JP2003303586A - Electrode for secondary battery - Google Patents

Electrode for secondary battery

Info

Publication number
JP2003303586A
JP2003303586A JP2002108257A JP2002108257A JP2003303586A JP 2003303586 A JP2003303586 A JP 2003303586A JP 2002108257 A JP2002108257 A JP 2002108257A JP 2002108257 A JP2002108257 A JP 2002108257A JP 2003303586 A JP2003303586 A JP 2003303586A
Authority
JP
Japan
Prior art keywords
electrode
thin film
secondary battery
columnar
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002108257A
Other languages
Japanese (ja)
Other versions
JP3896025B2 (en
Inventor
Koichi Nishimura
康一 西村
Hisaki Tarui
久樹 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002108257A priority Critical patent/JP3896025B2/en
Publication of JP2003303586A publication Critical patent/JP2003303586A/en
Application granted granted Critical
Publication of JP3896025B2 publication Critical patent/JP3896025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a secondary battery capable of inhibiting the generation of wrinkle on a collector upon charging and discharging, and having superior charging and discharging cycle characteristic and high volumetric energy density. <P>SOLUTION: In this electrode for the secondary battery having a thin film composed of an active material and accumulated on the collector 1, a plurality of pole-shaped projecting parts 3 of thick film thickness are formed on the periphery of the thin film, and a cross-sectional area in the film face direction of a bottom part of one of the pole-shaped projecting parts 3 is 2×10<SP>-7</SP>m<SP>2</SP>or less, preferably, 7×10<SP>-10</SP>m<SP>2</SP>or more. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
などの二次電池用電極に関するものである。
TECHNICAL FIELD The present invention relates to an electrode for a secondary battery such as a lithium secondary battery.

【0002】[0002]

【従来の技術】CVD法及びスパッタリング法などによ
り集電体上にシリコン系の薄膜を形成したリチウム二次
電池用電極が知られている。このような電極では、充放
電を繰り返すことにより、集電体にしわが発生し、電極
の見かけの厚みが大きくなり、このため体積エネルギー
密度が低下することが知られている。
2. Description of the Related Art An electrode for a lithium secondary battery in which a silicon-based thin film is formed on a current collector by a CVD method or a sputtering method is known. It is known that in such an electrode, repeated charging and discharging causes wrinkles in the current collector and an increase in the apparent thickness of the electrode, which reduces the volume energy density.

【0003】充放電サイクルにより集電体にしわが発生
する原因は、以下のように考えられる。すなわち、例え
ば活物質がシリコンである場合、充電時にシリコンがリ
チウムと反応して化合物を形成する。シリコンがリチウ
ムと完全に反応した状態では、充電前に比べその体積は
約4倍に増加する。この体積膨張により、集電体とシリ
コン薄膜との界面に大きな応力が発生するため、この応
力により集電体にしわが形成される。
The cause of wrinkling of the current collector due to charge / discharge cycles is considered as follows. That is, for example, when the active material is silicon, silicon reacts with lithium during charging to form a compound. When silicon reacts completely with lithium, its volume increases about four times as much as before charging. Due to this volume expansion, a large stress is generated at the interface between the current collector and the silicon thin film, and this stress forms wrinkles in the current collector.

【0004】[0004]

【発明が解決しようとする課題】このような集電体にお
けるしわの発生を防止する方法として、薄膜に複数の柱
状凸部を形成し、この柱状凸部の周囲に空隙を確保する
ことにより、体積膨張をこの空隙で収容し、集電体に大
きな応力がかからないようにする方法が考えられる。し
かしながら、集電体にかかる応力を低減し、しわの発生
を抑制するために、柱状凸部の大きさやその周囲の空隙
の大きさについて具体的には検討されていなかった。
As a method of preventing wrinkles from occurring in such a current collector, a plurality of columnar protrusions are formed on a thin film, and voids are secured around the columnar protrusions. A method is conceivable in which volume expansion is accommodated in this void so that large stress is not applied to the current collector. However, in order to reduce the stress applied to the current collector and suppress the generation of wrinkles, the size of the columnar convex portion and the size of the void around the convex portion have not been specifically examined.

【0005】本発明の目的は、充放電による集電体のし
わの発生を抑制することができ、充放電サイクル特性に
優れ、かつ体積エネルギー密度が高い二次電池用電極を
提供することにある。
An object of the present invention is to provide an electrode for a secondary battery, which can suppress the generation of wrinkles of a current collector due to charge / discharge, has excellent charge / discharge cycle characteristics, and has a high volume energy density. .

【0006】[0006]

【課題を解決するための手段】本発明は、集電体上に活
物質からなる薄膜が堆積して形成された二次電池用電極
であり、薄膜にその周囲より膜厚が厚い複数の柱状凸部
が形成されており、該柱状凸部1つの底部における膜面
方向の断面積が2×10-72以下であることを特徴と
している。
The present invention is an electrode for a secondary battery formed by depositing a thin film of an active material on a current collector, and a plurality of pillars having a film thickness thicker than the periphery of the thin film. The protrusion is formed, and the cross-sectional area in the film surface direction at the bottom of one of the columnar protrusions is 2 × 10 −7 m 2 or less.

【0007】本発明において、柱状凸部1つの底部にお
ける膜面方向の断面積は、好ましくは、7×10-102
以上である。柱状凸部1つの底部における膜面方向の断
面積を、上記範囲に設定することにより、充放電による
集電体のしわの発生を抑制することができ、かつ大きな
充放電容量を確保して、体積エネルギー密度を高めるこ
とができる。
In the present invention, the cross-sectional area in the film surface direction at the bottom of one columnar convex is preferably 7 × 10 -10 m 2.
That is all. By setting the cross-sectional area in the film surface direction at the bottom of one of the columnar protrusions to the above range, it is possible to suppress the generation of wrinkles in the current collector due to charge / discharge, and to secure a large charge / discharge capacity, The volume energy density can be increased.

【0008】本発明においては、柱状凸部の底部におけ
る膜面方向の断面積が、電極面積(柱状凸部の領域と柱
状凸部以外の領域の合計の面積)に対して占める面積比
率S1が、0.2≦S1≦0.8の範囲内であることが
好ましい。このような範囲内とすることにより、充放電
による集電体のしわの発生を抑制することができ、かつ
高い体積エネルギー密度を得ることができる。
In the present invention, the area ratio S1 of the cross-sectional area in the film surface direction at the bottom of the columnar convex portion to the electrode area (total area of the region of the columnar convex portion and the region other than the columnar convex portion) is , 0.2 ≦ S1 ≦ 0.8 is preferable. By setting the content within such a range, it is possible to suppress the generation of wrinkles in the current collector due to charge and discharge, and it is possible to obtain a high volume energy density.

【0009】また、本発明においては、柱状凸部の領域
における薄膜の平均膜厚をβ、柱状凸部以外の領域にお
ける薄膜の平均膜厚をαとしたときの比α/βが、0≦
α/β≦0.6の範囲内であることことが好ましい。こ
のような範囲内とすることにより、充放電による集電体
のしわの発生を抑制することができ、かつ高い体積エネ
ルギー密度を得ることができる。
In the present invention, when the average film thickness of the thin film in the region of the columnar convex portion is β and the average film thickness of the thin film in the region other than the columnar convex portion is α, the ratio α / β is 0 ≦.
It is preferable that α / β ≦ 0.6. By setting the content within such a range, it is possible to suppress the generation of wrinkles in the current collector due to charge and discharge, and it is possible to obtain a high volume energy density.

【0010】本発明における薄膜の柱状凸部の形成方法
は、特に限定されるものではない。例えば、薄膜の膨張
収縮により薄膜の厚み方向に形成された切れ目によっ
て、柱状凸部が形成されてもよい。また、集電体の上に
所定の孔径を有するメッシュを配置し、そのメッシュを
通して集電体上に活物質を堆積させることにより、柱状
凸部を形成してもよい。
The method of forming the columnar convex portions of the thin film in the present invention is not particularly limited. For example, the columnar protrusion may be formed by a cut formed in the thickness direction of the thin film due to the expansion and contraction of the thin film. Alternatively, a columnar convex portion may be formed by disposing a mesh having a predetermined pore size on the current collector and depositing an active material on the current collector through the mesh.

【0011】また、薄膜を堆積させる際のリフトオフプ
ロセスにより柱状凸部を形成してもよい。すなわち、柱
状凸部以外の領域に、アルカリ溶液等で溶解するパター
ンを形成しておき、その上に薄膜を形成した後、アルカ
リ溶液等を用いてパターンを除去することにより、柱状
凸部を形成してもよい。
The columnar protrusions may be formed by a lift-off process when depositing a thin film. That is, a pattern that dissolves in an alkaline solution or the like is formed in a region other than the columnar convex portion, a thin film is formed on the pattern, and then the pattern is removed using an alkaline solution or the like to form the columnar convex portion. You may.

【0012】また、予め活物質の薄膜を集電体上に均一
に形成しておき、この薄膜の上に柱状凸部を形成しても
よい。本発明において、薄膜を堆積させる方法は、特に
限定されるものではなく、例えば、CVD法、スパッタ
リング法、真空蒸着法等を用いることができる。
Alternatively, a thin film of the active material may be uniformly formed on the current collector in advance, and the columnar protrusions may be formed on the thin film. In the present invention, the method of depositing the thin film is not particularly limited, and for example, a CVD method, a sputtering method, a vacuum vapor deposition method or the like can be used.

【0013】本発明において、柱状凸部の領域における
薄膜の平均膜厚βは、1〜20μm程度であることが好
ましい。本発明において用いる活物質は、特に限定され
るものではなく、充放電によりその体積が膨張収縮する
活物質に対して本発明は有効に用いることができる。リ
チウム二次電池の場合、リチウムと合金化することによ
りリチウムを吸蔵する物質が好ましく用いられる。例え
ば、シリコン、ゲルマニウム、錫、鉛、亜鉛、マグネシ
ウム、ナトリウム、アルミニウム、カリウム、インジウ
ムなどが挙げられる。これらの中でも、特にシリコンが
その高い理論容量から好ましく用いられる。シリコン
は、非晶質シリコンまたは微結晶シリコンであることが
好ましい。
In the present invention, the average film thickness β of the thin film in the region of the columnar convex portion is preferably about 1 to 20 μm. The active material used in the present invention is not particularly limited, and the present invention can be effectively used for an active material whose volume expands and contracts due to charge and discharge. In the case of a lithium secondary battery, a substance that occludes lithium by alloying with lithium is preferably used. Examples thereof include silicon, germanium, tin, lead, zinc, magnesium, sodium, aluminum, potassium and indium. Among these, silicon is particularly preferably used because of its high theoretical capacity. The silicon is preferably amorphous silicon or microcrystalline silicon.

【0014】本発明においては、集電体の両面に活物質
からなる薄膜が堆積して形成されていてもよい。
In the present invention, a thin film made of an active material may be deposited on both surfaces of the current collector.

【0015】[0015]

【発明の実施の形態】以下、本発明を実施例に基づいて
さらに詳細に説明するが、本発明は以下の実施例に何ら
限定されるものではなく、その要旨を変更しない範囲に
おいて適宜変更して実施することが可能なものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and may be appropriately modified within the scope of the invention. It is possible to carry out.

【0016】(実施例1) [電極の作製]集電体として電解銅箔(厚さ26μm)
を用いた。集電体上に、予めアルカリ溶液に溶解するイ
ンクを用いて、図3に示すパターンを印刷した。図3に
示すパターンにおいて、円形部分にはインクが存在して
おらず、円形部分以外の領域にインクが存在している。
円形部分の半径はrであり、円形部分の中心間の距離は
aである。パターンとしては、表1に示すようなr及び
aを有する8種類のパターンを形成した。パターンの厚
みは20μmとした。
Example 1 [Production of Electrode] Electrolytic copper foil (thickness: 26 μm) as a current collector
Was used. The pattern shown in FIG. 3 was printed on the current collector using an ink that was previously dissolved in an alkaline solution. In the pattern shown in FIG. 3, the ink does not exist in the circular portion, and the ink exists in the area other than the circular portion.
The radius of the circular portion is r, and the distance between the centers of the circular portions is a. As the pattern, eight kinds of patterns having r and a as shown in Table 1 were formed. The pattern thickness was 20 μm.

【0017】上記のようにパターンを形成した集電体の
上に、活物質であるシリコン薄膜を以下のようにして形
成した。4インチの単結晶シリコンをターゲットとして
用い、RFマグネトロンスパッタ装置により集電体上に
活物質を堆積させた。集電体は、真空チャンバー内に設
けられた回転式ドラムに固定し、真空チャンバーは、そ
の内部を8×10-4Pa以下になるまで真空引きした。
次に、アルゴンガスを導入口から50sccmの流量で
導入ながらスパッタリングを開始した。RF電力は35
0Wとした。薄膜は、厚み10μmとなるように形成し
た。
A silicon thin film, which is an active material, was formed on the current collector on which the pattern was formed as described above, as follows. Using 4-inch single crystal silicon as a target, an active material was deposited on the current collector by an RF magnetron sputtering device. The current collector was fixed to a rotary drum provided in the vacuum chamber, and the inside of the vacuum chamber was evacuated to 8 × 10 −4 Pa or less.
Next, sputtering was started while introducing argon gas from the inlet at a flow rate of 50 sccm. RF power is 35
It was set to 0W. The thin film was formed to have a thickness of 10 μm.

【0018】以上のようにして集電体の片面上にシリコ
ン薄膜を形成した後、50℃に加熱した1重量%NaO
H水溶液に5分間浸漬させて、集電体上のパターンを溶
解させた。これにより、パターン上に形成されたシリコ
ン薄膜を除去し、集電体上に円柱形状を有する柱状凸部
を形成した。このようにして形成した柱状凸部が、所定
のパターンに対応した形状であることを光学顕微鏡によ
り観察して確認した。
After forming a silicon thin film on one surface of the current collector as described above, 1% by weight NaO heated to 50 ° C.
The pattern on the current collector was dissolved by immersing it in the H 2 aqueous solution for 5 minutes. As a result, the silicon thin film formed on the pattern was removed, and columnar protrusions having a columnar shape were formed on the current collector. It was confirmed by observing with an optical microscope that the columnar protrusions thus formed had a shape corresponding to a predetermined pattern.

【0019】以上のようにして柱状凸部を有する薄膜を
形成した集電体を、2cm×2cmの大きさに切り取
り、表1に示すように電極1〜8とした。比較例とし
て、上記のパターンを印刷しない集電体を用い、上記と
同様にしてシリコン薄膜をその厚みが6μmとなるよう
に形成し、上記と同様にして比較例の電極とした。
The current collector on which the thin film having columnar convex portions was formed as described above was cut into a size of 2 cm × 2 cm, and electrodes 1 to 8 were obtained as shown in Table 1. As a comparative example, a current collector not printed with the above pattern was used, and a silicon thin film was formed to a thickness of 6 μm in the same manner as above, and an electrode of the comparative example was obtained in the same manner as above.

【0020】[充放電特性の測定]上記で得られた電極
1〜8及び比較例の電極を作用極として用い、試験セル
を作製した。対極及び参照極としては、金属リチウムを
用いた。また、電解液としては、エチレンカーボネート
とジメチルカーボネートとの等体積混合溶媒に、LiP
6を1モル/リットル溶解した電解液を用いた。この
単極式試験セルにおいては、作用極の還元を充電とし、
酸化を放電としている。
[Measurement of Charging / Discharging Characteristics] A test cell was prepared by using the electrodes 1 to 8 obtained above and the electrodes of the comparative examples as working electrodes. Lithium metal was used as the counter electrode and the reference electrode. In addition, as the electrolytic solution, LiP was added to an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate.
An electrolytic solution in which F 6 was dissolved at 1 mol / liter was used. In this unipolar test cell, the reduction of the working electrode is charged,
Oxidation is used as electric discharge.

【0021】上記の各試験セルについて、25℃にて充
放電試験を行った。電極1〜8については4mAの定電
流で、比較例の電極については2mAの定電流で、参照
極を基準とする電位が0Vに達するまで充電した後、
2.0Vに達するまで放電した。これを1サイクルの充
放電とし、10サイクルの充放電を行った。10サイク
ル目の放電容量、及び10サイクル目の電極厚みをそれ
ぞれ測定した。電極厚みはマイクロメータで測定した。
A charge / discharge test was carried out at 25 ° C. for each of the above test cells. The electrodes 1 to 8 were charged with a constant current of 4 mA, and the electrodes of the comparative examples were charged with a constant current of 2 mA until the potential based on the reference electrode reached 0 V.
It discharged until it reached 2.0V. This was set as one cycle of charge / discharge, and 10 cycles of charge / discharge were performed. The discharge capacity at the 10th cycle and the electrode thickness at the 10th cycle were measured. The electrode thickness was measured with a micrometer.

【0022】表1は、電極1〜8の作製に用いたパター
ンのr及びaのサイズを示している。
Table 1 shows the sizes of r and a of the pattern used to manufacture the electrodes 1-8.

【0023】[0023]

【表1】 [Table 1]

【0024】表1に示すS1は、パターンにおける円形
部分の面積の比率を示している。S1は、以下の式から
求めることができる。 S1=πr2/(√3a2/2) 表1におけるS1/N中のNは、1m2あたりの円形部
分の個数を示している。Nは、以下の式により計算する
ことができる。
S1 shown in Table 1 indicates the ratio of the areas of the circular portions in the pattern. S1 can be obtained from the following formula. S1 = πr 2 / (√3a 2 /2) N in S1 / N in Table 1 shows the number of the circular portion per 1 m 2. N can be calculated by the following formula.

【0025】N=1/(√3a2/2)×10-12 従って、S1/Nは、以下の式により計算することがで
きる。 S1/N=πr2×10-12 上述のように、集電体上に形成した柱状凸部は、パター
ンの円形部分に対応して形成されている。従って、集電
体上に形成された柱状凸部の半径はrであり、また柱状
凸部の中心間の距離はaである。従って、柱状凸部の底
部における膜面方向の断面積は、上記パターンの円形部
分の面積に対応しており、S1は、柱状凸部の底部にお
ける膜面方向の断面積が電極面積に対して占める面積比
率となる。また、Nは、1m2あたりの柱状凸部の個数
となる。従って、S1/Nは、柱状凸部1つの底部にお
ける膜面方向の断面積(単位:m2)を示している。
[0025] N = 1 / (√3a 2/ 2) × 10 -12 Accordingly, S1 / N can be calculated by the following equation. S1 / N = πr 2 × 10 -12 As described above, the columnar convex portion formed on the current collector is formed corresponding to the circular portion of the pattern. Therefore, the radius of the columnar protrusions formed on the current collector is r, and the distance between the centers of the columnar protrusions is a. Therefore, the cross-sectional area in the film surface direction at the bottom of the columnar projection corresponds to the area of the circular portion of the pattern, and S1 is the cross-sectional area in the film surface direction at the bottom of the columnar projection with respect to the electrode area. It becomes the area ratio. Further, N is the number of columnar protrusions per 1 m 2 . Therefore, S1 / N represents the cross-sectional area (unit: m 2 ) in the film surface direction at the bottom of one columnar protrusion.

【0026】表2は、上記試験セルの10サイクル目の
放電容量を示している。また、表2には、10サイクル
後の電極の厚み、電極厚み増加率、及び放電容量で規格
した電極厚み増加率を示している。
Table 2 shows the discharge capacity at the 10th cycle of the test cell. Table 2 shows the electrode thickness after 10 cycles, the electrode thickness increase rate, and the electrode thickness increase rate specified by the discharge capacity.

【0027】表2において、充放電サイクル後の電極厚
みは、10サイクル後の電極厚みである。電極厚み増加
率は、10サイクル後の電極厚みから充電前の電極厚み
を引いた値である。電極1〜8の充電前の電極厚みは、
いずれも36μmであった。また、比較例の電極の充電
前の電極厚みは、32μmであった。
In Table 2, the electrode thickness after the charge / discharge cycle is the electrode thickness after 10 cycles. The electrode thickness increase rate is a value obtained by subtracting the electrode thickness before charging from the electrode thickness after 10 cycles. The electrode thickness of the electrodes 1 to 8 before charging is
All were 36 μm. The electrode thickness of the comparative electrode before charging was 32 μm.

【0028】放電容量で規格化した電極厚み増加率は、
上記の電極厚み増加率を放電容量で割った値である。
The electrode thickness increase rate normalized by the discharge capacity is
It is a value obtained by dividing the above electrode thickness increase rate by the discharge capacity.

【0029】[0029]

【表2】 [Table 2]

【0030】図4は、表2に示すS1と放電容量で規格
化した電極厚み増加率との関係を示す図である。図4か
ら明らかなように、放電容量で規格化した電極厚み増加
率が100%/mAhとなるのは、S1が0.2≦S1
≦0.8の範囲内となるときである。従って、S1をこ
のような範囲内とすることにより、充放電による集電体
のしわの発生を抑制し、かつ体積エネルギー密度の高い
二次電池用電極とすることができる。
FIG. 4 is a diagram showing the relationship between S1 shown in Table 2 and the electrode thickness increase rate normalized by the discharge capacity. As is apparent from FIG. 4, the electrode thickness increase rate normalized by the discharge capacity is 100% / mAh when S1 is 0.2 ≦ S1.
This is when ≦ 0.8. Therefore, by setting S1 in such a range, it is possible to suppress the generation of wrinkles in the current collector due to charge and discharge, and to provide a secondary battery electrode having a high volume energy density.

【0031】また、図4と表1から明らかなように、S
1/N、すなわち柱状凸部1つの底部における膜面方向
の断面積を2×10-72以下とすることにより、充放
電による集電体のしわの発生を抑制し、かつ体積エネル
ギー密度を高めることができる。さらに、柱状凸部1つ
の底部における膜面方向の断面積を7×10-102以上
とすることが好ましいことがわかる。
As is clear from FIG. 4 and Table 1, S
1 / N, that is, by setting the cross-sectional area in the film surface direction at the bottom of one columnar protrusion to 2 × 10 −7 m 2 or less, the generation of wrinkles of the current collector due to charge / discharge is suppressed, and the volume energy density is reduced. Can be increased. Further, it can be seen that it is preferable to set the cross-sectional area in the film surface direction at the bottom of one columnar convex portion to 7 × 10 −10 m 2 or more.

【0032】(実施例2) [電極の作製]実施例1と同様の集電体を用い、予めこ
の集電体の上に、実施例1と同様の条件で、厚さ3μ
m、5μm、及び8μmの下地層となるシリコン薄膜を
形成した。次に、このシリコン薄膜の上に、実施例1と
同様にして、表1に示す電極4と同じパターンを印刷し
た。さらに、この上に、実施例1と同様の条件でシリコ
ン薄膜を形成した。シリコン薄膜の厚みは、合計で10
μmとなるように形成した。従って、下地層として厚さ
3μmのシリコン薄膜を形成したものについては、厚さ
7μmのシリコン薄膜を形成し、下地層として厚さ5μ
mのシリコン薄膜を形成したものについては、厚さ5μ
mのシリコン薄膜を形成し、下地層として厚さ8μmの
シリコン薄膜を形成したものについては、厚さ2μmの
シリコン薄膜を形成した。
Example 2 [Production of Electrode] A current collector similar to that in Example 1 was used, and a thickness of 3 μm was previously formed on the current collector under the same conditions as in Example 1.
A silicon thin film to be a base layer having a thickness of 5 μm, 5 μm, and 8 μm was formed. Then, the same pattern as the electrode 4 shown in Table 1 was printed on this silicon thin film in the same manner as in Example 1. Furthermore, a silicon thin film was formed on this under the same conditions as in Example 1. The total thickness of the silicon thin film is 10
It was formed to have a thickness of μm. Therefore, for a silicon thin film having a thickness of 3 μm formed as the underlayer, a silicon thin film having a thickness of 7 μm is formed and a thickness of 5 μm is used as the underlayer.
The thickness of the silicon thin film of m is 5μ
In the case where a silicon thin film having a thickness of 8 μm was formed as a base layer and a silicon thin film having a thickness of 8 μm was formed as a base layer, a silicon thin film having a thickness of 2 μm was formed.

【0033】その後、実施例1と同様にして、アルカリ
水溶液に浸漬して、パターンを除去し、柱状凸部を形成
した。実施例1と同様にして、2cm×2cmの大きさ
に切り出し、電極9〜11とした。
Then, in the same manner as in Example 1, the pattern was removed by immersing in an alkaline aqueous solution to form columnar convex portions. In the same manner as in Example 1, the pieces were cut into a size of 2 cm × 2 cm to form electrodes 9 to 11.

【0034】図1は、以上のようにして形成した電極を
示す模式的断面図である。集電体1の上には下地層2と
してのシリコン薄膜が形成されており、この下地層2の
上に、柱状凸部3となるシリコン薄膜が形成されてい
る。αは下地層2のシリコン薄膜の平均膜厚を示してお
り、βは柱状凸部の領域におけるシリコン薄膜の平均膜
厚を示している。βは、下地層2の平均膜厚に、柱状凸
部3の平均膜厚を合計した値である。3aは、柱状凸部
3の底部を示している。この底部3aにおける膜方向の
断面積が上記のS1/Nとなる。
FIG. 1 is a schematic sectional view showing an electrode formed as described above. A silicon thin film as a base layer 2 is formed on the current collector 1, and a silicon thin film to be the columnar convex portions 3 is formed on the base layer 2. α represents the average film thickness of the silicon thin film of the underlayer 2, and β represents the average film thickness of the silicon thin film in the region of the columnar convex portion. β is a value obtained by adding the average film thickness of the base layer 2 and the average film thickness of the columnar convex portions 3. 3 a indicates the bottom of the columnar protrusion 3. The cross-sectional area of the bottom portion 3a in the film direction is S1 / N described above.

【0035】[充放電特性の測定]電極9〜11を作用
極として用いて、実施例1と同様にして試験セルを作製
し、充放電試験を行った。実施例1と同様にして、各電
極について放電容量で規格化した電極厚み増加率を求
め、表3に示した。なお、表3には、実施例1における
電極4及び比較例の値も併せて示している。
[Measurement of Charge / Discharge Characteristics] Using the electrodes 9 to 11 as working electrodes, a test cell was prepared in the same manner as in Example 1 and a charge / discharge test was conducted. In the same manner as in Example 1, the electrode thickness increase rate standardized by the discharge capacity was obtained for each electrode and is shown in Table 3. It should be noted that Table 3 also shows the values of the electrode 4 in Example 1 and the comparative example.

【0036】[0036]

【表3】 [Table 3]

【0037】図5は、表3に示すα/βと放電容量で規
格化した電極厚み増加率との関係を示す図である。図5
から明らかなように、α/βが0≦α/β≦0.6の範
囲内であれば、充放電による集電体のしわの発生を抑制
することができ、かつ体積エネルギー密度を高めること
ができる。また、α/βは、0≦α/β≦0.5の範囲
内であることがさらに好ましいことがわかる。
FIG. 5 is a diagram showing the relationship between α / β shown in Table 3 and the electrode thickness increase rate normalized by the discharge capacity. Figure 5
As is clear from the above, when α / β is in the range of 0 ≦ α / β ≦ 0.6, it is possible to suppress the generation of wrinkles of the current collector due to charge / discharge and to increase the volume energy density. You can Further, it is more preferable that α / β is within the range of 0 ≦ α / β ≦ 0.5.

【0038】上記の実施例においては、リフトオフプロ
セスにより柱状凸部を形成しているが、本発明はこれに
限定されるものではない。また、柱状凸部の形状は特に
限定されるものではなく、例えば、図2に示すような円
錐台形状の柱状凸部3であってもよい。このような場
合、円錐台形状の柱状凸部3の底部3aにおける膜面方
向の断面積が、上記本発明の範囲内であることを満たせ
ばよい。
In the above embodiment, the columnar convex portions are formed by the lift-off process, but the present invention is not limited to this. Further, the shape of the columnar protrusion is not particularly limited, and may be, for example, a truncated cone-shaped columnar protrusion 3 as shown in FIG. In such a case, it suffices that the cross-sectional area of the bottom portion 3a of the truncated cone-shaped columnar protrusion 3 in the film surface direction be within the range of the present invention.

【0039】また、上記実施例においては、活物質の薄
膜としてシリコン薄膜を例示して説明したが、本発明は
これに限定されるものではなく、充放電により体積が膨
張収縮する活物質薄膜に対して、本発明を適用すること
ができる。
Further, in the above embodiment, the silicon thin film is exemplified as the thin film of the active material, but the present invention is not limited to this, and an active material thin film whose volume expands and contracts by charging and discharging is used. On the other hand, the present invention can be applied.

【0040】また、上記実施例では、リチウム二次電池
の例を示したが、本発明は、リチウム以外のアルカリ金
属及びアルカリ土類金属を吸蔵・放出する電極に対して
も適用することができるものである。
Further, in the above embodiment, an example of a lithium secondary battery is shown, but the present invention can be applied to an electrode which occludes and releases an alkali metal and an alkaline earth metal other than lithium. It is a thing.

【0041】[0041]

【発明の効果】本発明によれば、充放電による集電体の
しわの発生を抑制することができ、充放電サイクル特性
に優れ、かつ体積エネルギー密度の高い二次電池用電極
とすることができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to suppress the generation of wrinkles in the current collector due to charging / discharging, to provide a secondary battery electrode having excellent charge / discharge cycle characteristics and high volume energy density. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従う実施例の二次電池用電極を示す模
式的断面図。
FIG. 1 is a schematic cross-sectional view showing an electrode for a secondary battery of an example according to the present invention.

【図2】本発明に従う他の実施例の二次電池用電極を示
す模式的断面図。
FIG. 2 is a schematic cross-sectional view showing an electrode for a secondary battery of another embodiment according to the present invention.

【図3】本発明の実施例で用いた柱状凸部を形成するた
めのパターンを示す平面図。
FIG. 3 is a plan view showing a pattern for forming a columnar convex portion used in an example of the present invention.

【図4】本発明の実施例におけるS1と放電容量で規格
化した電極厚み増加率との関係を示す図。
FIG. 4 is a diagram showing a relationship between S1 and an electrode thickness increase rate normalized by a discharge capacity in an example of the present invention.

【図5】本発明の実施例におけるα/βと放電容量で規
格化した電極厚み増加率との関係を示す図。
FIG. 5 is a diagram showing a relationship between α / β and an electrode thickness increase rate normalized by a discharge capacity in an example of the present invention.

【符号の説明】[Explanation of symbols]

1…集電体 2…下地層となる活物質の薄膜 3…柱状凸部 3a…柱状凸部の底部 α…下地層の平均膜厚 β…柱状凸部の領域における薄膜の平均膜厚 1 ... Current collector 2 ... Thin film of active material to be the underlying layer 3 ... Columnar convex part 3a ... Bottom of columnar protrusion α: Average thickness of underlayer β: average thickness of thin film in the region of columnar protrusion

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ03 AJ05 AL11 AM03 AM05 AM07 CJ11 CJ24 CJ25 CJ28 DJ14 DJ18 HJ04 HJ07 5H050 AA07 AA08 BA17 CB11 FA10 FA15 FA20 GA24 GA25 GA27 HA04 HA07    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 5H029 AJ03 AJ05 AL11 AM03 AM05                       AM07 CJ11 CJ24 CJ25 CJ28                       DJ14 DJ18 HJ04 HJ07                 5H050 AA07 AA08 BA17 CB11 FA10                       FA15 FA20 GA24 GA25 GA27                       HA04 HA07

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 集電体上に活物質からなる薄膜が堆積し
て形成された二次電池用電極において、 前記薄膜にその周囲より膜厚が厚い複数の柱状凸部が形
成されており、該柱状凸部1つの底部における膜面方向
の断面積が2×10-72以下であることを特徴とする
二次電池用電極。
1. An electrode for a secondary battery formed by depositing a thin film of an active material on a current collector, wherein the thin film has a plurality of columnar protrusions having a thickness thicker than its surroundings. An electrode for a secondary battery, wherein the cross-sectional area in the film surface direction at the bottom of one of the columnar protrusions is 2 × 10 −7 m 2 or less.
【請求項2】 前記柱状凸部1つの底部における膜面方
向の断面積が7×10-102以上であることを特徴とす
る請求項1に記載の二次電池用電極。
2. The electrode for a secondary battery according to claim 1, wherein a cross-sectional area in the film surface direction at the bottom of one of the columnar protrusions is 7 × 10 −10 m 2 or more.
【請求項3】 前記柱状凸部の底部における膜面方向の
断面積が電極面積に対して占める面積比率S1が、0.
2≦S1≦0.8の範囲内であることを特徴とする請求
項1または2に記載の二次電池用電極。
3. The area ratio S1 of the cross-sectional area in the film surface direction at the bottom of the columnar protrusion to the electrode area is 0.
The electrode for a secondary battery according to claim 1 or 2, wherein the range is 2 ≦ S1 ≦ 0.8.
【請求項4】 前記柱状凸部の領域における薄膜の平均
膜厚をβ、前記柱状凸部以外の領域における薄膜の平均
膜厚をαとしたときの比α/βが、0≦α/β≦0.6
の範囲内であることを特徴とする請求項1〜3のいずれ
か1項に記載の二次電池用電極。
4. The ratio α / β when the average film thickness of the thin film in the region of the columnar convex portion is β and the average film thickness of the thin film in the region other than the columnar convex portion is α, 0 ≦ α / β ≤0.6
The secondary battery electrode according to any one of claims 1 to 3, wherein the electrode is for a secondary battery.
【請求項5】 前記柱状凸部が、前記薄膜を堆積させる
際のリフトオフプロセスにより形成されていることを特
徴とする請求項1〜4のいずれか1項に記載の二次電池
用電極。
5. The electrode for a secondary battery according to claim 1, wherein the columnar convex portion is formed by a lift-off process when depositing the thin film.
【請求項6】 前記活物質がシリコンを主成分としてい
ることを特徴とする請求項1〜5のいずれか1項に記載
の二次電池用電極。
6. The secondary battery electrode according to claim 1, wherein the active material contains silicon as a main component.
JP2002108257A 2002-04-10 2002-04-10 Secondary battery electrode Expired - Fee Related JP3896025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002108257A JP3896025B2 (en) 2002-04-10 2002-04-10 Secondary battery electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002108257A JP3896025B2 (en) 2002-04-10 2002-04-10 Secondary battery electrode

Publications (2)

Publication Number Publication Date
JP2003303586A true JP2003303586A (en) 2003-10-24
JP3896025B2 JP3896025B2 (en) 2007-03-22

Family

ID=29392084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002108257A Expired - Fee Related JP3896025B2 (en) 2002-04-10 2002-04-10 Secondary battery electrode

Country Status (1)

Country Link
JP (1) JP3896025B2 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116519A (en) * 2003-09-17 2005-04-28 Hitachi Maxell Ltd Electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2007005108A (en) * 2005-06-23 2007-01-11 Matsushita Electric Ind Co Ltd Electrode plate and manufacturing method of battery
WO2007015419A1 (en) 2005-08-02 2007-02-08 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery and method for producing same
WO2007052803A1 (en) 2005-11-07 2007-05-10 Matsushita Electric Industrial Co., Ltd. Electrode for lithium rechargeable battery, lithium rechargeable battery, and process for producing said lithium rechargeable battery
WO2008050586A1 (en) 2006-10-19 2008-05-02 Panasonic Corporation Negative electrode for lithium secondary battery and lithium secondary battery containing the same
KR100827912B1 (en) 2006-01-19 2008-05-07 마쯔시다덴기산교 가부시키가이샤 Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
WO2008111315A1 (en) 2007-03-13 2008-09-18 Panasonic Corporation Negative electrode for lithium secondary battery and method for producing the same, and lithium secondary battery comprising negative electrode for lithium secondary battery
WO2008124227A1 (en) * 2007-04-05 2008-10-16 3M Innovative Properties Company Electrodes with raised patterns
EP1986253A1 (en) * 2006-02-14 2008-10-29 Matsushita Electric Industrial Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, method for producing same , and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous secondary battery
WO2009019869A1 (en) * 2007-08-09 2009-02-12 Panasonic Corporation Electrode for lithium rechargeable battery and lithium rechargeable battery comprising the electrode
JP2009524264A (en) * 2006-01-23 2009-06-25 ネクソン・リミテッド Etching method of silicon-based material
JP2010135332A (en) * 2002-11-05 2010-06-17 Nexeon Ltd Structured silicon anode
WO2010071166A1 (en) 2008-12-19 2010-06-24 Necトーキン株式会社 Negative electrode for nonaqueous electrolyte solution secondary cell and nonaqueous electrolyte solution secondary cell using the same, and method for producing negative electrode for nonaqueous electrolyte solution secondary cell
US8048569B2 (en) 2007-02-13 2011-11-01 Panasonic Corporation Non-aqueous electrolyte secondary battery
CN102237199A (en) * 2010-04-21 2011-11-09 财团法人金属工业研究发展中心 Electric storage device, electrode group of electric storage device and method for manufacturing electrode group
CN102263233A (en) * 2010-05-28 2011-11-30 株式会社半导体能源研究所 Power storage device and method for manufacturing the same
JP2011258367A (en) * 2010-06-08 2011-12-22 Dainippon Screen Mfg Co Ltd Battery, vehicle, electronic apparatus and method of manufacturing battery
JP2012079566A (en) * 2010-10-04 2012-04-19 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2012146480A (en) * 2011-01-12 2012-08-02 Dainippon Screen Mfg Co Ltd Method for producing electrode, battery electrode and battery
US8241699B2 (en) 2007-03-09 2012-08-14 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
CN102906913A (en) * 2010-06-01 2013-01-30 株式会社半导体能源研究所 Energy storage device and manufacturing method thereof
CN102906907A (en) * 2010-06-02 2013-01-30 株式会社半导体能源研究所 Power storage device and method for manufacturing same
US8389156B2 (en) 2006-08-25 2013-03-05 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN102956865A (en) * 2011-08-23 2013-03-06 大日本网屏制造株式会社 Preparation process of electrode for battery
JP2013065547A (en) * 2011-08-31 2013-04-11 Semiconductor Energy Lab Co Ltd Power storage device and method for manufacturing the same
JP2013214411A (en) * 2012-04-02 2013-10-17 Tokyo Ohka Kogyo Co Ltd Lithium ion secondary battery negative electrode, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery negative electrode
WO2014119229A1 (en) * 2013-01-30 2014-08-07 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2014156053A1 (en) * 2013-03-26 2014-10-02 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
WO2014156068A1 (en) * 2013-03-26 2014-10-02 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
CN105493317A (en) * 2013-09-27 2016-04-13 三洋电机株式会社 Negative electrode for non-aqueous electrolyte secondary batteries
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
KR20170113076A (en) 2016-03-24 2017-10-12 주식회사 엘지화학 Negative electrode active material, method of preparing the same, and lithium secondary battery comprising the same
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
US10522824B2 (en) 2014-07-23 2019-12-31 Nexeon Ltd Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135332A (en) * 2002-11-05 2010-06-17 Nexeon Ltd Structured silicon anode
JP2005116519A (en) * 2003-09-17 2005-04-28 Hitachi Maxell Ltd Electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2007005108A (en) * 2005-06-23 2007-01-11 Matsushita Electric Ind Co Ltd Electrode plate and manufacturing method of battery
WO2007015419A1 (en) 2005-08-02 2007-02-08 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium secondary battery and method for producing same
US8888870B2 (en) 2005-08-02 2014-11-18 Panasonic Corporation Lithium secondary battery
US8080334B2 (en) 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery
WO2007052803A1 (en) 2005-11-07 2007-05-10 Matsushita Electric Industrial Co., Ltd. Electrode for lithium rechargeable battery, lithium rechargeable battery, and process for producing said lithium rechargeable battery
US8318359B2 (en) 2005-11-07 2012-11-27 Panasonic Corporation Electrode for lithium secondary battery, lithium secondary battery and method for producing the same
US8303672B2 (en) 2005-11-07 2012-11-06 Panasonic Corporation Electrode for lithium secondary battery, lithium secondary battery and method for producing the same
KR100827912B1 (en) 2006-01-19 2008-05-07 마쯔시다덴기산교 가부시키가이샤 Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
US7794878B2 (en) 2006-01-19 2010-09-14 Panasonic Corporation Negative electrode for lithium secondary battery and lithium secondary battery using the negative electrode
JP2009524264A (en) * 2006-01-23 2009-06-25 ネクソン・リミテッド Etching method of silicon-based material
EP1986253A4 (en) * 2006-02-14 2009-11-04 Panasonic Corp Electrode for nonaqueous electrolyte secondary battery, method for producing same , and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous secondary battery
US7781101B2 (en) 2006-02-14 2010-08-24 Panasonic Corporation Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
EP1986253A1 (en) * 2006-02-14 2008-10-29 Matsushita Electric Industrial Co., Ltd. Electrode for nonaqueous electrolyte secondary battery, method for producing same , and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous secondary battery
US8268484B2 (en) 2006-02-14 2012-09-18 Panasonic Corporation Electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery comprising such electrode for nonaqueous electrolyte secondary battery
US8389156B2 (en) 2006-08-25 2013-03-05 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8399129B2 (en) 2006-10-19 2013-03-19 Panasonic Corporation Negative electrode for lithium secondary battery, and lithium secondary battery including the same
WO2008050586A1 (en) 2006-10-19 2008-05-02 Panasonic Corporation Negative electrode for lithium secondary battery and lithium secondary battery containing the same
US8048569B2 (en) 2007-02-13 2011-11-01 Panasonic Corporation Non-aqueous electrolyte secondary battery
US8241699B2 (en) 2007-03-09 2012-08-14 Panasonic Corporation Deposition apparatus and method for manufacturing film by using deposition apparatus
WO2008111315A1 (en) 2007-03-13 2008-09-18 Panasonic Corporation Negative electrode for lithium secondary battery and method for producing the same, and lithium secondary battery comprising negative electrode for lithium secondary battery
US8771874B2 (en) 2007-03-13 2014-07-08 Panasonic Corporation Negative electrode contacting silicon oxide active material layers for lithium secondary battery and method for producing the same
WO2008124227A1 (en) * 2007-04-05 2008-10-16 3M Innovative Properties Company Electrodes with raised patterns
WO2009019869A1 (en) * 2007-08-09 2009-02-12 Panasonic Corporation Electrode for lithium rechargeable battery and lithium rechargeable battery comprising the electrode
WO2010071166A1 (en) 2008-12-19 2010-06-24 Necトーキン株式会社 Negative electrode for nonaqueous electrolyte solution secondary cell and nonaqueous electrolyte solution secondary cell using the same, and method for producing negative electrode for nonaqueous electrolyte solution secondary cell
US9263741B2 (en) 2008-12-19 2016-02-16 Nec Energy Devices, Ltd. Negative electrode for nanaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using the same, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery
CN102237199A (en) * 2010-04-21 2011-11-09 财团法人金属工业研究发展中心 Electric storage device, electrode group of electric storage device and method for manufacturing electrode group
CN102263233A (en) * 2010-05-28 2011-11-30 株式会社半导体能源研究所 Power storage device and method for manufacturing the same
CN105591074A (en) * 2010-05-28 2016-05-18 株式会社半导体能源研究所 Power Storage Device And Method For Manufacturing The Same
CN102906913A (en) * 2010-06-01 2013-01-30 株式会社半导体能源研究所 Energy storage device and manufacturing method thereof
CN102906907A (en) * 2010-06-02 2013-01-30 株式会社半导体能源研究所 Power storage device and method for manufacturing same
US9281134B2 (en) 2010-06-02 2016-03-08 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
US9685277B2 (en) 2010-06-02 2017-06-20 Semiconductor Energy Laboratory Co., Ltd. Electrode
JP2011258367A (en) * 2010-06-08 2011-12-22 Dainippon Screen Mfg Co Ltd Battery, vehicle, electronic apparatus and method of manufacturing battery
US9017868B2 (en) 2010-06-08 2015-04-28 SCREEN Holdings Co., Ltd. Battery, vehicle, electronic device and battery manufacturing method
JP2012079566A (en) * 2010-10-04 2012-04-19 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2012146480A (en) * 2011-01-12 2012-08-02 Dainippon Screen Mfg Co Ltd Method for producing electrode, battery electrode and battery
US10822713B2 (en) 2011-06-24 2020-11-03 Nexeon Limited Structured particles
US10077506B2 (en) 2011-06-24 2018-09-18 Nexeon Limited Structured particles
CN102956865A (en) * 2011-08-23 2013-03-06 大日本网屏制造株式会社 Preparation process of electrode for battery
JP2013065547A (en) * 2011-08-31 2013-04-11 Semiconductor Energy Lab Co Ltd Power storage device and method for manufacturing the same
US10388948B2 (en) 2012-01-30 2019-08-20 Nexeon Limited Composition of SI/C electro active material
US9548489B2 (en) 2012-01-30 2017-01-17 Nexeon Ltd. Composition of SI/C electro active material
US10103379B2 (en) 2012-02-28 2018-10-16 Nexeon Limited Structured silicon particles
JP2013214411A (en) * 2012-04-02 2013-10-17 Tokyo Ohka Kogyo Co Ltd Lithium ion secondary battery negative electrode, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery negative electrode
US10090513B2 (en) 2012-06-01 2018-10-02 Nexeon Limited Method of forming silicon
US10008716B2 (en) 2012-11-02 2018-06-26 Nexeon Limited Device and method of forming a device
US9711783B2 (en) 2013-01-30 2017-07-18 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2014119229A1 (en) * 2013-01-30 2014-08-07 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JPWO2014119229A1 (en) * 2013-01-30 2017-01-26 三洋電機株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN105051949A (en) * 2013-03-26 2015-11-11 三洋电机株式会社 Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
US9705135B2 (en) 2013-03-26 2017-07-11 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN105074969A (en) * 2013-03-26 2015-11-18 三洋电机株式会社 Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
US20160049651A1 (en) * 2013-03-26 2016-02-18 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPWO2014156068A1 (en) * 2013-03-26 2017-02-16 三洋電機株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPWO2014156053A1 (en) * 2013-03-26 2017-02-16 三洋電機株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2014156068A1 (en) * 2013-03-26 2014-10-02 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
WO2014156053A1 (en) * 2013-03-26 2014-10-02 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
CN105493317A (en) * 2013-09-27 2016-04-13 三洋电机株式会社 Negative electrode for non-aqueous electrolyte secondary batteries
US10396355B2 (en) 2014-04-09 2019-08-27 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10693134B2 (en) 2014-04-09 2020-06-23 Nexeon Ltd. Negative electrode active material for secondary battery and method for manufacturing same
US10586976B2 (en) 2014-04-22 2020-03-10 Nexeon Ltd Negative electrode active material and lithium secondary battery comprising same
US10522824B2 (en) 2014-07-23 2019-12-31 Nexeon Ltd Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles
US11196042B2 (en) 2014-07-23 2021-12-07 Nexeon Ltd Method for preparing silicon-based active material particles for secondary battery and silicon-based active material particles
US10476072B2 (en) 2014-12-12 2019-11-12 Nexeon Limited Electrodes for metal-ion batteries
KR20170113076A (en) 2016-03-24 2017-10-12 주식회사 엘지화학 Negative electrode active material, method of preparing the same, and lithium secondary battery comprising the same
US10879528B2 (en) 2016-03-24 2020-12-29 Lg Chem, Ltd. Negative electrode active material, method of preparing the same, and lithium secondary battery including the same

Also Published As

Publication number Publication date
JP3896025B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP2003303586A (en) Electrode for secondary battery
JP3733071B2 (en) Lithium battery electrode and lithium secondary battery
JP3702224B2 (en) Method for producing electrode for lithium secondary battery
JP2002279974A (en) Method of manufacturing electrode for secondary battery
JP3913490B2 (en) Method for producing electrode for lithium secondary battery
JP3733065B2 (en) Lithium battery electrode and lithium secondary battery
JP2002083594A (en) Electrode for lithium battery, lithium battery using it and lithium secondary battery
JP4245270B2 (en) Method for manufacturing electrode for secondary battery
JP2003017040A (en) Electrode for lithium secondary battery, and manufacturing method thereof
WO2001031723A1 (en) Electrode for lithium secondary cell and lithium secondary cell
JP2002319408A (en) Lithium secondary battery electrode and lithium secondary battery
JP2001266851A (en) Manufacturing method of electrode for lithium secondary battery
JP2005150038A (en) Lithium secondary battery
JP4330290B2 (en) Method for producing electrode for lithium secondary battery
US8637186B2 (en) Electrode for battery and method for manufacturing thereof
WO2006082722A1 (en) Negative electrode and nonaqueous electrolyte secondary battery using same
JP4488781B2 (en) Method for producing electrode for lithium secondary battery
US20020102348A1 (en) Method for fabricating electrode for lithium secondary battery
JP2002289177A (en) Lithium secondary battery and electrode for it
JP2002170555A (en) Method for manufacturing electrode of lithium secondary battery
JP3955727B2 (en) Method for producing electrode for lithium secondary battery
JP2003017069A (en) Electrode for lithium secondary battery and lithium secondary battery
JP2003217580A (en) Electrode for lithium secondary battery and its manufacturing method
RU2761861C1 (en) Sodium-ion battery anode and method for its manufacture
JP2003257420A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees