JP2003302846A - Image forming device - Google Patents

Image forming device

Info

Publication number
JP2003302846A
JP2003302846A JP2002110567A JP2002110567A JP2003302846A JP 2003302846 A JP2003302846 A JP 2003302846A JP 2002110567 A JP2002110567 A JP 2002110567A JP 2002110567 A JP2002110567 A JP 2002110567A JP 2003302846 A JP2003302846 A JP 2003302846A
Authority
JP
Japan
Prior art keywords
transfer
voltage
transfer material
value
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002110567A
Other languages
Japanese (ja)
Other versions
JP2003302846A5 (en
Inventor
Hiroko Ogama
裕子 大釜
Masahiro Goto
正弘 後藤
Akito Kanamori
昭人 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002110567A priority Critical patent/JP2003302846A/en
Publication of JP2003302846A publication Critical patent/JP2003302846A/en
Publication of JP2003302846A5 publication Critical patent/JP2003302846A5/ja
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To cope with the high speed of transference by providing a transfer control method for obtaining a satisfactory image without depending on the resistance value of a transfer material while applying proper transfer voltages to transfer materials having different resistance values in accordance with transfer materials having a wide range of resistance values in a transferring type image forming device in which a contact type transferring means is used. <P>SOLUTION: In a system in which a transfer voltage is decided by a PTVC (programmable transfer voltage control) control and to which a constant voltage is applied, when an impression voltage is decided by detecting a transfer current at the top end of a transfer material and by comparing it with a threshold, the threshold is changed by referring to information of a paper feeding port. Moreover, the threshold is decided by referring to at least one side of the resistance value of the transfer material and size information of the transfer material. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は転写方式の画像形成
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transfer type image forming apparatus.

【0002】より詳しくは、電子写真感光体や静電記録
誘電体等の像担持体上に形成担持させたトナー像を転写
材に転写するために転写材の裏側に接触する転写部材を
備えた複写機・プリンタのような画像形成装置に関する
ものである。
More specifically, a transfer member is provided which contacts the back side of the transfer material in order to transfer the toner image formed and carried on an image carrier such as an electrophotographic photoreceptor or an electrostatic recording dielectric to the transfer material. The present invention relates to an image forming apparatus such as a copying machine / printer.

【0003】[0003]

【従来の技術】転写方式の画像形成装置において、像担
持体に形成担持させたトナー像を転写材に転写させる転
写手段としては、非接触タイプであるコロナ帯電器を用
いた転写手段との対比においてオゾンの発生がない等の
ことから、像担持体と圧接ニップ部を形成し該圧接ニッ
プ部に挿入された転写材に像担持体上のトナー像を転写
させる転写部材を有する接触式転写手段、特には接触転
写部材としてローラ体(転写ローラ)を用いたローラ転
写方式がさらに転写材搬送安定性に優れる等の利点を有
していて主流となっている。
2. Description of the Related Art In a transfer type image forming apparatus, a transfer means for transferring a toner image formed and carried on an image carrier to a transfer material is compared with a transfer means using a non-contact type corona charger. Since no ozone is generated in the image forming apparatus, a contact-type transfer unit having a transfer member that forms a pressure contact nip portion with the image carrier and transfers the toner image on the image carrier to the transfer material inserted in the pressure contact nip portion. In particular, the roller transfer method using a roller body (transfer roller) as a contact transfer member has the advantage that it is further excellent in transfer material conveyance stability and is in the mainstream.

【0004】ローラ転写方式は、接触転写部材として、
抵抗を1×106 〜1×1010Ωに調整した中抵抗弾性
層を有する導電性弾性ローラ(以下、転写ローラと記
す)を用い、これを像担持体(以下、感光ドラムと記
す)上に当接させ、該感光ドラムと該転写ローラによっ
て形成される圧接ニップ部(以下、転写ニップ部と記
す)で転写材を挟持搬送させながら、転写ローラに転写
バイアスを印加することで転写材にトナー像とは逆極性
の電荷を付与して感光ドラム上のトナー像を転写材上に
転写させるものである。
The roller transfer method is used as a contact transfer member.
A conductive elastic roller (hereinafter referred to as a transfer roller) having a medium resistance elastic layer whose resistance is adjusted to 1 × 10 6 to 1 × 10 10 Ω is used, and this is placed on an image carrier (hereinafter referred to as a photosensitive drum). A transfer nip portion formed by the photosensitive drum and the transfer roller (hereinafter referred to as a transfer nip portion) while nipping and conveying the transfer material, and applying a transfer bias to the transfer roller The toner image on the photosensitive drum is transferred onto the transfer material by applying an electric charge having a polarity opposite to that of the toner image.

【0005】上記の転写ローラは、ゴム・スポンジなど
にカーボンなどの無機導電性粒子を分散させたり、界面
活性剤などを練り込んだイオン導電性のゴムなどを用い
るなど、抵抗値を適宜調整した弾性層を有するローラで
あり、この転写ローラの抵抗値が製造時のばらつき、温
湿度、長期使用(耐久)による抵抗値変化などで1桁以
上変化することは周知のことである。
The resistance value of the transfer roller is appropriately adjusted by dispersing inorganic conductive particles such as carbon in rubber or sponge or using ion conductive rubber in which a surfactant or the like is kneaded. It is a roller having an elastic layer, and it is well known that the resistance value of this transfer roller changes by one digit or more due to variations in manufacturing, temperature / humidity, and resistance value changes due to long-term use (durability).

【0006】このように抵抗変化する転写ローラに対
し、常に最適な電流を流すためには「定電流印加方式」
で転写ローラに対して転写電圧を印加することが考えら
れるが、この場合は、装置の最大通紙幅よりも幅の狭い
小サイズ転写材が通紙使用されて転写ニップ部において
その長手に関して感光ドラムと転写ローラが直接接触す
る非通紙領域部ができたときに、ここへ集中的に電流が
流れて転写材への電流供給が不足し、転写不良が発生す
るという問題があった。
In order to always supply an optimum current to the transfer roller whose resistance changes in this way, the "constant current application method" is used.
It is conceivable to apply a transfer voltage to the transfer roller in this case, but in this case, a small-sized transfer material having a width narrower than the maximum paper passing width of the apparatus is used, and the length of the photosensitive drum is long in the transfer nip. When a non-sheet passing area where the transfer roller comes into direct contact with the transfer roller is formed, a current flows intensively there, resulting in insufficient current supply to the transfer material, which causes a problem of transfer failure.

【0007】そのため、多くの画像形成装置では転写材
サイズによらず適正電流を流すために「定電圧印加方
式」を行っている。定電圧印加方式では製造条件や環境
によって変化する転写ローラの抵抗値に対し適正な電流
を流すために、転写動作以前に、通紙時に転写ローラへ
流す一定電流値を転写ローラに流し、そのときに発生す
る電圧を保持して転写時に印加するバイアス制御方式
(ATCV制御方式:Active Transfer Voltage Contro
l )や、通紙前にある一定電流値を転写ローラに流し、
そのときの発生電圧をあらかじめ決められた制御式に入
れて算出した電圧を転写時に印加するバイアス制御方式
(PTVC制御方式:Programable TransferVoltage Co
ntrol)などによって通紙以前の転写の系のインピーダ
ンスを検知し、適正範囲の電流が流れるような転写電圧
を印加している。
Therefore, in many image forming apparatuses, the "constant voltage application method" is used in order to flow an appropriate current regardless of the transfer material size. In the constant voltage application method, in order to flow an appropriate current to the resistance value of the transfer roller that changes depending on the manufacturing conditions and environment, a constant current value to be passed to the transfer roller at the time of paper passing before the transfer operation is passed to the transfer roller. Bias control method (ATCV control method: Active Transfer Voltage Control)
l) or a constant current value before passing the paper is passed through the transfer roller,
A bias control method (PTVC control method: Programmable Transfer Voltage Coat) in which a voltage calculated at that time is put in a predetermined control expression and a calculated voltage is applied at the time of transfer
It detects the impedance of the transfer system before passing the paper, and applies the transfer voltage so that the current in the proper range flows.

【0008】特にPTVC制御方式は、ハードウェア構
成の回路からなり、印加できるバイアス値が数個しかも
てないATVC方式に比べて、より精密なバイアス制御
が行え、また電圧制御のためのハードウェア回路を必要
としないため、コスト的にも有利な電圧制御方式であ
る。
In particular, the PTVC control system is composed of a circuit having a hardware configuration and can perform more precise bias control as compared with the ATVC system in which only a few bias values can be applied, and a hardware circuit for voltage control. This is a voltage control method that is advantageous in terms of cost because it does not require.

【0009】このPTVC制御方式をいま少し詳しく説
明すると、プリント前の非通紙時に感光ドラム表面を帯
電させた状態で一定電流値を目標にPWM信号(パルス
幅変調信号:Pulse Width Modulation)を段階的あげて
転写ローラに電圧を印加し、目標電流値に到達した電圧
値をVt0としてホールドする。そのVt0値と、あらかじ
め制御回路のCPU内にメモリしておいた転写出力テー
ブルとから、前記Vt0値に適した印字時の転写電圧Vt
を決定し、印字時にはその転写電圧Vtに対応したPW
M信号を出力して転写ローラにVtを印加する制御方式
である。
This PTVC control system will be described in a little more detail. The PWM signal (Pulse Width Modulation) is stepped with a constant current value as a target in a state where the surface of the photosensitive drum is charged before the paper is passed through before printing. A voltage is applied to the transfer roller in a targeted manner, and the voltage value reaching the target current value is held as Vt0. Based on the Vt0 value and the transfer output table stored in advance in the CPU of the control circuit, the transfer voltage Vt during printing suitable for the Vt0 value.
The PW corresponding to the transfer voltage Vt during printing.
This is a control method in which an M signal is output and Vt is applied to the transfer roller.

【0010】このように、一定電流値に対する各転写ロ
ーラの発生電圧Vt0を参照して印字時の転写電圧Vtを
決定することで、転写ローラの抵抗値に応じて最適電圧
を印字時に印加することができ、広い範囲の抵抗値の転
写ローラで良好な画像を得ることができる。
Thus, by determining the transfer voltage Vt at the time of printing by referring to the generated voltage Vt0 of each transfer roller with respect to the constant current value, the optimum voltage can be applied at the time of printing according to the resistance value of the transfer roller. Therefore, a good image can be obtained with a transfer roller having a wide range of resistance values.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上述し
たような従来の転写電圧制御法には以下に示すような問
題があった。
However, the above-mentioned conventional transfer voltage control method has the following problems.

【0012】即ち、従来のATVC方式、PTVC方式
といった転写電圧制御法は、転写ニップ部内に転写材が
ない状態で一定電流値を転写ローラに流し、その時の発
生電圧から転写時に印加する転写電圧を決定している。
このように非通紙時に転写の系全体のインピーダンスを
検知することで転写ローラの抵抗値が変化してもそれに
応じた適正転写バイアスを印加できるようにしている。
That is, in the conventional transfer voltage control methods such as the ATVC method and the PTVC method, a constant current value is applied to the transfer roller in a state where there is no transfer material in the transfer nip portion, and the transfer voltage applied at the time of transfer is determined from the voltage generated at that time. I have decided.
In this way, by detecting the impedance of the entire transfer system when the paper is not passed, even if the resistance value of the transfer roller changes, an appropriate transfer bias can be applied.

【0013】しかし、転写材の抵抗値が高い場合、また
は低い場合などあらかじめ想定している転写材抵抗値か
ら大幅に抵抗値がずれた転写材を使用した場合、印字中
に流したい転写電流が適正転写電流値の範囲からずれる
ことがある。
However, when a transfer material whose resistance value is largely deviated from a transfer material resistance value assumed in advance such as when the transfer material has a high resistance value or a low resistance value, a transfer current to be flown during printing is generated. It may deviate from the range of the proper transfer current value.

【0014】このように転写材のインピーダンスが大き
く変化する場合、転写電流に過不足が生じ、画像不良が
発生してしまうという問題があった。特に、近年の画像
形成装置の世界的普及により、印字に使用される転写材
の種類が増加するのに伴って、転写材の抵抗も多種多様
化し、環境・転写材種類を問わず良好な画像を得るのが
難しくなってきている。
When the impedance of the transfer material changes greatly as described above, there is a problem in that the transfer current becomes excessive and deficient, resulting in an image defect. In particular, as the number of types of transfer materials used for printing has increased due to the recent worldwide spread of image forming apparatuses, the resistance of the transfer materials has also diversified, and good images can be obtained regardless of the environment or transfer material type. Getting harder is getting harder.

【0015】また、高速化が進むにつれて、転写材の抵
抗によって最適な転写電流値がまったく異なるという問
題も発生しており、様々な転写材に対応できる転写制御
方式の開発が求められている。
Further, as the speed is increased, there is a problem that the optimum transfer current value is completely different depending on the resistance of the transfer material. Therefore, it is required to develop a transfer control system which can cope with various transfer materials.

【0016】これに対し、特殊紙モードを設け、ユーザ
ーに転写材種を指定してもらうことで転写電圧制御を最
適化することも考えられるが、ユーザーに煩わしい手間
を強いることになり、あまり好ましくない。
On the other hand, it is possible to optimize the transfer voltage control by providing a special paper mode and letting the user specify the transfer material type, but this is troublesome for the user and is not so preferable. Absent.

【0017】また、転写材が転写ニップ部に存在する状
態で決められた電圧を印加し、その時の転写電流を測定
して転写材抵抗を推定し、目標電流値に転写電流がなる
ように転写電圧を補正する方法が提案されているが、こ
の方法だと最適転写電流が異なる転写材に対し、異なる
電流値を与えることができず、特に転写材種ごとに必要
電流の異なる高速機に対応するためには限界があった。
Further, a transfer voltage is applied while the transfer material is present in the transfer nip portion, and the transfer current at that time is measured to estimate the transfer material resistance, so that the transfer current reaches the target current value. Although a method of correcting the voltage has been proposed, this method cannot give different current values to transfer materials with different optimum transfer currents, and is especially suitable for high-speed machines that require different currents for each transfer material type. There was a limit to what I could do.

【0018】そこで本発明は、接触式転写手段を用いた
転写式の画像形成装置において、上記のようなユーザー
が指定操作する特殊紙モードを設けるようなことなし
に、幅広い抵抗範囲の転写材に対応し抵抗値の異なる転
写材に対し適正な転写電圧を与え、転写材の抵抗値によ
らず良好な画像を得るための転写制御方式の提供を目的
とする。また、高速化に対応することを目的とする。
Therefore, the present invention is applicable to a transfer material having a wide resistance range in a transfer type image forming apparatus using a contact type transfer means without providing a special paper mode specified by the user as described above. An object of the present invention is to provide a transfer control method for applying a proper transfer voltage to transfer materials having corresponding different resistance values and obtaining a good image regardless of the resistance values of the transfer materials. Moreover, it aims at responding to speeding up.

【0019】[0019]

【課題を解決するための手段】本発明は下記の構成を特
徴とする画像形成装置である。
The present invention is an image forming apparatus having the following configuration.

【0020】(1)像担持体と、前記像担持体と圧接ニ
ップ部を形成し該圧接ニップ部に挿入された転写材に像
担持体上のトナー像を転写させる転写部材と、前記転写
部材に電圧を印加する電圧印加手段と、前記電圧印加手
段から出力される電流値を検知する電流検知回路と、前
記圧接ニップ部に転写材が挿入されてから一定時間後の
前記電流検知回路の電流検知結果と給紙口情報を参照し
てあらかじめ複数用意された転写電圧値から前記電圧印
加手段の出力電圧を決定し、印字中に前記電圧印加手段
から前記転写部材に前記決定の電圧を印加させる制御手
段と、を有することを特徴とする画像形成装置。
(1) An image carrier, a transfer member for forming a pressure contact nip portion with the image carrier and transferring a toner image on the image carrier to a transfer material inserted in the pressure contact nip portion, and the transfer member. Voltage applying means for applying a voltage to the voltage detecting means, a current detecting circuit for detecting a current value output from the voltage applying means, and a current of the current detecting circuit after a predetermined time has elapsed since the transfer material was inserted in the pressure contact nip portion. The output voltage of the voltage application unit is determined from a plurality of transfer voltage values prepared in advance with reference to the detection result and the paper feed port information, and the determined voltage is applied from the voltage application unit to the transfer member during printing. An image forming apparatus comprising: a control unit.

【0021】(2)像担持体と、前記像担持体と圧接ニ
ップ部を形成し該圧接ニップ部に挿入された転写材に像
担持体上のトナー像を転写させる転写部材と、前記転写
部材に電圧を印加する電圧印加手段と、前記電圧印加手
段から出力される電流値を検知する電流検知回路と、前
記圧接ニップ部に転写材がない状態で前記転写部材の抵
抗を検知する抵抗検知手段と、前記圧接ニップ部に転写
材が挿入されてから一定時間後の前記電流検知回路の電
流検知結果と給紙口情報を参照してあらかじめ複数用意
された転写電圧値から前記電圧印加手段の出力電圧を決
定し、印字中に前記電圧印加手段から前記転写部材に前
記決定の電圧を印加させる制御手段と、を有し、前記印
加電圧決定のためのしきい値を、前記抵抗検知手段の転
写部材抵抗検知結果と、転写材サイズ情報の少なくとも
一方の情報を参照して変更することを特徴とする画像形
成装置。
(2) An image carrier, a transfer member for forming a pressure contact nip portion with the image carrier and transferring the toner image on the image carrier to a transfer material inserted in the pressure contact nip portion, and the transfer member. Voltage applying means for applying a voltage to the voltage detecting means, a current detecting circuit for detecting a current value output from the voltage applying means, and a resistance detecting means for detecting the resistance of the transfer member in the absence of the transfer material in the pressure contact nip portion. And the output of the voltage applying means from a plurality of transfer voltage values prepared in advance with reference to the current detection result of the current detection circuit and the sheet feed port information after a predetermined time has elapsed since the transfer material was inserted into the pressure contact nip portion. Control means for determining a voltage and for applying the determined voltage from the voltage applying means to the transfer member during printing, and transferring a threshold value for determining the applied voltage to the resistance detection means. Member resistance detection result When an image forming apparatus and changes with reference to at least one of the information of the transfer material size information.

【0022】〈作 用〉すなわち本発明は、前述の問題
に対し、PTVC制御により転写電圧を決定する転写制
御方式に加えて、転写材先端からPTVC検知結果に応
じた転写電圧を転写材に与えて転写材先端が像担持体と
転写部材との圧接ニップ部である転写ニップ部に挿入さ
れてから一定時間後の転写電流値をモニタして、前記転
写材先端での転写電流モニタ結果と給紙口情報から、あ
らかじめ抵抗値の異なる転写材に対して最適化された複
数の転写電圧値から最適な印加電圧を決定して印字中に
定電圧印加することで、いずれの抵抗値の転写材でも良
好な画像を得るものである。
<Operation> To solve the above problems, the present invention applies a transfer voltage according to the PTVC detection result from the transfer material tip to the transfer material in addition to the transfer control method in which the transfer voltage is determined by the PTVC control. The transfer current value at a certain time after the transfer material front end is inserted into the transfer nip portion, which is the pressure contact nip portion between the image carrier and the transfer member, is monitored, and the transfer current monitoring result at the transfer material front end is supplied. From the paper edge information, the transfer voltage of any resistance value can be determined by determining the optimum applied voltage from a plurality of transfer voltage values optimized for transfer materials with different resistance values and applying a constant voltage during printing. However, a good image is obtained.

【0023】さらに、転写部材抵抗検知結果、紙サイズ
情報等を参照することで、より最適な転写電圧設定を行
うものである。
Further, by referring to the transfer member resistance detection result, paper size information, etc., a more optimal transfer voltage setting is performed.

【0024】[0024]

【発明の実施の形態】〈実施例1〉(図1〜図8) (1)画像形成装置例 図1は画像形成装置の一例の概略構成模型図である。本
例の画像形成装置は、転写式電子写真プロセスを用い
た、両面印字機能(両面プリント機能)を有する、反転
現像方式のレーザープリンタである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS <Embodiment 1> (FIGS. 1 to 8) (1) Example of Image Forming Apparatus FIG. 1 is a schematic configuration model diagram of an example of an image forming apparatus. The image forming apparatus of this example is a reversal development type laser printer having a double-sided printing function (double-sided printing function) using a transfer type electrophotographic process.

【0025】1は像担持体たる感光ドラムであり、OP
C、アモルファスSi等の感光材料をアルミニウムやニ
ッケル等のシリンダ状の基板上に形成して構成されてお
り、不図示の駆動手段により矢示の時計方向に所定の周
速度で回転駆動される。
Reference numeral 1 denotes a photosensitive drum which is an image carrier, and OP
A photosensitive material such as C or amorphous Si is formed on a cylindrical substrate such as aluminum or nickel, and is rotated in a clockwise direction indicated by an arrow at a predetermined peripheral speed by a driving unit (not shown).

【0026】2は回転する感光ドラム1の周囲を所定の
極性・電位に一様に帯電処理する一次帯電手段であり、
本例では帯電ローラを使用した接触帯電装置である。本
例では、感光ドラム1の表面はこの帯電ローラ2によっ
てネガトナーと同極性の負に一様に帯電され、暗部電位
Vdとなる。
Reference numeral 2 is a primary charging means for uniformly charging the periphery of the rotating photosensitive drum 1 to a predetermined polarity and potential.
In this example, the contact charging device uses a charging roller. In this example, the surface of the photosensitive drum 1 is uniformly charged by the charging roller 2 to a negative polarity having the same polarity as the negative toner, and becomes the dark portion potential Vd.

【0027】3は画像情報露光手段としてのレーザービ
ームスキャナーである。このスキャナー3は、半導体レ
ーザー、ポリゴンミラー、F−θレンズ等を有してな
り、不図示のホスト装置から送られてきた画像情報の時
系列電気デジタル画素信号に応じてON/OFF制御さ
れたレーザービームLを出射して反射ミラー3aを介し
て感光ドラム1の一様帯電表面を走査露光し、静電潜像
を形成する。即ち、このスキャナー3によって像露光さ
れた感光ドラム1面の露光された部分は電位の絶対値が
小さくなり、明部電位Vlとなって露光されなかった感
光ドラム面部分の暗部電位Vdとの電位コントラストに
よって静電潜像が形成される。
Reference numeral 3 is a laser beam scanner as an image information exposing means. The scanner 3 includes a semiconductor laser, a polygon mirror, an F-θ lens, and the like, and is ON / OFF controlled according to a time series electric digital pixel signal of image information sent from a host device (not shown). The laser beam L is emitted and the uniformly charged surface of the photosensitive drum 1 is scanned and exposed through the reflection mirror 3a to form an electrostatic latent image. That is, the absolute value of the electric potential of the exposed portion of the surface of the photosensitive drum 1 image-exposed by the scanner 3 becomes small, and the potential becomes the bright portion potential Vl and the potential of the dark portion potential Vd of the unexposed portion of the photosensitive drum surface. An electrostatic latent image is formed by the contrast.

【0028】4はネガトナーを用いた反転現像装置であ
り、感光ドラム1上の静電潜像をトナー像として反転現
像する。4aは回転現像スリーブであり、トナーが薄層
コートされており、このトナーは負に帯電している。現
像スリーブ4aには、感光ドラム1の暗部電位Vdと明
部電位Vlとの間のバイアス電圧Vb(|Vd|>|V
b|>|Vl|)が不図示の外部電源によって与えられ
ているので、現像スリーブ4a上のトナーは、感光ドラ
ム1の明部電位Vlの部分にのみ転移して静電潜像が顕
像化される(反転現像)。
Reference numeral 4 denotes a reversal developing device using negative toner, which reversely develops the electrostatic latent image on the photosensitive drum 1 as a toner image. A rotary developing sleeve 4a is coated with a thin layer of toner, and the toner is negatively charged. A bias voltage Vb (| Vd |> | V between the dark potential Vd and the light potential Vl of the photosensitive drum 1 is applied to the developing sleeve 4a.
b |> | Vl |) is given by an external power source (not shown), the toner on the developing sleeve 4a is transferred only to the bright potential Vl portion of the photosensitive drum 1 and the electrostatic latent image is visualized. (Reversal development).

【0029】現像方法としては、ジャンピング現像法、
2成分現像法等が用いられ、イメージ露光と反転現像と
の組み合わせで用いられることが多い。
As a developing method, a jumping developing method,
A two-component developing method or the like is used, and it is often used in combination with image exposure and reversal development.

【0030】5は弾性層を有する回転体形状の接触転写
部材としての転写ローラである。感光ドラム1に対して
加圧接触させて転写ニップ部Nを形成させてあり、不図
示の駆動手段により感光ドラム1の回転に順方向の矢示
の反時計方向に感光ドラム1の回転周速にほぼ対応した
所定の周速度で回転駆動される。
Reference numeral 5 denotes a transfer roller as a contact transfer member in the form of a rotary body having an elastic layer. A transfer nip portion N is formed by being brought into pressure contact with the photosensitive drum 1, and the peripheral speed of rotation of the photosensitive drum 1 is counterclockwise as indicated by an arrow in the forward direction of the rotation of the photosensitive drum 1 by a driving unit (not shown). Is driven to rotate at a predetermined peripheral speed substantially corresponding to.

【0031】22は第1の給紙口としての給紙カセット
部であり、カセット内に転写材Pを積載収納させてあ
る。
Reference numeral 22 denotes a paper feeding cassette portion as a first paper feeding port, and the transfer materials P are stacked and stored in the cassette.

【0032】24は第2の給紙口としての手差し給紙ト
レイ部(マルチ・パーパス・トレイ)である。
Reference numeral 24 denotes a manual paper feed tray section (multi-purpose tray) as a second paper feed port.

【0033】不図示の選択指定手段でカセット給紙モー
ドが選択指定されているときには、給紙カセット部22
に積載収納されている転写材Pが所定の給紙制御タイミ
ングで給紙ローラ21により一枚分離給送される。
When the cassette sheet feeding mode is selected and designated by the selection designation means (not shown), the sheet feeding cassette unit 22
The transfer materials P stacked and accommodated in the sheet are separated and fed by the sheet feeding roller 21 at a predetermined sheet feeding control timing.

【0034】また手差し給紙モードが選択指定されてい
るときには手差し給紙トレイ部24に積載セットの転写
材Pが所定の給紙制御タイミングで給紙ローラ23によ
り一枚分離給送される。
When the manual paper feed mode is selected and designated, the transfer material P of the stack set is fed to the manual paper feed tray section 24 by the paper feed roller 23 at a predetermined paper feed control timing.

【0035】給紙カセット部22または手差し給紙トレ
イ部24から給送された転写材Pはプレフィードセンサ
21aで待機した後に、レジストローラ11、レジスト
センサ11a、転写前ガイド10を介して転写ニップ部
N(画像形成部)に所定の制御タイミングにて給紙され
る。即ち、転写材Pは、レジストセンサ11aによっ
て、感光ドラム1の表面に形成されたトナー像と同期取
りされて転写ニップ部Nに供給される。
The transfer material P fed from the paper feed cassette unit 22 or the manual paper feed tray unit 24 waits at the pre-feed sensor 21a, and then is transferred to the transfer nip via the registration roller 11, the registration sensor 11a, and the pre-transfer guide 10. The sheet is fed to the section N (image forming section) at a predetermined control timing. That is, the transfer material P is supplied to the transfer nip portion N in synchronization with the toner image formed on the surface of the photosensitive drum 1 by the registration sensor 11a.

【0036】転写ニップ部Nに供給された転写材Pは感
光ドラム1と転写ローラ5との間に挟持されて感光ドラ
ム1と転写ローラ5の回転により搬送される。転写材P
が転写ニップ部Nを挟持搬送されていく間において、転
写材Pの裏側に接触している転写ローラ5に対して転写
用高圧電源(転写高圧トランス、転写高圧回路)34か
ら所定の制御タイミングにて所定の制御転写バイアスが
印加される。これにより、転写材Pにトナー像とは逆極
性の電荷が付与されて感光ドラム1上のトナー像が転写
材P上に順次に転写されていく。
The transfer material P supplied to the transfer nip portion N is nipped between the photosensitive drum 1 and the transfer roller 5 and conveyed by the rotation of the photosensitive drum 1 and the transfer roller 5. Transfer material P
While the paper is being nipped and conveyed through the transfer nip portion N, the transfer high voltage power supply (transfer high voltage transformer, transfer high voltage circuit) 34 sets a predetermined control timing for the transfer roller 5 contacting the back side of the transfer material P. And a predetermined control transfer bias is applied. As a result, charges having the opposite polarity to the toner image are applied to the transfer material P, and the toner images on the photosensitive drum 1 are sequentially transferred onto the transfer material P.

【0037】転写ニップ部Nにおいてトナー像の転写を
受け、転写ニップ部Nを通過した転写材Pは、感光ドラ
ム1の面から分離され、シートパス(ガイド部材)12
を通って定着装置13へ搬送される。8は除電針であ
る。定着装置13は本例のものは加熱フィルムユニット
13aと加圧ローラ13bの圧接からなる所謂フィルム
加熱方式の定着装置であり、トナー像を保持した転写材
Pは加熱フィルムユニット13aと加圧ローラ13bの
圧接部である定着ニップ部nで挟持搬送されて加熱・加
圧を受けることでトナー像が転写材P上に定着され永久
画像となる。
The transfer material P which has received the transfer of the toner image at the transfer nip portion N and has passed through the transfer nip portion N is separated from the surface of the photosensitive drum 1, and the sheet path (guide member) 12
And is conveyed to the fixing device 13. 8 is a charge elimination needle. The fixing device 13 in this example is a so-called film heating type fixing device which comprises a heating film unit 13a and a pressure roller 13b in pressure contact with each other, and the transfer material P holding a toner image is a heating film unit 13a and a pressure roller 13b. The toner image is fixed on the transfer material P and becomes a permanent image by being nipped and conveyed at the fixing nip portion n which is a pressure contact portion of the sheet and subjected to heat and pressure.

【0038】片面印字モードが選択指定されている場合
は、定着装置13を出た転写材Pは搬送路B1側に進路
案内されて片面印字物として機外に排出される。
When the one-sided printing mode is selected and designated, the transfer material P exiting the fixing device 13 is guided to the conveyance path B1 side and discharged outside the machine as a one-sided printed matter.

【0039】両面印字モード(自動両面印字)が選択指
定されている場合は、定着装置13を出た1面目印字済
み(画像形成済み)の転写材Pは第3の給紙口としての
自動両面給紙ユニット50内に搬送され、スイッチバッ
ク搬送路B2を経由することで反転され、循環搬送路B
3を通り、再給紙ローラ25、再給紙センサ25aを経
由して転写ニップ部Nに再給紙されて、反転された転写
材Pの2面目に対する印字行程へと入る。
When the double-sided printing mode (automatic double-sided printing) is selected and designated, the transfer material P that has been printed on the first side (image-formed) exiting the fixing device 13 is automatically double-sided as a third paper feed port. The paper is conveyed into the paper feed unit 50, is inverted by passing through the switchback conveyance path B2, and is circulated.
3, the sheet is re-fed to the transfer nip portion N via the re-feeding roller 25 and the re-feeding sensor 25a, and enters the printing process for the second surface of the inverted transfer material P.

【0040】そして転写ニップ部Nにて2面目に対する
トナー像の転写を受けた転写材Pは、感光ドラム1の面
から分離され、シートパス12を通って再び定着装置1
3へ搬送されて、2面目に対するトナー像の定着処理を
受け、搬送路B1側に進路案内されて両面印字物として
機外に排出される。
The transfer material P, which has received the toner image transferred to the second surface at the transfer nip portion N, is separated from the surface of the photosensitive drum 1, passes through the sheet path 12, and is again fixed to the fixing device 1.
3, the toner image is fixed on the second side, the route is guided to the side of the conveying path B1, and the sheet is discharged outside the apparatus as a double-sided print.

【0041】一方、転写材Pに対するトナー像転写後の
感光ドラム1の表面はクリーニング装置6により転写残
留トナーの除去を受けて清掃されて繰り返して作像に供
される。本例のクリーニング装置6はブレードクリーニ
ング装置であり、6aはそのクリーニングブレードであ
る。
On the other hand, the surface of the photosensitive drum 1 after the transfer of the toner image onto the transfer material P is cleaned by the cleaning device 6 to remove the residual transfer toner, and is repeatedly used for image formation. The cleaning device 6 of this example is a blade cleaning device, and 6a is its cleaning blade.

【0042】(2)転写ローラ5 接触転写部材としての転写ローラ5は、鉄、SUS等の
芯金5a上にEPDM、シリコーン、NBR、ウレタン
等のゴムを用いたソリッド状(充填肉質)、または発泡
スポンジ状の中抵抗弾性層5bを形成したゴムローラ
で、ローラ硬度25〜70度(AskerC/総荷重9.8N(1k
g) 荷重時、以下同じ)、抵抗値106 〜1010Ωの範
囲のものを使用する。転写ローラ5の弾性体層5bは、
一次加硫後に2次加硫し、その後表面を研磨して外径形
状を所望の寸法としたものを用いる。
(2) Transfer Roller 5 The transfer roller 5 as a contact transfer member is a solid (filled meat) using a core metal 5a of iron, SUS or the like and EPDM, silicone, NBR, urethane or other rubber on the core metal 5a, or A rubber roller with a foamed sponge-like medium resistance elastic layer 5b formed, with a roller hardness of 25 to 70 degrees (Asker C / total load 9.8N (1k
g) Under load, the same shall apply hereinafter), and the resistance value is in the range of 10 6 to 10 10 Ω. The elastic layer 5b of the transfer roller 5 is
After the primary vulcanization, the secondary vulcanization is performed, and then the surface is polished to obtain the outer diameter shape having a desired size.

【0043】本例で使用した転写ローラ5は、φ6mm
のFeの芯金5a上に、8×107[Ω]NBR系のイ
オン導電性ソリッドゴムからなる弾性層(中抵抗弾性
層)5bを形成し、ローラ硬度60度、外径をφ16m
m、ゴム部長手寸法を218mmとしたソリッドの導電
性・弾性ローラである。
The transfer roller 5 used in this example has a diameter of 6 mm.
An elastic layer (medium resistance elastic layer) 5b made of 8 × 10 7 [Ω] NBR type ion conductive solid rubber is formed on the Fe core metal 5a, and the roller hardness is 60 degrees and the outer diameter is φ16 m.
m is a solid conductive / elastic roller having a rubber part longitudinal dimension of 218 mm.

【0044】転写ローラ5は図2のように芯金5aの両
端部をそれぞれ軸受け部材5c・5cで回転自由に軸受
け支持させてある。軸受け部材5c・5cはそれぞれ不
図示のガイド部材により感光ドラム1に対して接近方向
・離れ方向にスライド移動自由に保持させた可動部材で
あり、この可動の軸受け部材5c・5cをそれぞれ加圧
ばね5d・5dにより感光ドラム1に対して接近方向に
移動付勢することで転写ローラ5を感光ドラム1に対し
て弾性層5bの弾性に抗して圧接させて所定幅の転写ニ
ップ部Nを形成させてある。Gは転写ローラ5の芯金5
aの一方の端部に固着させた駆動ギアであり、駆動ギア
Gに不図示の駆動手段から回転力が伝達されて転写ロー
ラ5が感光ドラム1の回転に順方向で、感光ドラム1の
回転周速度とほぼ同じ周速度で回転駆動される。
As shown in FIG. 2, the transfer roller 5 is rotatably supported by bearing members 5c and 5c at both ends of the core metal 5a. The bearing members 5c, 5c are movable members that are slidably held in the approaching direction and the leaving direction with respect to the photosensitive drum 1 by guide members (not shown), and the movable bearing members 5c, 5c are respectively pressed springs. The transfer roller 5 is pressed against the photosensitive drum 1 against the elasticity of the elastic layer 5b by forming a transfer nip portion N having a predetermined width by urging the transfer roller 5 toward and away from the photosensitive drum 1 by 5d and 5d. I am allowed. G is the core 5 of the transfer roller 5.
The drive gear is fixed to one end of a, and the rotational force is transmitted to the drive gear G from a drive unit (not shown) so that the transfer roller 5 rotates in the forward direction of the rotation of the photosensitive drum 1 and the rotation of the photosensitive drum 1. It is rotationally driven at a peripheral speed almost the same as the peripheral speed.

【0045】図3は転写ローラ5の抵抗測定法を示す図
である。即ちアルミシリンダー71へ総圧9.8N(1
000g(片側500g))で転写ローラ5を当接させ
て回転させ、任意の電圧(たとえば+2.0kV)を直
流高圧電源72より転写ローラ5の芯金5aに印加した
ときに抵抗74の両端に発生する電圧値の最大値、最小
値を電圧計73で読みとる。読みとった電圧値から回路
中に流れる電圧値の平均値を求め、転写ローラの抵抗値
を算出したものである。測定環境は通常環境N/N:2
3℃・60%である。
FIG. 3 is a diagram showing a method for measuring the resistance of the transfer roller 5. That is, the total pressure to the aluminum cylinder 71 is 9.8 N (1
The transfer roller 5 is brought into contact with and rotated at 000 g (500 g on one side), and when an arbitrary voltage (for example, +2.0 kV) is applied to the core metal 5a of the transfer roller 5 from the DC high voltage power source 72, it is applied to both ends of the resistor 74. The voltmeter 73 reads the maximum value and the minimum value of the generated voltage value. The resistance value of the transfer roller is calculated by obtaining the average value of the voltage values flowing in the circuit from the read voltage value. Measurement environment is normal environment N / N: 2
It is 3 ° C and 60%.

【0046】(3)転写バイアス制御 本実施例では、PTVCによる転写ローラ5のインピー
ダンス検知結果と転写材を介した転写電流検知結果によ
って印字中の転写電圧を決定する転写バイアス制御系に
おいて、あらかじめ複数の転写材種に対応した2本以上
の制御式を用意し、給紙口情報、すなわち本実施例の場
合は転写ニップ部Nに対する転写材Pの給紙が ・第1の給紙口としての給紙カセット部22からなされ
るのか ・第2の給紙口としての手差し給紙トレイ部24からな
されるのか ・第3の給紙口としての自動両面給紙ユニット50から
なされるのか によって制御式切り分けのしきい値を決定し、転写材を
介した転写電流検知の結果を前記しきい値と比較して、
前記複数の制御式を切り替えて転写電圧を決定する例を
示す。
(3) Transfer Bias Control In this embodiment, a plurality of transfer bias control systems are set in advance in the transfer bias control system that determines the transfer voltage during printing based on the impedance detection result of the transfer roller 5 by the PTVC and the transfer current detection result via the transfer material. 2 or more control formulas corresponding to the transfer material types are prepared, and the feed port information, that is, the transfer material P is fed to the transfer nip portion N in the case of the present embodiment. Controllable depending on whether it is made from the paper feed cassette unit 22, is made from the manual paper feed tray unit 24 as the second paper feed port, or is made from the automatic double-sided paper feed unit 50 as the third paper feed port Determine the threshold of separation, compare the result of transfer current detection through the transfer material with the threshold,
An example of switching the plurality of control expressions to determine the transfer voltage will be described.

【0047】a)PTVC制御方法 本実施例のPTVC制御方法を図4を用いて詳細に説明
する。9は転写バイアスを制御するCPUで、OUT端
子より所望の転写出力電圧に対応したパルス幅を持つP
WM信号を出力する。実際にはパルス幅に対応した転写
出力テーブル(不図示)をCPU9内にメモリしてお
く。このPWM信号はローパスフィルタ(Low Pass Filt
er) 14によりDC化され、アンプ15により増幅され
て転写出力電圧Vtとなる。このとき流れた電流値It
に対応した信号がCPU9のIN端子に入力され、CP
U9内で検知するという流れになっている。
A) PTVC control method The PTVC control method of this embodiment will be described in detail with reference to FIG. 9 is a CPU for controlling the transfer bias, which has a pulse width P corresponding to a desired transfer output voltage from the OUT terminal.
Output WM signal. Actually, a transfer output table (not shown) corresponding to the pulse width is stored in the CPU 9. This PWM signal is a low pass filter (Low Pass Filter).
er) 14 to DC and amplified by the amplifier 15 to become the transfer output voltage Vt. Current value It flowing at this time
The signal corresponding to is input to the IN terminal of the CPU 9, and CP
The flow is such that detection is performed within U9.

【0048】本実施例では、転写高圧電源34に流れる
電流値を電流検出回路34aで検出し、A/Dコンバー
タ31でデジタル変換した値(以降、「転写AD値」と
表記する)をCPU9へ入力して、転写ローラ5に流れ
る電流値を判断している。
In this embodiment, the current value flowing in the transfer high-voltage power supply 34 is detected by the current detection circuit 34a, and the value digitally converted by the A / D converter 31 (hereinafter referred to as "transfer AD value") is sent to the CPU 9. It is input and the value of the current flowing through the transfer roller 5 is determined.

【0049】「定電圧制御」をしたい場合には、あらか
じめCPU9内に設定されたPWMと転写出力対応テー
ブルから判断し、所望の電圧値に対応したパルス幅のP
WM信号を出力する。
When "constant voltage control" is desired, it is judged from the PWM and transfer output correspondence table set in the CPU 9 in advance, and the pulse width P corresponding to the desired voltage value is determined.
Output WM signal.

【0050】また、「定電流制御」したい場合は、CP
U9からのPWM信号のパルス幅を徐々に上げていき、
CPUのIN端子に入ってくる信号が所望の電流値(一
定電流値)に対応した値になるまで続けられ、その後電
流値変化に伴って、電圧(パルス幅)を追従させて定電
流制御を行う。
When "constant current control" is desired, CP
Gradually increase the pulse width of the PWM signal from U9,
The signal input to the IN terminal of the CPU is continued until it reaches a value corresponding to the desired current value (constant current value), and then the voltage (pulse width) is made to follow along with the change in the current value for constant current control. To do.

【0051】b)転写制御のアルゴリズム 図5に本実施例の転写制御のアルゴリズムを示す。B) Transcription control algorithm FIG. 5 shows the transfer control algorithm of this embodiment.

【0052】ホストコンピュータからプリント信号を受
け、感光ドラム1の帯電が終了した時点で、まず感光ド
ラム1と転写ローラ5が直接当接した状態でPTVC検
知を一度行う(Step1)。
When the print signal is received from the host computer and the charging of the photosensitive drum 1 is completed, first, the PTVC detection is performed once with the photosensitive drum 1 and the transfer roller 5 being in direct contact with each other (Step 1).

【0053】PTVC検知は、転写用高圧電源34から
の出力電圧を徐々に上昇させて、あらかじめ設定された
一定電流値に転写電流が到達した時の電圧値をVt0とし
てホールドしている。
In the PTVC detection, the output voltage from the high voltage power supply 34 for transfer is gradually increased and the voltage value when the transfer current reaches a preset constant current value is held as Vt0.

【0054】ここでの検知結果に基づき、あらかじめC
PU9内に格納されている転写制御式1により転写時に
印加する転写電圧の第1の目標値Vt1を決定する(Step
2)。
Based on the detection result here, C
The first target value Vt1 of the transfer voltage applied during transfer is determined by the transfer control formula 1 stored in the PU 9 (Step
2).

【0055】Vt1=αVt0+β・・・式1 Vt0:PTVC検知時に、所定の検知電流を転写ローラ
に流したときに発生する発生電圧 α及びβ:転写の系によってあらかじめ設定する常数 Vt1決定後、画像形成のための準備が終了した時点で印
字動作を開始し、感光ドラム1上のトナー像と同期をと
って転写材Pを転写ニップ部Nに給送する。転写材Pの
先端が転写ニップ部Nに入ると同時に、前述の初期転写
目標値Vt1を定電圧印加し(Step3)、初期転写目標値
Vt1印加開始から一定時間後に転写電流を1回モニタし
て、その時に検出した転写AD値をCPU9に記録する
(Step4)。
Vt1 = αVt0 + β (Equation 1) Vt0: Generated voltage α and β generated when a predetermined detection current is applied to the transfer roller during PTVC detection. After determining the constants Vt1 preset by the transfer system, the image When the preparation for formation is completed, the printing operation is started, and the transfer material P is fed to the transfer nip portion N in synchronization with the toner image on the photosensitive drum 1. At the same time when the front end of the transfer material P enters the transfer nip portion N, a constant voltage is applied to the above-mentioned initial transfer target value Vt1 (Step 3), and the transfer current is monitored once after a fixed time from the start of the application of the initial transfer target value Vt1. The transfer AD value detected at that time is recorded in the CPU 9 (Step 4).

【0056】転写AD値の検知タイミングは、転写電圧
Vt1印加後から転写電流がある程度落ち着くポイント
で、なおかつトナーの有無の影響をなくすために、先端
余白内で行うのが望ましい。本実施例では、プロセスス
ピード120mm/secで印字する画像形成装置を用
い、転写材先端から40msec後に転写AD値のモニ
タを行った。この場合、転写AD値のモニタポイント
は、転写材先端から約4.8mmのポイントとなり、先
端余白を5mm程度とれば、転写材のインピーダンスの
違いによる転写電流変化を安定してモニタすることがで
きる。
The detection timing of the transfer AD value is a point at which the transfer current settles down to some extent after the transfer voltage Vt1 is applied, and it is desirable to detect the transfer AD value within the tip margin in order to eliminate the influence of the presence or absence of toner. In this embodiment, an image forming apparatus that prints at a process speed of 120 mm / sec was used, and the transfer AD value was monitored 40 msec after the front end of the transfer material. In this case, the monitor point of the transfer AD value is a point of about 4.8 mm from the front end of the transfer material, and if the front end margin is about 5 mm, the change in transfer current due to the difference in impedance of the transfer material can be stably monitored. .

【0057】次に、転写ニップ部Nに対する転写材給紙
口情報により、制御式を切り分けるための転写AD値の
しきい値を決定し(Step5)、前記転写AD値をここで
設定したしきい値と比較して転写電圧をVtを決定し
(Step5)、ここで決定した転写電圧Vtを転写ローラ
に定電圧印加(Step6)して、転写材後端まで一定電圧
で転写を行う。
Next, the threshold value of the transfer AD value for dividing the control expression is determined based on the transfer material feed port information for the transfer nip portion N (Step 5), and the transfer AD value is set here. The transfer voltage Vt is determined by comparison with the value (Step 5), the transfer voltage Vt determined here is applied to the transfer roller at a constant voltage (Step 6), and transfer is performed to the rear end of the transfer material at a constant voltage.

【0058】前記初期転写目標電圧Vt1は式1に示した
ように、転写ローラ抵抗値の検知結果に応じた電圧を印
加している。これは、転写材先端で転写材電流検知する
際に印加する電圧が一定値の場合、転写ローラ抵抗によ
って、転写材先端で流れる電流値が異なることによる画
像上の不具合を防止するためである。たとえば、転写ロ
ーラ抵抗値が低い場合、Vt1が一定値だと転写材先端で
過剰な電流が感光ドラム1に流れて、濃度ムラが発生
し、逆に転写ローラ抵抗値が高い場合は、Vt1から転写
に必要な電圧まで高圧を立ち上げる場合の電圧差が大き
くなるために、必要電流が流れるまでに時間がかかり、
転写材先端で電流不足となって爆発や転写不良が発生し
てしまうためである。
As shown in the equation 1, the initial transfer target voltage Vt1 is applied according to the detection result of the transfer roller resistance value. This is because when the voltage applied when the transfer material current is detected at the front end of the transfer material has a constant value, a defect on the image due to a difference in the current value flowing at the front end of the transfer material due to the resistance of the transfer roller is prevented. For example, when the transfer roller resistance value is low, if Vt1 is a constant value, an excessive current flows to the photosensitive drum 1 at the leading end of the transfer material to cause density unevenness. Conversely, if the transfer roller resistance value is high, Vt1 changes from Vt1. Since the voltage difference when raising the high voltage to the voltage required for transfer becomes large, it takes time for the necessary current to flow,
This is because an electric current becomes insufficient at the tip of the transfer material and an explosion or transfer failure occurs.

【0059】本例のように、Vt1をVt0に応じて変化さ
せることで、前述の不具合が防止でき、また、転写材の
インピーダンスをほぼ同一の転写電流で安定して検知で
きるというメリットがある。
By changing Vt1 according to Vt0 as in the present example, the above-mentioned problems can be prevented, and the impedance of the transfer material can be detected stably with almost the same transfer current.

【0060】前記初期転写目標電圧Vt1は、その転写行
程に必要な電圧まで転写電圧を短時間で立ち上げるため
に、普通紙の転写に最低限必要な転写電圧を印加するの
が望ましい。
As the initial transfer target voltage Vt1, it is desirable to apply the minimum transfer voltage required for transferring plain paper in order to raise the transfer voltage to the voltage required for the transfer process in a short time.

【0061】図6は、抵抗値の異なる転写材を通紙した
ときの、転写材先端での転写電流値(AD値)の変化を
示した図である。本実施例では、PTVC検知結果に基
づいて決定される通紙時の転写電圧初期目標値Vt1を、
普通紙で最適な電流が流れる値に設定しているため、普
通紙に印字した場合はラインAに示すように目標電流値
とほぼ同一の転写電流(AD値)が得られる。
FIG. 6 is a diagram showing changes in the transfer current value (AD value) at the leading end of the transfer material when the transfer materials having different resistance values are passed. In this embodiment, the transfer voltage initial target value Vt1 at the time of sheet passing determined based on the PTVC detection result is
Since the optimum current value is set for plain paper, when printing on plain paper, a transfer current (AD value) substantially the same as the target current value is obtained as shown in line A.

【0062】これに対し、高抵抗紙を印字した場合は、
転写材の抵抗が高い分だけ転写ローラに流れる電流値が
ラインBに示すように△Idownだけ降下している。
On the other hand, when high resistance paper is printed,
As the resistance of the transfer material is high, the current value flowing through the transfer roller is decreased by ΔIdown as shown in the line B.

【0063】従って、転写材先端が転写ニップ部Nに到
達してから、転写材抵抗値による転写電流の降下の差が
分かる任意の時間T1後に転写電流値(AD値)をモニ
タすることで、転写材抵抗値の高低を検出することがで
きる。
Therefore, by monitoring the transfer current value (AD value) after an arbitrary time T1 after the transfer material front end reaches the transfer nip portion N, the difference in the transfer current drop due to the transfer material resistance value is known. It is possible to detect whether the transfer material resistance value is high or low.

【0064】図7に、普通紙、高抵抗紙の片面、および
自動両面印字時の最適転写電圧範囲の関係を示す。横軸
はPTVCによる転写ローラの抵抗検知結果、縦軸は転
写時の印加電圧である。
FIG. 7 shows the relationship between the optimum transfer voltage ranges for plain paper, high-resistance paper on one side, and automatic double-sided printing. The horizontal axis represents the resistance detection result of the transfer roller by PTVC, and the vertical axis represents the applied voltage during transfer.

【0065】図7の(1)に示した細い実線・は普
通紙1面目印字時の画像マージンを表すラインである。
普通紙1面印字の場合、転写電圧が小さすぎると転写に
必要な十分な転写電流を転写材に与えることができず、
転写不良が発生する。転写電圧が逆に高すぎると、感光
ドラムに対し過剰な電流が流れて、そのときに感光ドラ
ム上の電位低下が画像に現れる突き抜けが発生する。こ
の転写不良のラインと突き抜けのラインで囲まれた
範囲に転写電圧制御を設定すると普通紙1面目印字時に
良好な画像が得られる。
The thin solid line indicated by (1) in FIG. 7 is a line representing the image margin when printing the first side of plain paper.
When printing on one side of plain paper, if the transfer voltage is too low, the transfer material cannot be supplied with a sufficient transfer current necessary for transfer.
Transfer failure occurs. On the contrary, if the transfer voltage is too high, an excessive current flows to the photosensitive drum, and at that time, a drop in the potential on the photosensitive drum appears in the image, causing punch-through. When the transfer voltage control is set in the range surrounded by the line of defective transfer and the line of punch-through, a good image can be obtained when the first surface of plain paper is printed.

【0066】同じく図7の(1)に示した点線・は
高抵抗紙1面目印字時の画像マージンで、1面目印字に
比べて転写材抵抗が高い分必要な制御電圧が高くなり、
また転写材抵抗が高い分爆発防止に必要な電流が多くな
る分マージンが狭くなっていることがわかる。
Similarly, the dotted line shown in (1) of FIG. 7 indicates the image margin when printing the first surface of the high-resistance paper, and the required control voltage becomes higher as the transfer material resistance is higher than that when the first surface is printed.
Also, it can be seen that the margin is narrowed because the current required for explosion prevention is increased due to the higher transfer material resistance.

【0067】両者・と・のマージンの重なる部
分(斜線部分)が普通紙、高抵抗紙共に良好な画像が得
られる制御領域であり、この場合、ラインAに示すよう
な転写制御を行えば、普通紙1面目、高抵抗紙1面目と
もに良好な画像を得ることができる。
A portion (shaded portion) where the margins of both .. and .. overlap is a control area where good images can be obtained on both plain paper and high resistance paper. In this case, if transfer control as shown by line A is performed, Good images can be obtained on both the first side of the plain paper and the first side of the high-resistance paper.

【0068】2面目印字の場合は転写低電圧側は爆発に
よって、高電圧側は白スジという現象でマージンがきま
る。白スジは、転写ローラに高い電圧がかかった場合、
転写ニップの前後で放電が発生し、その放電によって感
光ドラム上(あるいは転写材上)のトナーの極性が反転
することで転写不良(または再転写される)現象で、転
写材抵抗が高く、転写電圧が高いほど発生しやすい。爆
発は感光ドラム上の明部電位Vlと暗部電位Vdの電位
差に対し、転写電流が暗部電位Vdにより多く流れるた
めにできる転写電荷の不均一により、実際にトナー像が
乗る明部電位Vl部からVd部に対しトナーが飛び散る
現象で、抵抗の高い紙ほど、転写ニップ内の転写材上で
の水平方向の電荷の移動がおきにくく、発生が顕著にな
る現象である。
In the case of printing on the second side, the margin is determined by the phenomenon of explosion on the low voltage side of transfer and white stripes on the high voltage side. White streaks occur when high voltage is applied to the transfer roller.
Discharge occurs before and after the transfer nip, and the polarity of the toner on the photosensitive drum (or transfer material) is reversed due to the discharge, resulting in a transfer failure (or retransfer) phenomenon. The higher the voltage, the more likely it is to occur. Explosion is caused by the nonuniformity of the transfer charge caused by the transfer current flowing more in the dark portion potential Vd with respect to the potential difference between the light portion potential Vl and the dark portion potential Vd on the photosensitive drum. This is a phenomenon in which toner scatters with respect to the Vd portion, and the higher the resistance of the paper, the more difficult the horizontal movement of electric charges on the transfer material in the transfer nip occurs, and the more remarkable the occurrence thereof.

【0069】図7の(2)に示した細い点線・は普
通紙2面目の画像マージンを示すラインである。2面目
印字の場合、1面目印字時に一度定着装置13を通り、
転写材中の水分が蒸発して紙が高抵抗化するため爆発防
止に必要な電流があがり、普通紙1面目に比べると最適
転写マージン領域が全体的に高電圧側にシフトしてい
る。普通紙の2面目印字の場合、転写ローラが高抵抗側
の場合は高電圧がかかるために白スジによって転写マー
ジンの上限が決まり、転写ローラが低抵抗側の場合は過
剰な電流が流れやすくなって突き抜けによって転写マー
ジンの土限が決まる。
The thin dotted line shown in (2) of FIG. 7 is a line showing the image margin on the second side of the plain paper. In the case of printing on the second side, once passing through the fixing device 13 when printing on the first side,
Since the moisture in the transfer material evaporates and the resistance of the paper becomes high, the current required for explosion prevention rises, and the optimum transfer margin area is entirely shifted to the high voltage side as compared with the first surface of the plain paper. When printing on the second side of plain paper, a high voltage is applied when the transfer roller is on the high resistance side, so the white stripe determines the upper limit of the transfer margin, and when the transfer roller is on the low resistance side, excess current easily flows. The penetration limit determines the soil limit of the transfer margin.

【0070】同じく図7の(2)に示した細い実線・
は高抵抗紙2面目の画像マージンを示すラインで、普
通紙2面よりもさらに転写材抵抗が高いために、爆発防
止に必要なで制御電圧が高くなり、その影響で放電によ
る白スジが発生しやすくなるために転写最適マージンそ
のものも狭くなっていることがわかり、普通紙2面目の
転写最適マージン領域・とのオーバーラップ領域
(図中の斜線で囲まれた部分)がほとんど消滅している
ことがわかる。
Similarly, the thin solid line shown in (2) of FIG.
Is a line indicating the image margin on the second side of high-resistance paper. Since the transfer material resistance is higher than that on the second side of plain paper, the control voltage is high because it is necessary to prevent explosion, and the white stripes are generated due to discharge. It can be seen that the optimum transfer margin itself has become narrower because it is easier to perform, and the overlap area (the area surrounded by the diagonal lines in the figure) with the optimum transfer margin area on the second side of plain paper has almost disappeared. I understand.

【0071】このように、極端に抵抗の異なる転写材抵
抗に対しては、同一の転写制御式で画質を満足すること
が難しい。この場合、図7の(2)に示すラインB、ラ
インCのように、普通紙と高抵抗紙で別々の制御式を設
定する必要がある。
As described above, it is difficult for the transfer material resistances having extremely different resistances to satisfy the image quality by the same transfer control method. In this case, it is necessary to set separate control formulas for plain paper and high-resistance paper, such as line B and line C shown in (2) of FIG.

【0072】図8は、本実施例の画像形成装置を使い、
普通紙(体積抵抗率:1×1011Ω・cm)、および高
抵抗紙(体積抵抗率:1×1013Ω・cm)に対し、プ
ロセススピード120mm/secで片面印字、および
自動両面印字を行った場合の転写材先端での転写AD値
の検知結果を示す。
FIG. 8 uses the image forming apparatus of this embodiment,
Single-sided printing and automatic double-sided printing on plain paper (volume resistivity: 1 × 10 11 Ω · cm) and high-resistance paper (volume resistivity: 1 × 10 13 Ω · cm) at a process speed of 120 mm / sec. The detection result of the transfer AD value at the front end of the transfer material is shown.

【0073】なお、環境は高湿環境(湿度85%R
H)、常湿環境(湿度60%RH)、低湿環境(湿度1
5%RH)の各環境を使用し、AD値は転写材先端から
40msec後に1回モニタし、結果は環境毎にプロッ
トしてある。ここで示したAD値は、転写電流6 Aの
時にAD値が160となるように、0から255までの
256段階に比例換算した値である。
The environment is a high humidity environment (humidity 85% R
H), normal humidity environment (humidity 60% RH), low humidity environment (humidity 1
Each environment of 5% RH) was used, the AD value was monitored once 40 msec from the tip of the transfer material, and the results are plotted for each environment. The AD value shown here is a value proportionally converted to 256 steps from 0 to 255 so that the AD value becomes 160 when the transfer current is 6 A.

【0074】また、転写電圧は、6μAの一定電流値で
PTVC検知を行った時の発生電圧とあらかじめCPU
9内に納めた下記制御式2を元に算出した値を印加して
いる。
The transfer voltage is the voltage generated when PTVC detection is performed at a constant current value of 6 μA and the CPU beforehand.
The value calculated based on the following control equation 2 stored in 9 is applied.

【0075】Vt1=0.7×Vt0+700・・・式2
(単位はすべて[V]) 図8に示したように、普通紙よりも高抵抗紙の方が転写
AD値が小さいことがわかる。また、環境湿度に関して
は、湿度が高く転写材がすぐに吸湿する高湿環境ほど転
写AD値は大きく、同一転写材では、湿度が高いほどA
D値が大きいという傾向が現れている。このように転写
材が低抵抗化している場合、転写材上で適度の電荷の移
動が起きるため、爆発が発生しにくく、逆に転写材を介
して感光ドラムへ電流が流れやすい為に突き抜け等の画
像問題が発生しやすい。このような状態の転写材に対し
ては、突き抜けを防止する方向に(転写電流弱めに)転
写電圧制御を設定すると良い。
Vt1 = 0.7 × Vt0 + 700 Equation 2
(All units are [V]) As shown in FIG. 8, it can be seen that the transfer AD value of the high resistance paper is smaller than that of the plain paper. Regarding the environmental humidity, the higher the humidity, the higher the humidity in which the transfer material immediately absorbs, and the higher the transfer AD value becomes.
There is a tendency that the D value is large. When the resistance of the transfer material is low in this way, an appropriate amount of charge transfer occurs on the transfer material, so that an explosion is less likely to occur, and conversely, current easily flows through the transfer material to the photosensitive drum, resulting in punch-through, etc. Image problems are likely to occur. For the transfer material in such a state, it is preferable to set the transfer voltage control in a direction to prevent punch-through (to weaken the transfer current).

【0076】逆に、低湿環境や高抵抗紙ではAD値が低
くなることがわかる。このAD値の低下は特に転写材抵
抗が高い高抵抗紙で顕著で、このよぅな状態の転写材で
は、転写ニップ内での電荷の移動がおきにくく、爆発が
発生しやすくなる。逆にこのような状態の転写材では転
写材を介して感光ドラムに流れる電流が少ないため突き
抜けは発生しにくく、AD値が大きな状態とは逆に、爆
発を防止するために電流を多めに流す転写電圧制御を設
定すると良い。
On the contrary, it can be seen that the AD value becomes low in a low humidity environment or high resistance paper. This decrease in the AD value is particularly noticeable in high-resistance paper having a high transfer material resistance, and in the transfer material in such a state, it is difficult for charges to move in the transfer nip, and an explosion is likely to occur. On the contrary, in the transfer material in such a state, since the current flowing through the transfer material to the photosensitive drum is small, the punch-through hardly occurs. Contrary to the state in which the AD value is large, a large amount of current is supplied to prevent the explosion. Transfer voltage control should be set.

【0077】本発明では、前記転写制御を切り分けるた
めのしきい値を転写材が給紙された給紙口を参照して決
定している。
In the present invention, the threshold value for dividing the transfer control is determined with reference to the paper feed port through which the transfer material is fed.

【0078】これは、低湿度環境で転写材先端でのAD
値検知結果を元に転写材種を切り分ける場合、もともと
転写材が吸湿していないために、1面目印字と2面目印
字の転写材のインピーダンス変化が少なく、印字面の切
り分けや転写材抵抗値の切り分けが困難であるためであ
る。また、同じ2面目印字でも自動両面印字と手差し両
面印字では、1面目印字後に2面目印字に入るまでの時
間に差があり、常湿環境などではその間に転写材が吸湿
する影響で最適電圧が異なるが、このときに転写AD値
の差は小さく、切り分けするのが難しいためである。
This is the AD at the tip of the transfer material in a low humidity environment.
When the transfer material type is cut based on the value detection result, since the transfer material does not absorb moisture from the beginning, the impedance change of the transfer material of the first side printing and the second side printing is small, and the cut of the printing surface and the transfer material resistance value This is because it is difficult to separate them. Even in the same second-side printing, there is a difference in time between automatic double-sided printing and manual double-sided printing until the second-side printing starts after the first-side printing. Although different, the difference in the transfer AD value at this time is small, and it is difficult to separate them.

【0079】表1に、本例で示した画像形成装置を用
い、常湿環境で普通紙、高抵抗紙を1面および両面印字
した場合の転写AD値と、転写マージン電流を示す。
Table 1 shows the transfer AD value and the transfer margin current when the image forming apparatus shown in this example is used to print single-sided and double-sided plain paper and high-resistance paper in a normal humidity environment.

【0080】[0080]

【表1】 [Table 1]

【0081】表1に示すように、普通紙も高抵抗紙も1
面目印字時よりも、一度定着装置13を通過し転写材の
水分が蒸発している2面目印字の方が、転写AD値は全
般的に低くなっており、転写材が高抵抗になる2面目の
方が転写電流が少なく爆発が発生しやすい。このため、
2面目は1面目よりも高い電圧を与える必要がある。ま
た、高抵抗紙は、1面2面とも更に高い電圧を必要とす
ることがわかる。
As shown in Table 1, both plain paper and high resistance paper are 1
The second surface printing in which the water content of the transfer material once evaporates after passing through the fixing device 13 is lower than that of the first surface printing, and the transfer AD value is generally low, and the second surface becomes high resistance. Has less transfer current and is more likely to explode. For this reason,
It is necessary to apply a higher voltage to the second surface than to the first surface. Further, it can be seen that the high resistance paper requires higher voltage on both sides.

【0082】さらに、表1に示したように、自動両面2
面目と手差し2面印字では、1面印字後に2面目が印字
にはいる時間が自動両面印字の方が早く、1面目印字後
の転写材が機内を通過して外気にさらされずに2面目印
字に供される関係で、自動両面2面印字の方が手差し2
面印字時よりも爆発防止のために必要な転写電流が多い
ことがわかる。それに対し、両者の転写材先端での転写
AD値の差は小さく、両者を見分けるのは難しい。ま
た、低湿環境では転写材抵抗による転写AD値差が小さ
く、印字面の見分けが難しいことがわかる。
Further, as shown in Table 1, automatic double-sided 2
With double-sided printing and double-sided printing, the time for printing on the second side after printing on the first side is faster in automatic double-sided printing, and the transfer material after printing on the first side passes through the machine and is printed on the second side without being exposed to the outside air. Due to the fact that it is provided for
It can be seen that the transfer current required to prevent explosion is higher than when printing on the surface. On the other hand, the difference between the transfer AD values at the tip of the transfer material is small, and it is difficult to distinguish the two. Further, it can be seen that in a low humidity environment, the difference in the transfer AD value due to the resistance of the transfer material is small, and it is difficult to distinguish the printed surface.

【0083】また、本発明では画像の有無による転写電
流の変化をなくすために、転写材余白で転写AD値の検
知を行っている。しかし、この検知タイミングでは転写
電流が完全に飴和しない状態で転写AD値の検知を行う
ことになるため、ソフト上の転写材先端と実際の転写材
先端の搬送速度のばらつきよるずれ、CPU内のタイマ
ーカウントの誤差による検知時間のタイミングのずれな
どによって前記転写AD値はある程度ばらつきを持って
検知されてしまう。
In the present invention, the transfer AD value is detected in the margin of the transfer material in order to eliminate the change in the transfer current depending on the presence or absence of an image. However, at this detection timing, the transfer AD value is detected in a state where the transfer current does not completely relieve the candy. Therefore, the deviation due to the variation in the transfer speed of the transfer material tip on the software and the actual transfer material tip causes a deviation in the CPU. The transfer AD value is detected with a certain degree of variation due to a deviation in the timing of the detection time due to an error in the timer count.

【0084】そのために誤検知される可能性もある。Therefore, there is a possibility that an erroneous detection may occur.

【0085】したがって、いずれの条件下でも最適な転
写制御式決定を行うために、本発明では給紙口情報によ
り印字面を推定し、その印字面に応じて転写制御式切り
分けのしきい値を決定することでより転写材抵抗の切り
分け精度をあげている。
Therefore, in order to determine the optimum transfer control method under any condition, the present invention estimates the printing surface from the paper feed port information, and sets the threshold value of the transfer control separation according to the printing surface. The accuracy of the transfer material resistance is improved by making the determination.

【0086】本実施例では次に示す式3、式4、式5の
ように、3つの制御式を用意した。式3、式4、式5か
ら算出される転写電圧の関係は、Vt1l <Vt1m <Vt1
h である。
In this embodiment, three control expressions are prepared as shown in Expression 3, Expression 4, and Expression 5 below. The relationship between the transfer voltages calculated from Expression 3, Expression 4, and Expression 5 is Vt1l <Vt1m <Vt1.
h.

【0087】Vt1l =0.7×Vt0+800・・・式3 (普通紙1面目&高抵抗紙1面目用制御式、単位はすべ
て[V]) Vt1m =0.8×Vt0+900・・・式4 (普通紙2面目用制御式、単位はすべて[V]) Vt1h =0.8×Vt0+1100・・・式5 (高抵抗紙2面目用制御式、単位はすべて[V]) 本実施例では、給紙口としてカセット給紙、手差し給
紙、自動両面給紙という3つの給紙口を想定し、それぞ
れ、AD値のしきいを表2に示すように設定した。自動
両面給紙口からの給紙の場合、印字面は2面目のみと特
定し、主に転写材種を切り分けるためのしきい値設定と
なっており、カセット給紙は逆に1面印字のみと判断し
て、こちらも転写材種を切り分ける設定となっている。
手差し給紙口からの給紙は、片面印字、手差し両面印字
両方あると想定し、しきい値の設定を行っている。
Vt1l = 0.7 × Vt0 + 800 ... Equation 3 (control equation for the first surface of plain paper and the first surface of high-resistance paper, all units are [V]) Vt1m = 0.8 × Vt0 + 900 ... Equation 4 ( Control formula for the second surface of plain paper, all units are [V]) Vt1h = 0.8 × Vt0 + 1100 ... Equation 5 (Control formula for second surface of high resistance paper, all units are [V]) In this embodiment, Assuming that there are three paper feed openings, that is, cassette feed, manual feed, and automatic double-sided feed, the threshold of the AD value is set as shown in Table 2. When feeding from the automatic double-sided paper feed port, the printing side is specified as the second side only, and the threshold value is set mainly for separating the transfer material type. On the contrary, cassette feeding is only one side printing. Therefore, it is also set to separate the transfer material type.
The threshold value is set on the assumption that both single-sided printing and manual double-sided printing are performed from the manual feed port.

【0088】表2に、各給紙口の転写ADしきい値と、
対応する転写制御式を示す。なお、本実施例で用いた画
像形成装置は、AD=120が転写電流4.5μAに相
当する。
Table 2 shows the transfer AD threshold value of each sheet feeding port,
The corresponding transcription control formula is shown. In the image forming apparatus used in this embodiment, AD = 120 corresponds to a transfer current of 4.5 μA.

【0089】[0089]

【表2】 [Table 2]

【0090】なお、ここで決定した転写電圧Vtは転写
AD値検知後すぐに転写ローラに印加するが、高圧は約
10msecで目標値まで立ち上がり、この転写バイア
スの切り替えに起因する画像不良は発生しなかった。
The transfer voltage Vt determined here is applied to the transfer roller immediately after the detection of the transfer AD value, but the high voltage rises to the target value in about 10 msec, and an image defect due to the switching of the transfer bias occurs. There wasn't.

【0091】本実施例を適用した画像形成装置で、各環
境で普通紙、高抵抗紙に印字を行ったが、いずれの場合
も爆発も突き抜けもない良好な画像が得られた。
Printing was performed on plain paper and high-resistance paper in each environment with the image forming apparatus to which this embodiment was applied. In each case, good images were obtained without explosion or penetration.

【0092】なお、本例では転写制御式を3つ用意し、
転写AD値のしきい値を給紙口に応じてそれぞれ一つ、
もしくは二つずつもうけて制御式の選択を行ったが、あ
らかじめ設定する制御式は2本以上であればいくつ設定
しても良い。その場合、制御式の設定数に応じた転写A
D値のしきい値を設定しておく。
In this example, three transfer control formulas are prepared,
One transfer AD value threshold value for each paper feed port,
Alternatively, two control equations are selected, but any number of control equations may be set in advance as long as two or more control equations are set. In that case, transfer A according to the set number of control formulas
The threshold value of D value is set.

【0093】以上説明したように、PTVC制御方式を
用い、転写材先端で転写材抵抗検知を行った結果によっ
て印字中の転写電圧を決定する系において、制御式の切
り分けを行うしきい値を給紙口情報を参照して決定する
ことで、転写材抵抗値と印字面の切り分け精度が上が
り、それぞれの転写材、印字面に対し、良好な画像を得
ることが可能となる。
As described above, in the system that uses the PTVC control method and determines the transfer voltage during printing based on the result of detection of the transfer material resistance at the transfer material front end, the threshold value for performing the control type separation is supplied. By determining with reference to the paper edge information, the transfer material resistance value and the accuracy of separating the printing surface are improved, and it becomes possible to obtain a good image on each of the transfer material and the printing surface.

【0094】〈実施例2〉(図9・図10) 本実施例では、転写材先端が転写ニップ部Nに突入した
際の転写電流をモニタして転写電圧を決定する画像形成
装置において、転写中に印加する転写電圧を選択するた
めのしきいとなる転写AD値を、給紙口情報と転写ロー
ラ抵抗検知結果を参照して変更する例を示す。
<Embodiment 2> (FIGS. 9 and 10) In this embodiment, in the image forming apparatus which determines the transfer voltage by monitoring the transfer current when the front end of the transfer material enters the transfer nip portion N, transfer is performed. An example is shown in which the transfer AD value, which serves as a threshold for selecting the transfer voltage applied inside, is changed with reference to the feed port information and the transfer roller resistance detection result.

【0095】転写AD値は、転写材Pの抵抗値状態によ
って変化することは前述の実施例で説明したとおりだ
が、この転写AD値は、図9に示すように転写部材であ
る転写ローラ5の抵抗値に応じても変化する。
As described in the above embodiment, the transfer AD value changes depending on the resistance value state of the transfer material P, but the transfer AD value of the transfer roller 5 as the transfer member is as shown in FIG. It also changes depending on the resistance value.

【0096】図9は横軸がPTVCによる抵抗検知結果
で、右に行けば行くほど転写ローラ抵抗値が高い状態を
示し、それに対する普通紙2面と高抵抗紙2面の転写A
D値をプロットしている。
FIG. 9 shows the resistance detection result by PTVC on the abscissa, showing that the transfer roller resistance value is higher toward the right, and the transfer A of the plain paper 2 surface and the high resistance paper 2 surface against that is shown.
The D value is plotted.

【0097】転写材Pの抵抗値の違いによって生じる転
写電流の差は、非転写時の転写の系のインピーダンスに
対する、転写材Pが入った場合の転写の系全体のインピ
ーダンスの上昇率が高い場合に大きくなる。非転写時の
転写の系全体のインピーダンスが低い場合、転写材Pの
抵抗値差による転写電流の差は大きく、高抵抗紙使用時
の転写AD値の降下量も大きくなる。逆に転写の系全体
のインピーダンスが高い場合、転写材Pの抵抗値差によ
る電流差も少なくなり、結果として高抵抗紙使用時の転
写AD値の降下量は普通紙に対し小さくなる。
The difference in the transfer current caused by the difference in the resistance value of the transfer material P is caused when the increase rate of the impedance of the entire transfer system when the transfer material P is contained is high with respect to the impedance of the transfer system during non-transfer. Grows to. When the impedance of the entire transfer system at the time of non-transfer is low, the difference in the transfer current due to the difference in the resistance value of the transfer material P is large, and the drop amount of the transfer AD value when using high-resistance paper is also large. Conversely, when the impedance of the entire transfer system is high, the current difference due to the resistance value difference of the transfer material P is also small, and as a result, the drop amount of the transfer AD value when using high-resistance paper is smaller than that of plain paper.

【0098】このように、転写AD値の変化量は、転写
ローラ5の抵抗値に応じても変化する。特に使用する転
写ローラ5の抵抗値が環境変動などによって変動が激し
い画像形成装置では、転写ローラ5の抵抗値変化を無視
して転写AD値のしきい値を設定するのは難しくなって
くる。
As described above, the change amount of the transfer AD value also changes according to the resistance value of the transfer roller 5. In particular, in an image forming apparatus in which the resistance value of the transfer roller 5 used is greatly changed due to environmental changes, it becomes difficult to set the threshold value of the transfer AD value while ignoring the change in the resistance value of the transfer roller 5.

【0099】このような転写構成の画像形成装置の場
合、この差を考慮するために、転写電圧を決定するため
のしきい値を、前記実施例1であげたように給紙口情報
を参照するのに加え、PTVCの検知結果に応じて変更
するとよい。
In the case of the image forming apparatus having such a transfer structure, in order to take this difference into consideration, the threshold value for determining the transfer voltage is referred to the paper feed port information as described in the first embodiment. In addition to this, it may be changed according to the detection result of PTVC.

【0100】これによって、転写ローラ5の抵抗値によ
らず、転写材抵抗値の切り分けができ、良好な画像を得
ることができる。
As a result, the resistance value of the transfer material can be divided regardless of the resistance value of the transfer roller 5, and a good image can be obtained.

【0101】本実施例では、図10に示すように、転写
ADのしきい値を転写ローラ抵抗検知結果と転写AD値
の関数として設定する。
In this embodiment, as shown in FIG. 10, the transfer AD threshold value is set as a function of the transfer roller resistance detection result and the transfer AD value.

【0102】前述の実施例1と同一構成の画像形成装置
を用いてPTVCによる転写ローラ抵抗検知の結果Vt0
と、普通紙、高抵抗紙の1面、2面目印字時の転写材先
端での転写AD値の関係を高温環境(温度32.5
℃)、常温環境(温度23℃)、低温環境(温度15
℃)でそれぞれもとめ、表3に示す転写ADしきい式で
転写制御を決定することにした。
As a result of the transfer roller resistance detection by PTVC, Vt0, using the image forming apparatus having the same structure as in the first embodiment.
And the relationship between the transfer AD value at the front end of the transfer material at the time of printing the first and second surfaces of plain paper and high-resistance paper.
℃), normal temperature environment (temperature 23 ℃), low temperature environment (temperature 15
C.), and determined the transcription control by the transcription AD threshold method shown in Table 3.

【0103】なお、ここで用いた画像形成装置は転写電
圧の出力最大値が5kVのトランスを使用してぉり、V
t0は0.5kV〜4kVの範囲で検知される構成であ
り、表3に示した式の中ではVt0をトランスの最大電圧
5kVを256分割したPWM値(PWM0と表記す
る)として表している。
The image forming apparatus used here uses a transformer having a maximum transfer voltage output of 5 kV.
t0 is detected in the range of 0.5 kV to 4 kV, and in the formula shown in Table 3, Vt0 is represented as a PWM value (expressed as PWM0) obtained by dividing the maximum voltage of the transformer of 5 kV into 256.

【0104】[0104]

【表3】 [Table 3]

【0105】本実施例を適用した画像形成装置で、高温
環境(温度32・5℃)、常温環境(温度23℃)、低
温環境(温度15℃)で普通紙、高抵抗紙の片面、自動
両面印字を行ったが、いずれの環境、印字面でも良好な
画像が得られた。
In the image forming apparatus to which this embodiment is applied, plain paper, high-resistance paper on one side, automatically in high temperature environment (temperature 32.5 ° C.), room temperature environment (temperature 23 ° C.), and low temperature environment (temperature 15 ° C.) Double-sided printing was performed, but good images were obtained in any environment and on the printed surface.

【0106】このように、転写材先端での転写電流検知
によって転写制御を決定する系において、転写AD値に
よる転写制御を決定するしきい値を転写ローラ抵抗検知
結果を参照して決定することで、より転写材抵抗値の切
り分け精度があがり、転写ローラ抵抗や環境によらず良
好な画像が得られるようになる。
As described above, in the system in which the transfer control is determined by detecting the transfer current at the front end of the transfer material, the threshold value for determining the transfer control by the transfer AD value is determined by referring to the transfer roller resistance detection result. As a result, the accuracy of the transfer material resistance value division can be improved, and a good image can be obtained regardless of the transfer roller resistance and the environment.

【0107】〈実施例3〉(図11) 本実施例では、転写材先端が転写ニップ部Nに突入した
際の転写電流をモニタして転写電圧を決定する画像形成
装置において、転写中に印加する転写電圧を選択するた
めのしきいとなる転写AD値を、給紙口情報と、装置に
通紙される転写材のサイズ情報を参照して変更する例を
示す。
<Embodiment 3> (FIG. 11) In this embodiment, in the image forming apparatus for monitoring the transfer current when the leading end of the transfer material enters the transfer nip portion N to determine the transfer voltage, the voltage is applied during transfer. An example is shown in which the transfer AD value, which serves as a threshold for selecting the transfer voltage to be set, is changed with reference to the paper feed port information and the size information of the transfer material that is passed through the apparatus.

【0108】本実施例では、転写ADしきい値を手差し
給紙・カセット給紙・自動両面給紙の3つの給紙口と、
A4/レター/リーガルサイズの大サイズ系と、B5/
エグゼクティブなどの小サイズ系の2つの紙サイズ系統
の組み合わせに対してそれぞれ設定した。
In this embodiment, the transfer AD threshold is set to three paper feed ports of manual paper feed, cassette paper feed, and automatic double-sided paper feed.
A4 / Letter / Large size system and B5 /
It was set for each combination of two small size paper sizes such as executives.

【0109】図11に、同一抵抗値の転写材で、サイズ
違いの転写材を印字した場合の転写AD値の差を示す。
図11に示すように、幅210mmのA4サイズ紙と幅
約216mmのレターサイズ紙では、転写材先端で流れ
る転写AD値がほとんど同一であるのに対し、幅182
mmのB5サイズ紙や幅約184mmのエグゼクティブ
サイズ紙はいずれもA4サイズ紙、レターサイズ紙より
も転写AD値が大きくなっている。これはA4サイズ、
レターサイズの転写材通紙中は、転写ローラ5の中抵抗
弾性層部5bの長手ほぼ全域が転写材通紙域となるのに
対し、B5サイズやエグゼクティブサイズの場合、通紙
域の一部にしか転写材がないために転写ローラ弾性層部
5bが感光ドラム1に直接当接している領域があり、そ
の部分では転写ローラ5から感光ドラム1に対し転写電
流が直接流れるためである。したがって、同一の転写材
抵抗値の場合は、転写材幅が狭いほど転写AD値が大き
くなる。
FIG. 11 shows the difference between the transfer AD values when the transfer materials having the same resistance value and different sizes are printed.
As shown in FIG. 11, in the A4 size paper having a width of 210 mm and the letter size paper having a width of about 216 mm, the transfer AD values flowing at the leading end of the transfer material are almost the same.
The B5 size paper of mm and the executive size paper of about 184 mm width each have a transfer AD value larger than that of the A4 size paper and the letter size paper. This is A4 size,
During the passage of the letter size transfer material, almost the entire length of the medium resistance elastic layer portion 5b of the transfer roller 5 is the transfer material paper passage area, whereas in the case of B5 size or executive size, a part of the paper passage area is provided. This is because there is a region where the transfer roller elastic layer portion 5b directly contacts the photosensitive drum 1 because there is only a transfer material, and a transfer current flows directly from the transfer roller 5 to the photosensitive drum 1 in that region. Therefore, when the transfer material resistance value is the same, the smaller the transfer material width, the larger the transfer AD value.

【0110】したがって、狭幅の転写材Pを使用する場
合は、最適な転写電圧を決定するためには紙サイズを考
慮して転写ADのしきいを設定する必要がある。
Therefore, when the transfer material P having a narrow width is used, it is necessary to set the threshold of the transfer AD in consideration of the paper size in order to determine the optimum transfer voltage.

【0111】本実施例では転写材サイズの指定があった
場合には、その転写材サイズ情報を参照して下の表3に
示すようなしきい値設定で転写電圧を決定することにし
た。
In this embodiment, when the transfer material size is designated, the transfer voltage is determined by referring to the transfer material size information and setting the threshold values as shown in Table 3 below.

【0112】表4に示すように、本実施例では、転写材
サイズによって転写ADしきい値を一律で20ずつシフ
トしている。
As shown in Table 4, in this embodiment, the transfer AD threshold value is uniformly shifted by 20 depending on the transfer material size.

【0113】なお、不定形サイズなどに対応するため
に、転写材幅を検知するセンサーを転写材搬送経路中に
設け、この転写材幅検知センサーの検知結果に応じて転
写ADしきい値を変更してもよい。
In order to deal with irregular sizes, a sensor for detecting the transfer material width is provided in the transfer material conveying path, and the transfer AD threshold value is changed according to the detection result of the transfer material width detection sensor. You may.

【0114】また、前記実施例にあげた転写ローラ抵抗
値検知結果と転写材サイズ情報の双方を参照して転写A
Dしきい値を設定してもよい。
Further, the transfer A is performed by referring to both the transfer roller resistance value detection result and the transfer material size information described in the above embodiment.
You may set a D threshold value.

【0115】[0115]

【表4】 [Table 4]

【0116】本例のように、転写材サイズ情報を参照す
ることで、より転写材抵抗値の切り分け精度が上がり、
いずれに転写材サイズでも良好な画像を得ることができ
る。
As in this example, by referring to the transfer material size information, the accuracy of separating the transfer material resistance value is improved,
In any case, a good image can be obtained regardless of the transfer material size.

【0117】〈その他〉 1)像担持体に対するトナー像の形成は、像担持体とし
て電子写真感光体を用いた電子写真プロセスに限られる
ものではなく、その他、像担持体として静電記録誘電体
を用いた静電記録プロセス、像担持体として磁気記録磁
性体を用いた磁気記録プロセスなど、像担持体にトナー
像を形成担持させる作像手法であればよい。
<Others> 1) Formation of a toner image on an image bearing member is not limited to an electrophotographic process using an electrophotographic photosensitive member as an image bearing member. An image forming method for forming and carrying a toner image on the image carrier may be used, such as an electrostatic recording process using a magnetic recording process using a magnetic recording magnetic substance as an image carrier.

【0118】2)接触転写部材はローラ体の形態に限ら
れず、回転ベルト体の形態などであってもよい。
2) The contact transfer member is not limited to the form of a roller body, but may be a form of a rotary belt body.

【0119】3)本発明において、転写材には中間転写
ベルトや中間転写ドラムのような中間転写材も含まれ
る。
3) In the present invention, the transfer material includes an intermediate transfer material such as an intermediate transfer belt or an intermediate transfer drum.

【0120】[0120]

【発明の効果】以上説明したように本発明によれば、P
TVC制御により転写電圧を決定する転写制御方式に加
えて、転写材先端からPTVC検知結果に応じた転写電
圧を転写材に与えて転写材先端が転写ニップ部に挿入さ
れてから一定時間後の転写電流値をモニタし、前記転写
材先端での転写電流モニタ結果と給紙口情報から、あら
かじめ抵抗値の異なる転写材に対して最適化された複数
の転写電圧値から最適な印加電圧を決定して印字中に定
電圧印加することで、いずれの抵抗値の転写材でも良好
な画像を得ることが可能になる。
As described above, according to the present invention, P
In addition to the transfer control method in which the transfer voltage is determined by TVC control, a transfer voltage according to the PTVC detection result is applied to the transfer material from the transfer material front end, and transfer is performed after a certain time has elapsed since the transfer material front end was inserted into the transfer nip portion. The current value is monitored, and the optimum applied voltage is determined from a plurality of transfer voltage values optimized in advance for transfer materials having different resistance values from the transfer current monitoring result at the transfer material tip and the feed port information. By applying a constant voltage during printing, a good image can be obtained with a transfer material having any resistance value.

【0121】さらに、転写ローラ抵抗検知結果、紙サイ
ズ情報等を参照することで、より最適な転写電圧設定を
行うことが可能になる。
Furthermore, by referring to the transfer roller resistance detection result, paper size information, etc., it is possible to set the transfer voltage more optimally.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1における画像形成装置例の概略構成
模型図
FIG. 1 is a schematic configuration model diagram of an example of an image forming apparatus according to a first exemplary embodiment.

【図2】 転写ローラの構成説明図FIG. 2 is an explanatory diagram of the structure of a transfer roller.

【図3】 転写ローラ抵抗測定法の説明図FIG. 3 is an explanatory diagram of a transfer roller resistance measuring method.

【図4】 PVTC制御の説明図FIG. 4 is an explanatory diagram of PVTC control.

【図5】 実施例1の転写制御アルゴリズムのフローチ
ャート
FIG. 5 is a flowchart of a transfer control algorithm according to the first embodiment.

【図6】 転写材先端での転写電流の変化を解説する図FIG. 6 is a diagram illustrating changes in the transfer current at the tip of the transfer material.

【図7】 各転写材種、印字面の画像マージンの関係を
示す図
FIG. 7 is a diagram showing a relationship between each transfer material type and an image margin of a printing surface.

【図8】 環境、転写材種による転写AD値の関係を示
す概略図
FIG. 8 is a schematic diagram showing the relationship between the transfer AD value depending on the environment and the transfer material type.

【図9】 実施例2における転写ローラ抵抗値と転写A
D値の関係を示す図
FIG. 9 is a transfer roller resistance value and transfer A in the second embodiment.
The figure which shows the relationship of D value

【図10】 転写AD値設定を示す図FIG. 10 is a diagram showing transfer AD value setting.

【図11】 実施例3における転写材サイズと転写AD
値の関係を示す図
FIG. 11: Transfer material size and transfer AD in Example 3
Diagram showing value relationships

【符号の説明】[Explanation of symbols]

1‥‥感光ドラム、5‥‥転写ローラ、11a‥‥レジ
ストセンサー、21a‥‥給紙センサー、21a‥‥給
紙センサー、32‥‥DCコントローラ、34‥‥転写
用高圧電源
1 ... Photosensitive drum, 5 ... Transfer roller, 11a ... Registration sensor, 21a ... Paper feed sensor, 21a ... Paper feed sensor, 32 ... DC controller, 34 ... High voltage power supply for transfer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金森 昭人 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 2H027 DA39 DC04 DC19 DC20 DE04 DE07 DE10 EA03 EC06 EC20 ED17 ED18 ED24 EE07 EF10 FA05 FA13 FA15 2H200 FA18 GA14 GA16 GA18 GA23 GA34 GA45 GA54 GA59 GB12 GB26 GB50 HA03 HA28 HB12 HB22 HB45 HB46 HB47 HB48 JA02 JA25 JA26 JA27 JA28 JA29 MA03 MA08 MA20 MB06 MC02 NA02 NA08 NA09 NA15 PA05 PA10 PA20 PA23 PA29 PB05 PB08 PB12 PB38    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akito Kanamori             3-30-2 Shimomaruko, Ota-ku, Tokyo             Non non corporation F-term (reference) 2H027 DA39 DC04 DC19 DC20 DE04                       DE07 DE10 EA03 EC06 EC20                       ED17 ED18 ED24 EE07 EF10                       FA05 FA13 FA15                 2H200 FA18 GA14 GA16 GA18 GA23                       GA34 GA45 GA54 GA59 GB12                       GB26 GB50 HA03 HA28 HB12                       HB22 HB45 HB46 HB47 HB48                       JA02 JA25 JA26 JA27 JA28                       JA29 MA03 MA08 MA20 MB06                       MC02 NA02 NA08 NA09 NA15                       PA05 PA10 PA20 PA23 PA29                       PB05 PB08 PB12 PB38

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】像担持体と、 前記像担持体と圧接ニップ部を形成し該圧接ニップ部に
挿入された転写材に像担持体上のトナー像を転写させる
転写部材と、 前記転写部材に電圧を印加する電圧印加手段と、 前記電圧印加手段から出力される電流値を検知する電流
検知回路と、 前記圧接ニップ部に転写材が挿入されてから一定時間後
の前記電流検知回路の電流検知結果と給紙口情報を参照
してあらかじめ複数用意された転写電圧値から前記電圧
印加手段の出力電圧を決定し、印字中に前記電圧印加手
段から前記転写部材に前記決定の電圧を印加させる制御
手段と、 を有することを特徴とする画像形成装置。
1. An image carrier, a transfer member which forms a pressure contact nip portion with the image carrier, and transfers a toner image on the image carrier to a transfer material inserted in the pressure contact nip portion, and the transfer member. A voltage applying unit for applying a voltage, a current detecting circuit for detecting a current value output from the voltage applying unit, and a current detecting circuit for detecting a current after a fixed time has elapsed since the transfer material was inserted in the pressure contact nip portion. Control for determining the output voltage of the voltage applying unit from a plurality of transfer voltage values prepared in advance with reference to the result and the paper feed port information, and applying the determined voltage from the voltage applying unit to the transfer member during printing. An image forming apparatus comprising:
【請求項2】像担持体と、 前記像担持体と圧接ニップ部を形成し該圧接ニップ部に
挿入された転写材に像担持体上のトナー像を転写させる
転写部材と、 前記転写部材に電圧を印加する電圧印加手段と、 前記電圧印加手段から出力される電流値を検知する電流
検知回路と、 前記圧接ニップ部に転写材がない状態で前記転写部材の
抵抗を検知する抵抗検知手段と、 前記圧接ニップ部に転写材が挿入されてから一定時間後
の前記電流検知回路の電流検知結果と給紙口情報を参照
してあらかじめ複数用意された転写電圧値から前記電圧
印加手段の出力電圧を決定し、印字中に前記電圧印加手
段から前記転写部材に前記決定の電圧を印加させる制御
手段と、 を有し、前記印加電圧決定のためのしきい値を、前記抵
抗検知手段の転写部材抵抗検知結果と、転写材サイズ情
報の少なくとも一方の情報を参照して変更することを特
徴とする画像形成装置。
2. An image carrier, a transfer member which forms a pressure contact nip portion with the image carrier, and transfers a toner image on the image carrier to a transfer material inserted in the pressure contact nip portion, and the transfer member. Voltage applying means for applying a voltage, a current detecting circuit for detecting a current value output from the voltage applying means, and resistance detecting means for detecting the resistance of the transfer member in the absence of the transfer material in the pressure contact nip portion. The output voltage of the voltage applying unit is determined from a plurality of transfer voltage values prepared in advance by referring to the current detection result of the current detection circuit and the paper feed port information after a predetermined time has elapsed since the transfer material was inserted into the pressure contact nip portion. And a control means for applying the determined voltage from the voltage application means to the transfer member during printing, and a threshold value for determining the applied voltage is set to the transfer member of the resistance detection means. Resistance detection result , An image forming apparatus and changes with reference to at least one of the information of the transfer material size information.
JP2002110567A 2002-04-12 2002-04-12 Image forming device Pending JP2003302846A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002110567A JP2003302846A (en) 2002-04-12 2002-04-12 Image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002110567A JP2003302846A (en) 2002-04-12 2002-04-12 Image forming device

Publications (2)

Publication Number Publication Date
JP2003302846A true JP2003302846A (en) 2003-10-24
JP2003302846A5 JP2003302846A5 (en) 2005-04-28

Family

ID=29393667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002110567A Pending JP2003302846A (en) 2002-04-12 2002-04-12 Image forming device

Country Status (1)

Country Link
JP (1) JP2003302846A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010799A (en) * 2005-06-28 2007-01-18 Fuji Xerox Co Ltd Image forming apparatus
JP2007193320A (en) * 2005-12-22 2007-08-02 Canon Inc Image forming apparatus
JP2008152168A (en) * 2006-12-20 2008-07-03 Konica Minolta Business Technologies Inc Image forming apparatus and image forming method
JP2008276099A (en) * 2007-05-07 2008-11-13 Fuji Xerox Co Ltd Conveying device and image forming apparatus
US8045875B2 (en) 2007-11-14 2011-10-25 Ricoh Company, Limited Image forming apparatus and image forming method capable of generating stable transfer electric field
JP2017198885A (en) * 2016-04-28 2017-11-02 京セラドキュメントソリューションズ株式会社 Image forming apparatus
JP2020016729A (en) * 2018-07-24 2020-01-30 株式会社リコー Image forming apparatus
US11143990B2 (en) 2019-09-10 2021-10-12 Fujifilm Business Innovation Corp. Image forming apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010799A (en) * 2005-06-28 2007-01-18 Fuji Xerox Co Ltd Image forming apparatus
JP4747694B2 (en) * 2005-06-28 2011-08-17 富士ゼロックス株式会社 Image forming apparatus
JP2007193320A (en) * 2005-12-22 2007-08-02 Canon Inc Image forming apparatus
JP2008152168A (en) * 2006-12-20 2008-07-03 Konica Minolta Business Technologies Inc Image forming apparatus and image forming method
JP2008276099A (en) * 2007-05-07 2008-11-13 Fuji Xerox Co Ltd Conveying device and image forming apparatus
US8045875B2 (en) 2007-11-14 2011-10-25 Ricoh Company, Limited Image forming apparatus and image forming method capable of generating stable transfer electric field
JP2017198885A (en) * 2016-04-28 2017-11-02 京セラドキュメントソリューションズ株式会社 Image forming apparatus
JP2020016729A (en) * 2018-07-24 2020-01-30 株式会社リコー Image forming apparatus
JP7061286B2 (en) 2018-07-24 2022-04-28 株式会社リコー Image forming device
US11143990B2 (en) 2019-09-10 2021-10-12 Fujifilm Business Innovation Corp. Image forming apparatus

Similar Documents

Publication Publication Date Title
JP4532629B2 (en) Image forming apparatus
JP2019200283A (en) Image forming device
US6205299B1 (en) Image forming apparatus in which whether transfer member should be constant-current-controlled or constant-voltage-controlled is selected depending on thickness of transfer material
JPH11258931A (en) Image forming device
JP4250269B2 (en) Image forming apparatus
JP2003302846A (en) Image forming device
JP4343370B2 (en) Image forming apparatus
JP2004280069A (en) Image forming apparatus
JP2003302846A5 (en)
KR20170138062A (en) Image forming apparatus
JP4323775B2 (en) Image forming apparatus
JP7350536B2 (en) Image forming device
JPH08123211A (en) Image forming device
JPH1097147A (en) Image forming device
JP2004045897A (en) Image forming apparatus
JPH05333722A (en) Image forming device
JPH09325625A (en) Image forming device
JP3826590B2 (en) Image forming apparatus
JP2005173002A (en) Image forming apparatus
JPH11109768A (en) Image forming device
JP2000075694A (en) Image forming device
JP5262622B2 (en) Image forming apparatus
JP4083974B2 (en) Image forming apparatus
JP4510249B2 (en) Image forming apparatus
JP2006072207A (en) Image forming apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123