の電
池に対して、試験電圧3.0から4.3Vの範囲にて充放電サ
イクル試験を行った。初回充放電結果、及び300サイク
ル経過後の初回放電容量に対する容量維持率を、実施例
については表1に、又比較例に関しては表2にそれぞれ
示す。A charge / discharge cycle test was conducted on the batteries of Examples 1 to 24 and Comparative Examples 1 to 13 at a test voltage of 3.0 to 4.3V. The results of the first charge and discharge and the capacity retention ratio with respect to the first discharge capacity after the lapse of 300 cycles are shown in Table 1 for Examples and Table 2 for Comparative Examples.
【0086】[0086]
【表1】 [Table 1]
【0087】[0087]
【表2】 [Table 2]
【0088】負極に炭素材料のみを用いた比較例1の充
放電効率が93.2%であるのに対して、Si、または酸化
ホウ素よりなる負極第二の層を形成した実施例1から3
の充放電効率も93%前後であり、炭素材料のみと遜色な
いことが明らかとなった。さらに金属リチウムよりなる
負極第三の層を形成した実施例13から15では、98.2から
98.9%と高く、負極第三の層による負極の不可逆容量の
補填が効率よく進行していることが明らかとなった。一
方、炭素材料中にSi粉末を分散させた比較例2、及び
炭素材料表面に直接金属リチウム層を形成した比較例3
では、充放電効率が各々、60.2%、及び72.6%であり、
炭素材料中に結晶質材料を分散させた構成、及び炭素材
料上にリチウム層を形成させた構成では、充放電効率の
向上は図れないことが明らかとなった。さらに300サイ
クル後の容量維持率も実施例1から3、及び13から15で
は、初回放電容量に対して88.6から90.3%程度の容量を
維持するのに対して、比較例2、及び3では、各々32.6
%、及び18.5%程度しかなく、比較例のような構成で
は、サイクル特性の向上も図れないことが明らかとなっ
た。While the charge and discharge efficiency of Comparative Example 1 using only the carbon material for the negative electrode was 93.2%, Examples 1 to 3 in which the second layer of the negative electrode made of Si or boron oxide was formed.
The charging / discharging efficiency of was about 93%, which was comparable to the carbon material alone. Furthermore, in Examples 13 to 15 in which a negative electrode third layer made of metallic lithium was formed, from 98.2
As high as 98.9%, it was revealed that the irreversible capacity of the negative electrode was compensated efficiently by the third layer of the negative electrode. On the other hand, Comparative Example 2 in which Si powder is dispersed in a carbon material, and Comparative Example 3 in which a metallic lithium layer is directly formed on the surface of the carbon material.
Then, the charge and discharge efficiencies are 60.2% and 72.6%,
It has been clarified that the charge / discharge efficiency cannot be improved in the configuration in which the crystalline material is dispersed in the carbon material and the configuration in which the lithium layer is formed on the carbon material. Further, the capacity retention rate after 300 cycles is about 88.6 to 90.3% with respect to the initial discharge capacity in Examples 1 to 3 and 13 to 15, while in Comparative Examples 2 and 3, 32.6 each
% And 18.5%, it was revealed that the cycle characteristics could not be improved with the structure of the comparative example.
【0089】比較例2では、Si粉末の充放電に伴う膨
張収縮により、負極層の電気的接触が失われ、抵抗が増
大したこと、比較例3では、炭素材料上に形成されたリ
チウムが炭素表面の活性なサイトと反応して、高抵抗の
被膜を形成したことが要因と考えられる。実施例1から
3、及び13から15の結果より、本発明の負極構成を有す
る二次電池は、容量、充放電効率が高く、かつ、安定し
たサイクル特性を有することが示された。In Comparative Example 2, the electrical contact of the negative electrode layer was lost due to the expansion and contraction of the Si powder during charging and discharging, and the resistance increased. In Comparative Example 3, the lithium formed on the carbon material changed to carbon. It is considered that this is due to the formation of a high-resistance film by reacting with the active sites on the surface. From the results of Examples 1 to 3 and 13 to 15, it was shown that the secondary battery having the negative electrode configuration of the present invention has high capacity and charge / discharge efficiency, and has stable cycle characteristics.
【0090】電解液溶媒の組成、混合体積比、及びリチ
ウム塩濃度を本発明の範囲内とした実施例1から24 で
は、初回充放電効率が92 から99%程度と高く、かつ300
サイクル後の容量維持率も85から90%程度維持してい
るのに対して、本発明の範囲外の溶媒組成、混合体積
比、及びリチウム塩濃度にて実施した比較例4から13で
は、リチウム塩濃度が1.6 mol/lの場合(比較例
8、及び13)には、80%程度の充放電効率があるが、そ
の他の比較例では、25 から48 %程度と効率は悪い。さ
らに、サイクル特性は、比較例8、及び13を除いて、30
0 サイクルまで容量を保持できず、比較例8、及び13
においても容量維持率は40 %前後と低い。本発明の範
囲外の溶媒組成、混合体積比、及びリチウム塩濃度で
は、電極界面抵抗、または電池の内部抵抗が上昇し、電
池の性能を十分に引き出すことができないことが要因と
考えられる。実施例1から24の結果より、本発明の電解
液組成、混合体積比、及びリチウム塩濃度が本発明の負
極構成に対して有効な範囲であることが示された。In Examples 1 to 24 in which the composition of the electrolytic solution solvent, the mixing volume ratio, and the lithium salt concentration were within the scope of the present invention, the initial charge / discharge efficiency was as high as about 92 to 99%, and 300
The capacity retention rate after cycling was also maintained at about 85 to 90%, while in Comparative Examples 4 to 13 carried out with a solvent composition, a mixing volume ratio, and a lithium salt concentration outside the scope of the present invention, lithium was used. When the salt concentration is 1.6 mol / l (Comparative Examples 8 and 13), the charge / discharge efficiency is about 80%, but in the other Comparative Examples, the efficiency is poor at about 25 to 48%. Further, the cycle characteristics were 30 except for Comparative Examples 8 and 13.
The capacity could not be retained up to 0 cycles, and Comparative Examples 8 and 13
The capacity retention rate is low at around 40%. It is considered that when the solvent composition, the mixing volume ratio, and the lithium salt concentration are out of the range of the present invention, the electrode interfacial resistance or the internal resistance of the battery increases, and the battery performance cannot be sufficiently brought out. From the results of Examples 1 to 24, it was shown that the electrolytic solution composition, the mixing volume ratio, and the lithium salt concentration of the present invention are within the effective range for the negative electrode constitution of the present invention.
【0091】[0091]
【発明の効果】以上説明したように本発明によれば、負
極の構成として、炭素を主成分とする第一の層と、リチ
ウムイオン伝導性を有し、かつ、リチウムイオンを吸
蔵、及び放出することのできる材料を主成分とする第二
の層とを含む多層構造、または、前記第二の層、さら
に、リチウム、またはリチウム含有化合物よりなる第三
の層とを含み、かつ第一の層と第三の層とが直接接触し
ないように配置された多層構造を採用し、かつ、電解液
の溶媒組成、混合体積比、及びリチウム塩濃度を前記負
極構成に最適化することにより、高い充放電効率と容量
の両立が可能であり、かつ、良好なサイクル特性が実現
可能である。As described above, according to the present invention, as the constitution of the negative electrode, the first layer containing carbon as the main component, and having lithium ion conductivity, and absorbing and releasing lithium ions. A multilayer structure containing a second layer containing a material that can be a main component, or the second layer, further containing a third layer of lithium or a lithium-containing compound, and the first By adopting a multilayer structure in which the layer and the third layer are arranged so as not to come into direct contact, and by optimizing the solvent composition of the electrolytic solution, the mixing volume ratio, and the lithium salt concentration in the negative electrode configuration, Both charge and discharge efficiency and capacity can be achieved at the same time, and good cycle characteristics can be realized.
【図1】本発明の第1実施形態に係るリチウム二次電池
の負極を例示する縦断面図。FIG. 1 is a vertical cross-sectional view illustrating a negative electrode of a lithium secondary battery according to a first embodiment of the present invention.
【図2】本発明の第2実施形態に係るリチウム二次電池
の負極を例示する縦断面図。FIG. 2 is a vertical cross-sectional view illustrating a negative electrode of a lithium secondary battery according to a second embodiment of the present invention.
【図3】本発明の第3実施形態に係るリチウム二次電池
の負極を例示する縦断面図。FIG. 3 is a vertical cross-sectional view illustrating a negative electrode of a lithium secondary battery according to a third embodiment of the present invention.
【図4】本発明の第4実施形態に係るリチウム二次電池
の負極を例示する縦断面図。FIG. 4 is a vertical cross-sectional view illustrating a negative electrode of a lithium secondary battery according to a fourth embodiment of the present invention.
【図5】本発明の第5実施形態に係るリチウム二次電池
の負極を例示する縦断面図。FIG. 5 is a vertical cross-sectional view illustrating a negative electrode of a lithium secondary battery according to a fifth embodiment of the present invention.
【図6】本発明の二次電池の構造を例示する断面図。FIG. 6 is a cross-sectional view illustrating the structure of a secondary battery of the present invention.
【図7】比較例の負極の断面構造の一例を示す図。FIG. 7 is a diagram showing an example of a cross-sectional structure of a negative electrode of a comparative example.
20 負極集電体 21 第一の層(炭素負極層) 22 第二の層 23 第三の層 24 飽和リチウム層 20 Negative electrode current collector 21 First layer (carbon negative electrode layer) 22 Second layer 23 Third Layer 24 Saturated lithium layer
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/56 H01M 4/56 4/58 4/58 (72)発明者 宮地 麻里子 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 山崎 伊紀子 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 宇津木 功二 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 入山 次郎 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 三浦 環 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 森 満博 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 河合 英正 東京都港区芝五丁目7番1号 日本電気株 式会社内 Fターム(参考) 5H029 AJ03 AJ05 AK03 AL01 AL02 AL06 AL07 AL08 AL11 AL12 AM03 AM04 AM05 AM07 CJ24 DJ18 EJ12 HJ07 HJ10 HJ20 5H050 AA07 AA08 BA16 BA17 CA08 CA09 CB01 CB02 CB07 CB08 CB11 CB12 DA13 DA18 EA24 FA20 GA24 HA07 HA10 HA19Front page continuation (51) Int.Cl. 7 identification code FI theme code (reference) H01M 4/56 H01M 4/56 4/58 4/58 (72) Inventor Mariko Miyaji 5-7 Shiba, Minato-ku, Tokyo No. 1 Inside the NEC Corporation (72) Inventor Ikiko Yamazaki 5-7 Shiba, Minato-ku, Tokyo No. 1 Inside the NEC Corporation (72) Kouji Utsuki 5-7-1 Shiba, Minato-ku, Tokyo No. Nippon Electric Co., Ltd. (72) Inventor Jiro Iriyama 5-7-1, Shiba, Minato-ku, Tokyo Nippon Electric Co., Ltd. (72) Inventor Tamaki Miura 5-7-1, Shiba, Minato-ku, Tokyo Japan Electric company (72) Inventor Morihiro Mori 5-7-1, Shiba, Minato-ku, Tokyo Nippon Electric Co., Ltd. In-house (72) Hidemasa Kawai 5-7-1, Shiba, Minato-ku, Tokyo NEC Corporation In-company F-term (reference) 5H029 AJ03 AJ05 AK03 AL01 AL02 AL06 AL07 AL08 AL11 AL12 AM03 AM04 AM05 AM07 CJ24 DJ18 EJ12 HJ07 HJ10 HJ20 5H050 AA07 AA08 BA16 BA17 CA08 CA09 CB01 CB02 CB07 CB0 8 CB11 CB12 DA13 DA18 EA24 FA20 GA24 HA07 HA10 HA19
Claims (9)
極と、 (ii)炭素を主成分とする第一の層(21)と、リチウム
イオン伝導性を有しかつリチウムイオンを吸蔵、及び放
出することのできる材料を主成分とする第二の層(22)
とを含む多層構造を有する負極、及び (iii)比誘電率30以上、かつ、粘度1cP以上の第1の
非水溶媒と、比誘電率10以下、かつ、粘度1cP未満の
第2の非水溶媒を2:8から6:4の体積比で含む混合
溶媒であって、リチウム塩を0.5〜1.5mol/lの
範囲内で溶解させた非水電解液とを含んで成ることを特
徴とするリチウム二次電池。1. A positive electrode containing (i) a lithium-containing composite oxide, (ii) a first layer (21) containing carbon as a main component, having lithium ion conductivity and occluding lithium ions, and Second layer based on materials that can be released (22)
And (iii) a first non-aqueous solvent having a relative permittivity of 30 or more and a viscosity of 1 cP or more, and a second non-aqueous solvent having a relative permittivity of 10 or less and a viscosity of less than 1 cP. A mixed solvent containing a solvent in a volume ratio of 2: 8 to 6: 4, comprising a non-aqueous electrolyte solution in which a lithium salt is dissolved in a range of 0.5 to 1.5 mol / l. Characteristic lithium secondary battery.
極と、 (ii)炭素を主成分とする第一の層(21)と、リチウム
イオン伝導性を有しかつリチウムイオンを吸蔵、及び放
出することのできる材料を主成分とする第二の層(2
2)、及びリチウムを含有しかつ前記第一の層(21)と
直接接触しない第三の層(23)とを含む多層構造を有す
る負極、及び (iii)比誘電率30以上、かつ、粘度1cP以上の第1の
非水溶媒と、比誘電率10以下、かつ、粘度1cP未満の
第2の非水溶媒を2:8から6:4の体積比で含む混合
溶媒であって、リチウム塩を0.5〜1.5mol/lの
範囲内で溶解させた非水電解液とを含んで成ることを特
徴とするリチウム二次電池。2. A positive electrode containing (i) a lithium-containing composite oxide, (ii) a first layer (21) containing carbon as a main component, having lithium ion conductivity and occluding lithium ions, and A second layer (2) based on a material that can be released
2) and a negative electrode having a multi-layer structure containing lithium and a third layer (23) which does not come into direct contact with the first layer (21), and (iii) a relative dielectric constant of 30 or more and a viscosity. A mixed solvent containing a first non-aqueous solvent of 1 cP or more and a second non-aqueous solvent having a relative dielectric constant of 10 or less and a viscosity of less than 1 cP in a volume ratio of 2: 8 to 6: 4, which is a lithium salt. And a non-aqueous electrolyte solution dissolved in the range of 0.5 to 1.5 mol / l.
n、Pb、及びこれらの酸化物からなる群から選択され
る1または2以上の成分を含む請求項1又は2に記載の
リチウム二次電池。3. The second layer (22) comprises Si, Ge, Sn, I
The lithium secondary battery according to claim 1 or 2, containing one or more components selected from the group consisting of n, Pb, and oxides thereof.
またはスパッタリング法により形成されたアモルファス
構造を有する請求項1から3までのいずれかに記載のリ
チウム二次電池。4. The second layer (22) comprises a vapor deposition method, a CVD method,
Alternatively, the lithium secondary battery according to any one of claims 1 to 3, which has an amorphous structure formed by a sputtering method.
ム合金、及びリチウム窒化物からなる群から選択される
1または2以上の材料を含む請求項2から4までのいず
れかに記載のリチウム二次電池。5. The method according to claim 2, wherein the third layer (23) comprises one or more materials selected from the group consisting of metallic lithium, lithium alloys, and lithium nitride. Lithium secondary battery.
またはスパッタリング法により形成されたアモルファス
構造を有する請求項2から5までのいずれかに記載のリ
チウム二次電池。6. The third layer (23) comprises a vapor deposition method, a CVD method,
Alternatively, the lithium secondary battery according to any one of claims 2 to 5, which has an amorphous structure formed by a sputtering method.
ート、プロピレンカーボネート、及びブチレンカーボネ
ートから成る群から選択される1または2以上の非水溶
媒であり、第2の非水溶媒が、1、2−ジメトキシエタ
ン、ジメチルカーボネート、メチルエチルカーボネー
ト、及びジエチルカーボネートから成る群から選択され
る1または2以上の非水溶媒である請求項1から6まで
のいずれかに記載のリチウム二次電池。7. The first non-aqueous solvent is one or more non-aqueous solvents selected from the group consisting of ethylene carbonate, propylene carbonate, and butylene carbonate, and the second non-aqueous solvent is 1, The lithium secondary battery according to any one of claims 1 to 6, which is one or more non-aqueous solvent selected from the group consisting of 2-dimethoxyethane, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate.
LiCl、LiBr、LiI、LiN(CF3S
O2)2、及びLiN(C2F5SO2)2から成る群から選
択される1または2以上のリチウム塩である請求項1か
ら7までのいずれかに記載のリチウム二次電池。8. The lithium salt is LiBF 4 , LiPF 6 ,
LiCl, LiBr, LiI, LiN (CF 3 S
The lithium secondary battery according to claim 1, which is one or more lithium salts selected from the group consisting of O 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 .
極と、(ii)炭素を主成分とする第一の層(21)と、リ
チウムイオン伝導性を有しかつリチウムイオンを吸蔵、
及び放出することのできる材料を主成分とする第二の層
(22)、及びリチウムを含有しかつ前記第一の層(21)
と直接接触しない第三の層(23)とを含む多層構造を有
する負極、及び(iii)非水電解液とを含んで成るリチ
ウム二次電池の負極の充電及び/又は放電を行い、第三
の層に含まれるリチウムを第二の層にドープし、リチウ
ムを含む第二の層を生成することを特徴とするリチウム
二次電池の生成方法。9. A positive electrode containing (i) a lithium-containing composite oxide, (ii) a first layer (21) containing carbon as a main component, having lithium ion conductivity and occluding lithium ions,
And a second layer (22) containing a material capable of being released as a main component, and the first layer (21) containing lithium and
Charging and / or discharging the negative electrode of a lithium secondary battery comprising a negative electrode having a multilayer structure including a third layer (23) not in direct contact with (iii) a non-aqueous electrolyte, and A method for producing a lithium secondary battery, which comprises doping the second layer with lithium contained in the layer to produce a second layer containing lithium.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002107921A JP4400019B2 (en) | 2002-04-10 | 2002-04-10 | Non-aqueous electrolyte battery and method for producing the same |
CNB038036150A CN1324729C (en) | 2002-04-10 | 2003-04-09 | Nonaqueous electrolyte cell |
US10/503,956 US7118831B2 (en) | 2002-04-10 | 2003-04-09 | Nonaqueous electrolyte cell |
PCT/JP2003/004484 WO2003085756A1 (en) | 2002-04-10 | 2003-04-09 | Nonaqueous electrolyte cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002107921A JP4400019B2 (en) | 2002-04-10 | 2002-04-10 | Non-aqueous electrolyte battery and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003303618A true JP2003303618A (en) | 2003-10-24 |
JP4400019B2 JP4400019B2 (en) | 2010-01-20 |
Family
ID=28786485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002107921A Expired - Fee Related JP4400019B2 (en) | 2002-04-10 | 2002-04-10 | Non-aqueous electrolyte battery and method for producing the same |
Country Status (4)
Country | Link |
---|---|
US (1) | US7118831B2 (en) |
JP (1) | JP4400019B2 (en) |
CN (1) | CN1324729C (en) |
WO (1) | WO2003085756A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005101549A1 (en) * | 2004-04-01 | 2005-10-27 | Sumitomo Electric Industries Ltd. | Negative electrode member for secondary lithium battery and process for producing the same |
JP2007207439A (en) * | 2006-01-30 | 2007-08-16 | Sony Corp | Negative electrode for secondary battery and secondary battery using the same |
JP2009530794A (en) * | 2006-03-22 | 2009-08-27 | サイオン パワー コーポレイション | Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries |
JP2012204155A (en) * | 2011-03-25 | 2012-10-22 | Seiko Instruments Inc | Nonaqueous electrolyte secondary battery |
WO2013035361A1 (en) * | 2011-09-09 | 2013-03-14 | 株式会社リコー | Nonaqueous electrolyte secondary battery |
JP2013058499A (en) * | 2006-03-22 | 2013-03-28 | Sion Power Corp | Electrode protection in aqueous and non-aqueous electrochemical cells including rechargeable lithium battery |
US8617748B2 (en) | 2006-12-04 | 2013-12-31 | Sion Power Corporation | Separation of electrolytes |
US8623557B2 (en) | 1999-11-23 | 2014-01-07 | Sion Power Corporation | Lithium anodes for electrochemical cells |
JP2015069712A (en) * | 2013-09-26 | 2015-04-13 | 凸版印刷株式会社 | Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery |
US9005311B2 (en) | 2012-11-02 | 2015-04-14 | Sion Power Corporation | Electrode active surface pretreatment |
WO2015166622A1 (en) * | 2014-04-28 | 2015-11-05 | ソニー株式会社 | Battery, negative electrode, battery pack, electronic device, electric vehicle, electricity storage device and electric power system |
WO2019163967A1 (en) * | 2018-02-23 | 2019-08-29 | 国立研究開発法人産業技術総合研究所 | Multilayer body and method for producing same |
JP2019528547A (en) * | 2017-07-13 | 2019-10-10 | エルジー・ケム・リミテッド | Negative electrode including electrode protective layer and lithium secondary battery using the same |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100367542C (en) * | 2002-05-24 | 2008-02-06 | 日本电气株式会社 | Negative electrode for secondary cell and secondary cell using the same |
US20060051282A1 (en) * | 2004-09-03 | 2006-03-09 | The Hong Kong University Of Science And Technology | Synthesis of carbon nanostructures |
US7465519B2 (en) * | 2004-09-03 | 2008-12-16 | The Hongkong University Of Science And Technology | Lithium-ion battery incorporating carbon nanostructure materials |
CA2535064A1 (en) * | 2006-02-01 | 2007-08-01 | Hydro Quebec | Multi-layer material, production and use thereof as an electrode |
CN101882696B (en) * | 2009-05-05 | 2014-11-26 | 中国科学院物理研究所 | Nonaqueous electrolyte material of fluorosulfonylimide lithium and application thereof |
KR20110035906A (en) * | 2009-09-30 | 2011-04-06 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Capacitor |
CN102569891A (en) * | 2010-12-31 | 2012-07-11 | 张家港市国泰华荣化工新材料有限公司 | Energy storage battery of non-aqueous electrolyte solution of fluorine-containing lithium sulfonyl imide |
CN107078277B (en) | 2014-09-09 | 2022-07-22 | 赛昂能源有限公司 | Protective layer in lithium-ion electrochemical cells and related electrodes and methods |
WO2016187510A1 (en) | 2015-05-20 | 2016-11-24 | Sion Power Corporation | Protective layers for electrodes |
JP7049269B2 (en) | 2016-05-20 | 2022-04-06 | シオン・パワー・コーポレーション | Protective layer for electrodes and electrochemical battery |
DE102017208218A1 (en) | 2017-05-16 | 2018-11-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | A method of making an alkali metal coated substrate by means of a mediator layer and a mediator layer, and a coated substrate |
CN110710024B (en) * | 2017-06-09 | 2024-04-16 | 罗伯特·博世有限公司 | Battery cell having anode protection layer |
EP3780169A4 (en) * | 2018-03-30 | 2021-06-02 | Panasonic Corporation | Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
US11056704B2 (en) * | 2018-07-25 | 2021-07-06 | GRU Energy Lab Inc. | Hybrid active material structures for electrochemical cells |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3530544B2 (en) * | 1992-09-14 | 2004-05-24 | キヤノン株式会社 | Rechargeable battery |
JPH07296798A (en) | 1994-04-22 | 1995-11-10 | Mitsubishi Cable Ind Ltd | Carbon negative electrode, and li secondary battery |
JPH07326342A (en) * | 1994-05-30 | 1995-12-12 | Mitsubishi Cable Ind Ltd | Negative electrode for lithium secondary battery, and lithium secondary battery using the same |
JPH08102333A (en) * | 1994-09-30 | 1996-04-16 | Shin Kobe Electric Mach Co Ltd | Nonaqueous electrolytic secondary battery |
JPH10112307A (en) | 1996-10-07 | 1998-04-28 | Haibaru:Kk | Nonaqueous electrolyte secondary battery |
JP2000021392A (en) | 1998-07-06 | 2000-01-21 | Fuji Photo Film Co Ltd | Nonaqueous secondary battery |
JP2001015172A (en) * | 1999-04-26 | 2001-01-19 | Fuji Photo Film Co Ltd | Nonaqueous secondary battery and its manufacture |
JP3913438B2 (en) | 2000-04-03 | 2007-05-09 | 三洋電機株式会社 | Lithium secondary battery |
JP3535454B2 (en) | 2000-06-30 | 2004-06-07 | 株式会社東芝 | Non-aqueous electrolyte secondary battery |
JP4910235B2 (en) | 2001-02-09 | 2012-04-04 | パナソニック株式会社 | Lithium secondary battery and manufacturing method thereof |
JP3520921B2 (en) * | 2001-03-27 | 2004-04-19 | 日本電気株式会社 | Negative electrode for secondary battery and secondary battery using the same |
JP4415241B2 (en) * | 2001-07-31 | 2010-02-17 | 日本電気株式会社 | Negative electrode for secondary battery, secondary battery using the same, and method for producing negative electrode |
JP3982230B2 (en) | 2001-10-18 | 2007-09-26 | 日本電気株式会社 | Secondary battery negative electrode and secondary battery using the same |
-
2002
- 2002-04-10 JP JP2002107921A patent/JP4400019B2/en not_active Expired - Fee Related
-
2003
- 2003-04-09 US US10/503,956 patent/US7118831B2/en not_active Expired - Lifetime
- 2003-04-09 WO PCT/JP2003/004484 patent/WO2003085756A1/en active Application Filing
- 2003-04-09 CN CNB038036150A patent/CN1324729C/en not_active Expired - Lifetime
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8728661B2 (en) | 1999-11-23 | 2014-05-20 | Sion Power Corporation | Lithium anodes for electrochemical cells |
US10069146B2 (en) | 1999-11-23 | 2018-09-04 | Sion Power Corporation | Lithium anodes for electrochemical cells |
US9653735B2 (en) | 1999-11-23 | 2017-05-16 | Sion Power Corporation | Lithium anodes for electrochemical cells |
US9397342B2 (en) | 1999-11-23 | 2016-07-19 | Sion Power Corporation | Lithium anodes for electrochemical cells |
US9065149B2 (en) | 1999-11-23 | 2015-06-23 | Sion Power Corporation | Lithium anodes for electrochemical cells |
US8623557B2 (en) | 1999-11-23 | 2014-01-07 | Sion Power Corporation | Lithium anodes for electrochemical cells |
US7416815B2 (en) | 2004-04-01 | 2008-08-26 | Sumitomo Electric Industries, Ltd. | Negative electrode member for lithium battery and process for producing the same |
WO2005101549A1 (en) * | 2004-04-01 | 2005-10-27 | Sumitomo Electric Industries Ltd. | Negative electrode member for secondary lithium battery and process for producing the same |
JP2007207439A (en) * | 2006-01-30 | 2007-08-16 | Sony Corp | Negative electrode for secondary battery and secondary battery using the same |
US8802286B2 (en) | 2006-01-30 | 2014-08-12 | Sony Corporation | Negative electrode for use with secondary battery and secondary battery using such negative electrode |
JP2013058499A (en) * | 2006-03-22 | 2013-03-28 | Sion Power Corp | Electrode protection in aqueous and non-aqueous electrochemical cells including rechargeable lithium battery |
JP2009530794A (en) * | 2006-03-22 | 2009-08-27 | サイオン パワー コーポレイション | Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries |
US11575124B2 (en) | 2006-03-22 | 2023-02-07 | Sion Power Corporation | Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable, lithium batteries |
US8603680B2 (en) | 2006-03-22 | 2013-12-10 | Sion Power Corporation | Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries |
US9040201B2 (en) | 2006-03-22 | 2015-05-26 | Sion Power Corporation | Electrode protection in both aqueous and non-aqueous electrochemical cells, including rechargeable lithium batteries |
US8617748B2 (en) | 2006-12-04 | 2013-12-31 | Sion Power Corporation | Separation of electrolytes |
US10629954B2 (en) | 2006-12-04 | 2020-04-21 | Sion Power Corporation | Separation of electrolytes |
US11316204B2 (en) | 2006-12-04 | 2022-04-26 | Sion Power Corporation | Separation of electrolytes |
JP2012204155A (en) * | 2011-03-25 | 2012-10-22 | Seiko Instruments Inc | Nonaqueous electrolyte secondary battery |
WO2013035361A1 (en) * | 2011-09-09 | 2013-03-14 | 株式会社リコー | Nonaqueous electrolyte secondary battery |
US9005311B2 (en) | 2012-11-02 | 2015-04-14 | Sion Power Corporation | Electrode active surface pretreatment |
JP2015069712A (en) * | 2013-09-26 | 2015-04-13 | 凸版印刷株式会社 | Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery |
WO2015166622A1 (en) * | 2014-04-28 | 2015-11-05 | ソニー株式会社 | Battery, negative electrode, battery pack, electronic device, electric vehicle, electricity storage device and electric power system |
JP2019528547A (en) * | 2017-07-13 | 2019-10-10 | エルジー・ケム・リミテッド | Negative electrode including electrode protective layer and lithium secondary battery using the same |
US11108039B2 (en) | 2017-07-13 | 2021-08-31 | Lg Chem, Ltd. | Negative electrode containing electrode protective layer and lithium secondary battery comprising the same |
WO2019163967A1 (en) * | 2018-02-23 | 2019-08-29 | 国立研究開発法人産業技術総合研究所 | Multilayer body and method for producing same |
US11916227B2 (en) | 2018-02-23 | 2024-02-27 | National Institute Of Advanced Industrial Science And Technology | Multilayer body and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
US20050089757A1 (en) | 2005-04-28 |
US7118831B2 (en) | 2006-10-10 |
CN1324729C (en) | 2007-07-04 |
WO2003085756A1 (en) | 2003-10-16 |
JP4400019B2 (en) | 2010-01-20 |
CN1630956A (en) | 2005-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4400019B2 (en) | Non-aqueous electrolyte battery and method for producing the same | |
EP3580171B1 (en) | Passivation of lithium metal by two-dimensional materials for rechargeable batteries | |
JP4415241B2 (en) | Negative electrode for secondary battery, secondary battery using the same, and method for producing negative electrode | |
JP4337875B2 (en) | Positive electrode mixture, non-aqueous electrolyte secondary battery, and manufacturing method thereof | |
CN109216766B (en) | Electrolyte system for inhibiting or minimizing metal contamination and dendrite formation in lithium ion batteries | |
JP5867395B2 (en) | Secondary battery | |
JPWO2012056765A1 (en) | Secondary battery and manufacturing method thereof | |
US10903491B2 (en) | Rechargeable lithium-ion battery chemistry with fast charge capability and high energy density | |
JP2011233245A (en) | Lithium secondary battery | |
JP2011096638A (en) | Secondary battery | |
JP2003217574A (en) | Negative electrode for secondary battery and secondary battery using the same | |
JP5832729B2 (en) | Secondary battery electrode and non-aqueous electrolyte battery | |
JP5867397B2 (en) | Secondary battery | |
JP5920217B2 (en) | Secondary battery | |
WO2012029625A1 (en) | Secondary battery | |
JP5231505B2 (en) | Lithium ion secondary battery | |
EP4024503A1 (en) | Lithium secondary battery | |
JP2023508273A (en) | Positive electrode for secondary battery, method for producing the same, and lithium secondary battery including the same | |
JPWO2012049889A1 (en) | Secondary battery and electrolyte for secondary battery used therefor | |
US20210104740A1 (en) | Methods of prelithiating silicon-containing electrodes | |
JP4078864B2 (en) | Negative electrode for secondary battery and secondary battery | |
JPWO2012029645A1 (en) | Secondary battery and electrolyte for secondary battery used therefor | |
JP5942677B2 (en) | Electrolytic solution and lithium secondary battery including the same | |
US20230065750A1 (en) | Battery and method for producing same | |
JP2012054240A (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050318 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090416 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091006 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4400019 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091019 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121106 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131106 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |