JP2003301209A - Tap hole of blast furnace, and tap flume of blast furnace - Google Patents

Tap hole of blast furnace, and tap flume of blast furnace

Info

Publication number
JP2003301209A
JP2003301209A JP2002110461A JP2002110461A JP2003301209A JP 2003301209 A JP2003301209 A JP 2003301209A JP 2002110461 A JP2002110461 A JP 2002110461A JP 2002110461 A JP2002110461 A JP 2002110461A JP 2003301209 A JP2003301209 A JP 2003301209A
Authority
JP
Japan
Prior art keywords
blast furnace
sic
mass
tap
taphole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002110461A
Other languages
Japanese (ja)
Inventor
Masashi Nakabayashi
正史 中林
Tetsuo Nose
哲郎 野瀬
Yutaka Fujiwara
豊 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002110461A priority Critical patent/JP2003301209A/en
Publication of JP2003301209A publication Critical patent/JP2003301209A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ceramic Products (AREA)
  • Blast Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To extend the lifetime of a tap hole and a tap flume of a blast furnace, in order to stabilize operation of the blast furnace and improve the working conditions. <P>SOLUTION: The tap hole and the tap flume are made of an SiC ceramic sintered compact which includes 96 mass% or more SiC and sintering auxiliaries of 4 mass% or less, with the total of 99 mass% or more, and has a porosity of 5% or less. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高炉の作業条件改
善、操業安定化のための、高純度高緻密化SiCセラミ
ックス焼結体で構成される高炉出銑口、および出銑樋に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace taphole and a taphole gutter which are composed of a high-purity and highly-densified SiC ceramics sintered body for improving working conditions and stabilizing operation of the blast furnace. is there.

【0002】[0002]

【従来の技術】高炉から溶銑を取り出す出銑作業は、出
銑口を閉塞しているマッド材(例えばSiC−Al23
−カーボン質材にSiO2、Si34質材等を混合した
粘土状不定形耐火物)をドリルやハンマ等の開口機で穿
孔開口して行われる。開口された出銑口は、主に溶銑滓
に含まれる成分による化学的損耗で侵食され、徐々に径
が拡大し、銑鉄生成速度を大幅に上回るレベルまで出銑
速度が増加し、炉内溶融物レベルが出銑口より低い位置
まで低下する。この時、出銑口から炉内ガスが粉塵を伴
って突出し、溶融物が飛散する。従って、1箇所の出銑
口からいつまでも出銑を続けることは出来ず、開口から
ある時間経過後にマッド材を出銑口に充填して閉塞して
いる。次の出銑は、閉塞しておいた別の出銑口を開口し
て行われる。1箇所の出銑口の開口から閉塞までの時間
は、出銑口材料の侵食速度に依存するが、現行の場合、
1回の出銑時間は約2〜4時間であるため、1基の高炉
の出銑回数は1日に7〜10回程度である。すなわち高
温下での重作業である出銑口の開口・閉塞作業が1日に
7〜10回行われている。さらに、出銑口径拡大による
出銑速度の変動で、高炉内の溶融物レベルも変動し、こ
れが操業、品質を不安定にしているという問題も生じて
いる。また、出銑口から出た溶銑及び溶滓は、大樋、溶
銑樋、溶滓樋といった出銑樋で貯留、銑滓分離され、ト
ーピードカー等へ排出されるが、これらの出銑樋の内張
りは、例えばAl23−SiC−C質材等のキャスタブ
ル耐火物等が使用されている。樋内張りのキャスタブル
耐火物も溶銑及び溶滓によって侵食されるため、損傷が
大きくなった時点で補修を受けることになる。現行の出
銑樋内張りのキャスタブル耐火物についても、溶銑滓に
よる侵食のため、その耐用寿命は十分でなく、出銑樋の
改修作業は20日間の操業に1回程度の頻度で行われて
いるのが現状である。
2. Description of the Related Art The tapping operation for taking out hot metal from a blast furnace is carried out by using a mud material (for example, SiC-Al 2 O 3 ) which has a closed tap hole.
- are carried out pierced aperture in the carbonaceous material with SiO 2, Si 3 N 4 clayey castable refractory mixed quality material or the like) drill and opening machine such as a hammer. The opened tap hole is eroded mainly by chemical wear due to the components contained in the molten pig iron, the diameter gradually expands, the tapping rate increases to a level that greatly exceeds the pig iron production rate, and melting in the furnace The object level is lowered to a position lower than the taphole. At this time, the in-furnace gas protrudes from the tap hole with dust, and the melted material is scattered. Therefore, it is impossible to continue tapping from one taphole forever, and after a certain time has elapsed from the opening, the taphole is filled with mud material to close the taphole. The next tapping is performed by opening another closed tapping port. The time from the opening of one taphole to the blockage depends on the erosion rate of the taphole material.
Since one tapping time is about 2 to 4 hours, the tapping frequency of one blast furnace is about 7 to 10 times a day. That is, the opening and closing work of the taphole, which is a heavy work under high temperature, is performed 7 to 10 times a day. Further, there is also a problem that the molten metal level in the blast furnace also fluctuates due to the fluctuation of the tapping speed due to the enlargement of the tapping hole diameter, which causes unstable operation and quality. Also, the hot metal and molten slag from the tap hole are stored in the tap gutter such as large gutter, hot metal gutter, and slag gutter, separated from the slag, and discharged to a torpedo car, etc., but the lining of these tap gutters is For example, castable refractories such as Al 2 O 3 —SiC—C material are used. Castable refractories lined in the gutter are also eroded by the hot metal and slag, so they will be repaired when the damage becomes severe. Even the current cast iron lined castable refractories have insufficient service life due to the erosion caused by the molten pig iron, and the refurbishment work of the taphole gutter is performed once every 20 days. is the current situation.

【0003】こうした状況を踏まえ、高炉の作業条件改
善、操業安定を目的として、出銑口、出銑樋の耐用寿命
を延長し、開口・閉塞作業の頻度、樋の改修頻度を低下
させるための技術の開発が行われてきた。
Under these circumstances, in order to improve the working conditions and stabilize the operation of the blast furnace, the service life of the tap hole and tap gutter is extended, and the frequency of opening and closing work and the frequency of repairing the gutter are reduced. Technology has been developed.

【0004】例えば、特開平7−316615号公報で
は、SiC−Si34−Al23質のスリーブ状耐火物
によって出銑口を形成することで、溶銑による出銑口の
拡大が少なく、長時間の出銑が可能になり、開口・閉塞
回数の減少が図れるとした技術が開示されている。しか
しながら、前述のスリーブ状耐火物は、耐食性を高める
上で最も重要な成分であるSiCが最高でも85質量%
と低い。組織の結合力を高めるためとしてSi34が添
加されているが、そのために耐食性が犠牲になってい
る。また、実施例によれば、焼成温度は1550℃と低
く、これは焼結体が十分に緻密化する温度ではない。従
って、この発明品は、従来高炉で使われてきた材料を著
しく上回るような耐食性は持ち合わせおらず、マッド材
にくらべて耐用寿命は長いものの、高炉操業改善の目的
のために十分な技術ではない。
For example, in Japanese Unexamined Patent Publication No. 7-316615, a sleeve-shaped refractory material of SiC-Si 3 N 4 -Al 2 O 3 is used to form the taphole, so that the taphole is not enlarged by the molten pig iron. A technique is disclosed in which the tapping can be performed for a long time and the number of times of opening and closing can be reduced. However, in the sleeve-shaped refractory mentioned above, SiC, which is the most important component for improving the corrosion resistance, is 85% by mass at the maximum.
And low. Si 3 N 4 is added in order to enhance the cohesive strength of the tissue, but at the expense of corrosion resistance. Further, according to the examples, the firing temperature is as low as 1550 ° C., which is not the temperature at which the sintered body is sufficiently densified. Therefore, the product of the present invention does not have a corrosion resistance that is significantly higher than the materials conventionally used in blast furnaces, and has a longer service life than mud materials, but is not a sufficient technique for the purpose of improving blast furnace operation. .

【0005】特開平8−225814号公報及び特開平
8−225815号公報においては、炭化珪素質材−ア
ルミナ質材、又は、炭化珪素質材−アルミナ質材−ムラ
イト質材の円筒状耐火物によって出銑口を形成すること
で、開口・閉塞回数の減少が図れるとした技術が開示さ
れているが、実施例によれば、この円筒状耐火物の気孔
率は最低でも11%程度と高く、SiC含有量は最高で
も90質量%〜95質量%と低い。この発明品も、従来
使われてきた材料よりも極めて優れると言えるような特
性は持っておらず、高炉操業改善のための満足いく技術
ではない。
In JP-A-8-225814 and JP-A-8-225815, a cylindrical refractory material of silicon carbide material-alumina material or silicon carbide material-alumina material-mullite material is used. A technique is disclosed in which the number of openings and closings can be reduced by forming a taphole, but according to the examples, the porosity of this cylindrical refractory is as high as at least about 11%, The SiC content is as low as 90% by mass to 95% by mass at the highest. This invented product also does not have the property that it can be said that it is extremely superior to the materials used conventionally, and is not a satisfactory technique for improving the operation of the blast furnace.

【0006】また、出銑樋には、施工性の点から不定形
耐火物が使用されることがほとんどである。一般に、不
定形耐火物は原料純度が低く、操業中の溶銑滓の熱によ
って低温で焼成されるため、高緻密化は望めない。樋用
の不定形耐火物の研究は多く行われているものの、前述
の理由から特性向上に限界があり、不定形耐火物では樋
の耐用寿命を十分に延長させることはできない。一方、
煉瓦積みの樋は不定形耐火物よりは寿命が長いが、従来
の耐火煉瓦には十分な耐用性がないために、従来の耐火
煉瓦を使用している限りは樋の耐用寿命の延長は十分な
ものではない。
[0006] In addition, in most cases, amorphous refractory is used for tapping gutter from the viewpoint of workability. In general, amorphous refractory has low raw material purity and is fired at a low temperature due to the heat of molten pig iron during operation, so high densification cannot be expected. Although much research has been conducted on irregularly shaped refractories for gutters, there is a limit to the improvement in properties for the reasons described above, and irregularly shaped refractories cannot sufficiently extend the useful life of the gutters. on the other hand,
Brick-stacked gutters have a longer life than amorphous refractories, but conventional refractory bricks do not have sufficient durability, so as long as conventional refractory bricks are used, gutter extension of service life is sufficient. It's not something.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明の目的
は、上記の問題点を解決し、これまでにない長時間の連
続使用を可能にする出銑口、出銑樋を提供し、高炉の作
業条件、操業を改善することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to solve the above problems and provide a taphole and a tappipe which enable continuous use for a long time, which has never been seen before, and to provide a blast furnace. To improve work conditions and operations.

【0008】[0008]

【課題を解決するための手段】高炉出銑口及び出銑樋
は、1500℃程度の溶銑、溶滓が共存する高温流動液
体が通過し、高温で大気にも触れる等、材料にとって極
めて厳しい環境である。
[Means for Solving the Problems] In a blast furnace taphole and tappipe, an extremely severe environment for materials, such as hot metal at about 1500 ° C. Is.

【0009】出銑口、出銑樋の長寿命化のためには、こ
れらの厳しい環境下でも溶損による寸法変化の小さい材
料が求められる。炭素耐火物は、耐溶銑性、耐溶滓性共
に高いが、酸化によって損傷する。Al23等の酸化物
は、耐溶銑性、耐酸化性は高いが、溶滓によって溶損す
る。Si34等の非酸化物は、耐溶滓性が高いが、溶銑
によって溶損し、耐酸化性も低い。本発明者らは、前述
の課題を解決するため実験、検討を重ねた結果、高純
度、高緻密化したSiCセラミックスは、溶滓及び酸化
に対してはセラミックス表面にSiO2のガラス層を形
成するものの、それ以上反応は進行せず、溶銑に対して
はセラミックス表面にSi−Fe金属間化合物、及びグ
ラファイトの反応相を形成するものの、反応相は溶銑に
溶解せず、溶損による寸法変化は起きないことを見出し
た。
In order to prolong the life of tapholes and tappipes, materials that are small in dimensional change due to melting loss even under these severe environments are required. Carbon refractories have high resistance to hot metal and high resistance to molten slag, but are damaged by oxidation. Oxides such as Al 2 O 3 have high hot metal resistance and high oxidation resistance, but are melted by the molten slag. Non-oxides such as Si 3 N 4 have a high slag resistance, but are eroded by the hot metal and have a low oxidation resistance. As a result of repeated experiments and studies for solving the above-mentioned problems, the present inventors have found that highly purified and highly densified SiC ceramics form a glass layer of SiO 2 on the surface of the ceramics against slag and oxidation. However, the reaction does not proceed any further, and although a reaction phase of Si-Fe intermetallic compound and graphite is formed on the ceramic surface for the hot metal, the reaction phase is not dissolved in the hot metal and the dimensional change due to melting loss. Found that it would not happen.

【0010】SiCが高い強度、耐磨耗性、耐食性を持
つことは以前から知られており、高炉及び高炉周辺部の
耐火物の原料として定形、不定形を問わずSiCは使用
されている。しかしながら、従来の耐火物の製造プロセ
スでは高純度のSiCを緻密化させることは難しく、耐
火物分野では材料中のSiC含有量が90質量%以上に
なると組織の結合力が弱くなり、耐用性の低下を招くと
されてきた。SiCの純度、焼結体の相対密度が低下す
ると、材料の強度、耐磨耗性、耐食性は著しく低下す
る。一般的なSiC質耐火物のSiC含有量は最も高い
ものでも90質量%程度で、焼結体には気孔が10%以
上含まれる。従って、従来の耐火材料においては、Si
C自体が本来持っている特性は十分に発揮されていな
い。こうしたことから、これまでSiC質材料の高炉で
の使用においては、1)溶銑に溶解し溶損する、2)酸
化環境での使用に限界がある、といった問題があるとさ
れてきた。しかし、本発明者らは研究を重ねた結果、前
述の問題はSiC自体の特性によるものではなく、Si
C質耐火物の原料純度の低さ、気孔率の高さによるもの
であり、高純度高緻密化SiCセラミックスは、溶銑、
溶滓、溶銑滓共存、酸化のどの環境でも極めて溶損しに
くいことを見出した。
It has been known for a long time that SiC has high strength, abrasion resistance and corrosion resistance, and SiC is used as a raw material for refractories in the blast furnace and the peripheral portion of the blast furnace regardless of a fixed shape or an amorphous shape. However, it is difficult to densify high-purity SiC in the conventional refractory manufacturing process, and in the refractory field, when the SiC content in the material is 90 mass% or more, the cohesive force of the structure becomes weak and It has been said to cause a decline. When the purity of SiC and the relative density of the sintered body decrease, the strength, wear resistance and corrosion resistance of the material decrease significantly. The highest SiC content of a general SiC refractory is about 90% by mass, and the sintered body contains 10% or more pores. Therefore, in conventional refractory materials, Si
The characteristics originally possessed by C itself have not been fully exerted. For these reasons, there has been a problem in the use of SiC-based materials in a blast furnace, that is, 1) melting and melting in hot metal and 2) a limit in use in an oxidizing environment. However, as a result of repeated studies by the present inventors, the above-mentioned problem is not due to the characteristics of SiC itself.
This is due to the low raw material purity and the high porosity of the C-type refractory material.
It was found that it is extremely difficult to melt in any environment of molten slag, coexistence of molten pig iron, and oxidation.

【0011】本発明は、以上の知見に基づいてなされた
ものであって、すなわち、SiCを96質量%以上、焼
結助剤を4質量%以下含有し、それらの合計が99質量
%以上であり、気孔率5%以下であるSiCセラミック
ス焼結体で構成されることを特徴とする高炉出銑口、及
び、SiCを96質量%以上、焼結助剤を4質量%以下
含有し、それらの合計が99質量%以上であり、気孔率
5%以下であるSiCセラミックス焼結体で構成される
ことを特徴とする高炉出銑樋、である。
The present invention has been made on the basis of the above findings, that is, it contains 96% by mass or more of SiC and 4% by mass or less of a sintering aid, and their total content is 99% by mass or more. And a blast furnace taphole characterized by being composed of a SiC ceramics sintered body having a porosity of 5% or less, and containing 96 mass% or more of SiC and 4 mass% or less of a sintering aid, Is a blast-furnace tapping gutter, which is composed of an SiC ceramics sintered body having a total of 99% by mass or more and a porosity of 5% or less.

【0012】本発明の新規な点は、従来の耐火物分野に
はなかった高い原料純度、相対密度のSiCセラミック
スを出銑口、出銑樋に適用した点であり、本発明の出銑
口、出銑樋を使用することによって、それらの耐用寿命
を大幅に延長でき、高炉の作業条件改善、操業安定化が
図れる。
A novel point of the present invention is that SiC ceramics having a high raw material purity and relative density, which were not in the conventional refractory field, are applied to tapholes and tappipes. , By using the tap iron gutter, the service life of them can be greatly extended, the working conditions of the blast furnace can be improved, and the operation can be stabilized.

【0013】[0013]

【発明の実施の形態】以下、本発明の詳細を説明する。BEST MODE FOR CARRYING OUT THE INVENTION The details of the present invention will be described below.

【0014】SiCセラミックスの焼結助剤について
は、B及びB化合物、C及びC化合物、Al、Si、S
ialon、AlN、Al23、Y23等、焼結助剤と
して公知の物質を用いることができ、2種以上の物質を
含んでも構わない。ただし、焼結助剤は、合計で4質量
%以下である必要がある。焼結助剤によって粒界に第二
相が生成されると、材料の耐食性は低下し、それは焼結
助剤が合計で4質量%を超えると著しく顕著になるから
である。また、同様の理由により、原料に混在する不可
避的不純物は、その種類にもよるが1質量%以下である
必要がある。気孔率については5%以下、即ち、相対密
度が95%以上である必要がある。一般に、焼結体の相
対密度が95%以上では、焼結体に開気孔は含まれな
い。材料が開気孔を含む場合、気孔への溶銑の含浸によ
る加熱・冷却時の割れの発生や、表面積の増加による耐
食性の低下によって、耐用性は著しく低下する。
Regarding the sintering aid of SiC ceramics, B and B compounds, C and C compounds, Al, Si, S
Known substances such as ialon, AlN, Al 2 O 3 , Y 2 O 3 and the like can be used as the sintering aid, and two or more types of substances may be contained. However, the total amount of sintering aids needs to be 4% by mass or less. When the second phase is generated at the grain boundary by the sintering aid, the corrosion resistance of the material is lowered, which becomes remarkable when the total amount of the sintering aid exceeds 4% by mass. For the same reason, the unavoidable impurities mixed in the raw material need to be 1% by mass or less depending on the kind. The porosity must be 5% or less, that is, the relative density must be 95% or more. Generally, when the relative density of the sintered body is 95% or more, the sintered body does not include open pores. When the material includes open pores, the durability is significantly reduced due to cracking during heating / cooling due to impregnation of the hot metal into the pores and deterioration of corrosion resistance due to increase in surface area.

【0015】上記のようなセラミックスを製造するに
は、SiC粉体と焼結助剤を目標の組成となるように秤
量し、ボールミル等で混練した後、スプレードライ等の
方法で乾燥し、混合粉体を得る。その後、一軸加圧、も
しくは静水圧プレス(CIP)等の方法で粉体を成形
し、2000℃〜2300℃、望ましくは2100℃〜
2200℃の範囲で、不活性雰囲気もしくは真空中で焼
成し、所望の焼結体を得る。製造方法については、特に
限定されるものではなく、公知の方法を用いることが出
来る。ただし、不純物の混入を避けるため、製造装置は
できるだけ清浄であることが望ましい。また、焼結体の
気孔率は、できるだけ低いほうが望ましく、そのために
ホットプレスや熱間静水圧プレス(HIP)等の加圧焼
結方法を用いるのも有効である。
In order to produce the above ceramics, SiC powder and a sintering aid are weighed so as to have a target composition, kneaded in a ball mill or the like, and then dried by a method such as spray drying and mixed. Get a powder. Then, the powder is molded by a method such as uniaxial pressing or hydrostatic pressing (CIP), and the temperature is 2000 ° C to 2300 ° C, preferably 2100 ° C.
Firing is performed in an inert atmosphere or vacuum in the range of 2200 ° C. to obtain a desired sintered body. The manufacturing method is not particularly limited, and a known method can be used. However, it is desirable that the manufacturing apparatus be as clean as possible in order to avoid mixing of impurities. Further, it is desirable that the porosity of the sintered body be as low as possible. Therefore, it is effective to use a pressure sintering method such as hot pressing or hot isostatic pressing (HIP).

【0016】本発明の出銑口は、上記のSiCセラミッ
クスから構成されるものであるが、その形態は、SiC
セラミックスでパイプ、リング、板状の部材を製造し、
それらを組み合わせて出銑口を形成する方法、もしくは
ブロックを製造し、それに後から開口する方法等があ
る。高炉への装着方法としては、閉塞中に出銑口部に埋
め込んで不定形耐火物で固定する方法、あるいは、改修
時に予め出銑口を形成しておく方法等あるが、特に限定
されない。
The taphole of the present invention is composed of the above-mentioned SiC ceramics, and its form is SiC.
We manufacture pipes, rings, and plate-shaped members from ceramics,
There is a method of forming a taphole by combining them, or a method of manufacturing a block and then opening it. As a method of mounting the blast furnace, there is a method of embedding the taphole in the closed state and fixing it with an irregular refractory material, or a method of forming the taphole in advance at the time of repair, but it is not particularly limited.

【0017】同様に、本発明の出銑樋についても、板状
部材の組み合わせで樋を形成する方法、一体物で形成す
る方法、あるいはブロックを製造し、煉瓦と同様の施工
を行なう方法等あるが、本発明は、その実施の形態によ
って制限されるものではない。
Similarly, for the tappipe of the present invention, there are a method of forming a gutter using a combination of plate-like members, a method of forming a single piece, a method of manufacturing a block and performing the same construction as a brick. However, the present invention is not limited to the embodiments.

【0018】そして、発明の効果を最大限に発揮させる
ため、部材の継ぎ目から溶銑滓が浸透しないよう、継ぎ
目は出来るだけ少なく、また継ぎ目の密着度は出来るだ
け高いように施工するのが望ましい。また、熱衝撃によ
る割れを防ぐため、予熱をしておくのも効果的である。
開口・閉塞の方法は、従来と同じく開口機とマッド材を
使う方法も可能であるが、スライディングノズル、スト
ッパーによる制御方式やレーザー開口等の方法も可能で
あり、特に限定されない。
In order to maximize the effects of the invention, it is desirable that the seam is as small as possible and the adhesion of the seam is as high as possible so that the molten pig iron does not penetrate from the seam of the members. Preheating is also effective in order to prevent cracking due to thermal shock.
The method of opening / closing may be a method using an opening machine and a mud material as in the conventional method, but a method such as a sliding nozzle, a control method using a stopper, or a laser opening method is also possible and is not particularly limited.

【0019】[0019]

【実施例】以下、本発明を実施例でさらに詳しく説明す
る。
EXAMPLES The present invention will now be described in more detail with reference to Examples.

【0020】市販のSiC粉末(平均粒径:0.7μ
m、SiC純度:98.7%、α相:約100%)と、
焼結助剤であるB4C粉末及びカーボンブラックを、S
iC粉末97.70質量%、B4C粉末0.38質量
%、カーボンブラック1.92質量%となるよう秤量
し、これらの粉体をSiCライナー張りのボールミル、
SiCボールを用い、水を溶媒として24時間混練し
た。次いで、得られたスラリーをN2ガス中120℃で
スプレードライし、乾燥混合粉体を得た。この乾燥混合
粉体をゴム型に充填してCIP成形した後、取り出した
成形体をArガス中2150℃で焼成した(実施例
1)。
Commercially available SiC powder (average particle size: 0.7 μ
m, SiC purity: 98.7%, α phase: about 100%),
Sintering agent B 4 C powder and carbon black were mixed with S
iC powder 97.70% by mass, B 4 C powder 0.38% by mass, and carbon black 1.92% by mass were weighed, and these powders were ball milled with a SiC liner,
Using a SiC ball, kneading was performed for 24 hours using water as a solvent. Then, the obtained slurry was spray-dried in N 2 gas at 120 ° C. to obtain a dry mixed powder. This dry mixed powder was filled in a rubber mold and subjected to CIP molding, and the molded body taken out was fired at 2150 ° C. in Ar gas (Example 1).

【0021】前述のSiC粉末に、焼結助剤であるB4
C粉末、AlN粉末、及びカーボンブラックを、SiC
粉末96.30質量%、B4C粉末0.37質量%、A
lN粉末0.90質量%、カーボンブラック2.43質
量%となるよう秤量し、実施例1と同様の粉体調製、成
形プロセスを経た後、成形体をArガス中2100℃で
焼成した(実施例2)。
B 4 which is a sintering aid is added to the above-mentioned SiC powder.
C powder, AlN powder, and carbon black
Powder 96.30% by mass, B 4 C powder 0.37% by mass, A
1N powder was weighed to 0.90% by mass and carbon black 2.43% by mass, and after the same powder preparation and molding process as in Example 1, the molded body was fired in Ar gas at 2100 ° C. Example 2).

【0022】これらの実施例の焼成過程において、B4
CはBとCに分解し、BはSiCの体積拡散、粒界拡散
の促進に寄与し、B4Cから分解したC、及び添加した
カーボンブラックとSiC粉末中に不純物として含まれ
るCは、SiC表面のSiO 2相及び不純物として含ま
れるSiO2を還元除去するほか、SiCの体積拡散の
促進に寄与する。原料粉体中に含まれていたCは、その
ほとんどが焼成過程のSiO2還元反応で失われる。こ
うして得られたSiCセラミックス焼結体をTEM観察
した結果、粒界にB化合物及びグラファイトの偏析が見
られるものの、その量は僅かであり、TEM像の面積比
から計算した結果、焼結体のSiC含有量は、それぞれ
99.0質量%(実施例1)、97.9質量%(実施例
2)であった。
In the firing process of these examples, BFour
C decomposes into B and C, B is SiC volume diffusion, grain boundary diffusion
Contribute to the promotion ofFourC decomposed from C and added
Contained as an impurity in carbon black and SiC powder
Is C on the surface of SiC 2Included as phases and impurities
SiO2In addition to reducing and removing
Contribute to promotion. C contained in the raw material powder is
Mostly SiO during the firing process2It is lost in the reduction reaction. This
TEM observation of the SiC ceramics sintered body thus obtained
As a result, segregation of B compound and graphite was observed at the grain boundaries.
However, the amount is small, and the area ratio of the TEM image is
As a result of the calculation, the SiC content of the sintered body is
99.0 mass% (Example 1), 97.9 mass% (Example)
It was 2).

【0023】表1に前述の実施例及び比較例の素材の化
学成分、及び浸漬試験の結果を示す。比較例1及び2
は、高純度、低気孔率のアルミナ、及び窒化珪素セラミ
ックスである。比較例3及び4は、高炉周辺他の炉材と
して一般的に使用されている耐火物であり、比較例4の
焼成マッド材は、現行の出銑口材料であるマッド材を1
550℃×8hr、Ar中で焼成したものである。化学
成分値は、焼結体のTEM観察像、及びEDX分析結果
から計算された値である。
Table 1 shows the chemical components of the materials of the above-mentioned Examples and Comparative Examples, and the results of the immersion test. Comparative Examples 1 and 2
Are high-purity, low-porosity alumina and silicon nitride ceramics. Comparative Examples 3 and 4 are refractory materials generally used as furnace materials around the blast furnace and the like, and the burned mud material of Comparative Example 4 is the mud material which is the current taphole material.
It was fired in Ar at 550 ° C. for 8 hours. The chemical component value is a value calculated from the TEM observation image of the sintered body and the EDX analysis result.

【0024】表1の各素材から10mm×10mm×3
0mmの試験片3本を製作し、試験片1本をカーボンル
ツボ1個に納めた。このカーボンルツボ中に、(a)銑
鉄、(b)スラグ、(c)銑鉄+スラグをそれぞれ適量
挿入し、試験中に試験片が浮き上がってこないようにカ
ーボンの棒で上から押さえつけ、ルツボに蓋をした。こ
のルツボを雰囲気炉中に設置し、1550℃×3hr、
Ar雰囲気で浸漬試験を行った。この試験法では(i)
溶銑、(ii)溶滓、(iii)溶銑、溶滓共存の3条
件での耐食性を独立に評価出来る。試験後にルツボごと
試験片を縦に切断し、浸漬前後の試験片の寸法変化(片
面)を溶損量とした。
From each material in Table 1, 10 mm × 10 mm × 3
Three 0 mm test pieces were manufactured, and one test piece was placed in one carbon crucible. Insert appropriate amounts of (a) pig iron, (b) slag, and (c) pig iron + slag into this carbon crucible, press down from above with a carbon rod so that the test piece does not come up during the test, and cover the crucible. Did. This crucible was placed in an atmosphere furnace and the temperature was 1550 ° C for 3 hours.
The immersion test was performed in Ar atmosphere. In this test method (i)
It is possible to independently evaluate the corrosion resistance under the three conditions of hot metal, (ii) molten slag, (iii) molten pig, and coexistence of molten slag. After the test, the test piece was vertically cut together with the crucible, and the dimensional change (one side) of the test piece before and after the immersion was taken as the amount of melting loss.

【0025】[0025]

【表1】 [Table 1]

【0026】比較例1のSi34セラミックスは、高い
耐溶滓性を示すが、溶銑には侵食され、溶銑滓共存下で
は溶損が激しい。比較例2のAl23セラミックスは、
逆に高い耐溶銑性を示すが、溶滓には侵食され、共存下
ではやはり溶損が激しい。比較例3のSiC系耐火物
は、溶銑、溶滓のどちらからも侵食され、共存下では溶
損著しい。比較例4の焼成マッドは比較例の中では最も
好成績と言える結果であるが、いずれの条件でも溶損が
ある。一方で、実施例のSiCセラミックスは、溶銑に
対して反応相は形成するものの寸法変化はなく、溶滓に
対しては全く侵食されない。最も厳しい溶損環境である
溶銑滓共存下でも寸法変化を起していない。
The Si 3 N 4 ceramics of Comparative Example 1 exhibit high resistance to molten slag, but are eroded by the hot metal and undergo severe erosion damage in the presence of the molten slag. The Al 2 O 3 ceramic of Comparative Example 2 is
On the contrary, it shows a high resistance to hot metal, but it is eroded by the molten slag, and in the coexistence, it is still severely melted. The SiC refractory material of Comparative Example 3 was eroded by both the hot metal and the slag, and the melting loss was remarkable when coexisting. The baked mud of Comparative Example 4 has the best result in Comparative Examples, but it has melting loss under any of the conditions. On the other hand, in the SiC ceramics of the examples, although the reaction phase is formed with respect to the hot metal, there is no dimensional change and the slag is not corroded at all. No dimensional change occurs even in the presence of molten pig iron, which is the most severe melting environment.

【0027】以上より、SiCセラミックスは、従来耐
火物、又、Al23やSi34等のセラミックスと比較
しても、溶銑/溶滓共存下での耐食性が極めて優れてい
ることが判った。
From the above, SiC ceramics are extremely superior in corrosion resistance in the presence of hot metal / slag coexisting as compared with conventional refractory materials and ceramics such as Al 2 O 3 and Si 3 N 4. understood.

【0028】次に、実施例1の材料を用いて実機試験を
行なった。
Next, an actual machine test was conducted using the material of Example 1.

【0029】図1に示したのは本発明の出銑口の実機試
験概略図である。実施例1の材料で内径φ70mm、外
形φ150mm、軸長650mmの円筒状の部材を作成
し、閉塞中の高炉出銑口部を加工してこの円筒部材を外
壁から650mmの深さまで挿入し、マッド材を用いて
出銑口部に装着した。次に、開口用ビットを円筒に挿入
し、円筒部材奥のマッドを開口して出銑した。この際、
円筒部材と周辺マッドは、強固に密着しており、出銑滓
は、円筒部材とマッドの隙間から漏れることなく、すべ
て円筒部材の開口部から排出された。試験結果を図2に
示す。出銑速度の変化をマッド材の出銑口の場合と比較
して評価した。図2に示した通り、マッド材の場合は、
開口後の径の拡大によって出銑速度が増大し、開口4時
間後にはガスが発生したため、ここで出銑を打ち切って
閉塞した。一方、本発明の出銑口は、開口後10時間を
経過した時点でも出銑速度に変化が見られなかった。開
口から10時間を経過した時点でマッド材を円筒部材か
ら充填し閉塞した。閉塞後、本発明の円筒部材を取り出
し、マッド材を除去してから部材を観察したところ、円
筒内面には反応相が形成されていたものの、出銑前と比
べて内径の変化はほとんどなく、十分耐用性のあること
が判った。
FIG. 1 is a schematic view of an actual machine test of the taphole of the present invention. A cylindrical member having an inner diameter of 70 mm, an outer diameter of 150 mm, and an axial length of 650 mm was made from the material of Example 1, the blast furnace tap hole portion that had been closed was processed, and this cylindrical member was inserted to a depth of 650 mm from the outer wall, and the mud was inserted. It was attached to the tap hole using wood. Next, the opening bit was inserted into the cylinder, and the mud at the inner side of the cylindrical member was opened and tapped. On this occasion,
The cylindrical member and the peripheral mud were firmly adhered to each other, and all the pig iron waste was discharged from the opening of the cylindrical member without leaking from the gap between the cylindrical member and the mud. The test results are shown in FIG. The change in tapping speed was evaluated in comparison with the case of tapping tap of mud material. As shown in Fig. 2, in the case of mud material,
The tapping speed increased due to the expansion of the diameter after the opening, and gas was generated 4 hours after the opening, so that the tapping was cut off and closed. On the other hand, in the taphole of the present invention, no change was observed in the tapping rate even 10 hours after the opening. After a lapse of 10 hours from the opening, the mud material was filled from the cylindrical member and closed. After blockage, the cylindrical member of the present invention was taken out, the member was observed after removing the mud material, and although the reaction phase was formed on the inner surface of the cylinder, there was almost no change in the inner diameter compared to before tapping, It was found to be sufficiently durable.

【0030】次に、同じ材料で200mm×200mm
×厚さ40mmの板材を作成し、これを大樋スキンマー
部のメタル/スラグラインにあたる位置に不定形耐火物
で埋め込んだ。この位置は、高温の溶銑/溶滓と接触
し、閉塞時には大気にも触れるため溶損環境としては非
常に厳しい。この状態で通常操業を24時間行なった
(その内、通銑時間は約12時間、通銑量約5000t
on)。その後、付着物を剥がし、溶損量を計測した。
表2に、樋の実機試験の結果を示す。従来材に比べ、本
発明品ははるかに溶損が少なく、耐用寿命を延長できる
ことが判った。
Next, using the same material, 200 mm × 200 mm
B. A plate material having a thickness of 40 mm was prepared, and this was embedded in an unshaped refractory material at a position corresponding to the metal / slag line of the Ohi skinmer part. This position makes contact with the hot metal / slag at high temperature, and when it is closed, it also contacts the atmosphere, which is a very severe melting environment. In this state, normal operation was carried out for 24 hours (of which, the running time was about 12 hours and the running amount was about 5000t.
on). Then, the deposit was peeled off and the amount of erosion was measured.
Table 2 shows the results of the actual test of the gutter. It has been found that the product of the present invention has much less melting loss than the conventional material and can extend the service life.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】以上述べたように、本発明の出銑口、出
銑樋を用いることで、出銑口、出銑樋の耐用寿命を延長
でき、高炉の操業安定、作業条件改善が可能となる。
As described above, by using the taphole and tappipe of the present invention, the service life of the taphole and tappipe can be extended, and the operation stability of the blast furnace and the improvement of working conditions can be achieved. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】出銑口の実機試験概略図(断面図)。FIG. 1 is a schematic view (cross-sectional view) of an actual machine test of a taphole.

【図2】実機試験結果で、開口からの経過時間と出銑速
度の関係を示す図。
FIG. 2 is a diagram showing the relationship between the elapsed time from the opening and the tapping speed in the actual machine test result.

【符号の説明】[Explanation of symbols]

1…高炉炉壁 2…溶銑滓 3…本発明の出銑口 4…マッド材 1 ... Blast furnace wall 2 ... hot metal slag 3 ... The taphole of the present invention 4 mud material

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤原 豊 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 Fターム(参考) 4G001 BA22 BA23 BA36 BA60 BB22 BB23 BB36 BB60 BC01 BC23 BC52 BC54 4K015 EB00 EC00 4K051 AA01 BE01 BE03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yutaka Fujiwara             20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel shares             Company Technology Development Division F-term (reference) 4G001 BA22 BA23 BA36 BA60 BB22                       BB23 BB36 BB60 BC01 BC23                       BC52 BC54                 4K015 EB00 EC00                 4K051 AA01 BE01 BE03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 SiCを96質量%以上、焼結助剤を4
質量%以下含有し、それらの合計が99質量%以上であ
り、気孔率5%以下であるSiCセラミックス焼結体で
構成されることを特徴とする高炉出銑口。
1. SiC in an amount of 96% by mass or more and a sintering aid of 4
A blast furnace taphole characterized by being contained in a SiC ceramics sintered body having a total content of 99% by mass or more and a porosity of 5% or less.
【請求項2】 SiCを96質量%以上、焼結助剤を4
質量%以下含有し、それらの合計が99質量%以上であ
り、気孔率5%以下であるSiCセラミックス焼結体で
構成されることを特徴とする高炉出銑樋。
2. SiC in an amount of 96% by mass or more and a sintering aid of 4% or more.
A blast furnace tappipe which is contained in an amount of not more than 100% by mass, a total amount of which is not less than 99% by mass, and which is made of a SiC ceramics sintered body having a porosity of not more than 5%.
JP2002110461A 2002-04-12 2002-04-12 Tap hole of blast furnace, and tap flume of blast furnace Withdrawn JP2003301209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002110461A JP2003301209A (en) 2002-04-12 2002-04-12 Tap hole of blast furnace, and tap flume of blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002110461A JP2003301209A (en) 2002-04-12 2002-04-12 Tap hole of blast furnace, and tap flume of blast furnace

Publications (1)

Publication Number Publication Date
JP2003301209A true JP2003301209A (en) 2003-10-24

Family

ID=29393597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002110461A Withdrawn JP2003301209A (en) 2002-04-12 2002-04-12 Tap hole of blast furnace, and tap flume of blast furnace

Country Status (1)

Country Link
JP (1) JP2003301209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213962A (en) * 2021-03-16 2021-08-06 南京航空航天大学 Porous ceramic with through holes and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213962A (en) * 2021-03-16 2021-08-06 南京航空航天大学 Porous ceramic with through holes and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US6875716B2 (en) Carbonaceous refractory and method for preparing the same
EP2792656B1 (en) Method for producing a silicon carbide whisker-reinforced refractory ceramic composition
JP2003301209A (en) Tap hole of blast furnace, and tap flume of blast furnace
JP6266968B2 (en) Blast furnace hearth lining structure
JP2009242122A (en) Brick for blast furnace hearth and blast furnace hearth lined with the same
JP3031192B2 (en) Sliding nozzle plate refractories
JP2002362969A (en) Plate brick
JP2008094661A (en) Structural member for ceramic furnace
RU2148049C1 (en) Spinel-periclase-carbonic refractory material
JP3238592B2 (en) Irregular cast refractory moldings
JP5822081B2 (en) Mud material for closing blast furnace exit hole
KR100355110B1 (en) method for fabricating of refractory brick alumina
JP4361048B2 (en) Lightweight castable refractories for molten aluminum and aluminum alloys
JP3276054B2 (en) Precast block for electric furnace ceiling
JP2000335980A (en) Graphite-containing monolithic refractory
JP2003246682A (en) Silicon carbide-containing monolithic refractory
JP2003226583A (en) Unshaped refractory for hot metal
JP3088095B2 (en) Alumina-chromium refractory
JP2953293B2 (en) Gas injection tuyere structure for steelmaking furnace
RU2223246C2 (en) Spinel-containing carbonized refractory material
Banerjee Refractories: A Comprehensive Report
JPH0375275A (en) Magnesian refractory mortar
JPH09255439A (en) Carbon-containing basic castable refractory
JPH10324559A (en) Refractory for ash melting furnace
Shin REFRACTORIES FOR IRON AND STEEL MANUFACTURE

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050705