JP2003297605A - Chip-type overcurrent protective element - Google Patents

Chip-type overcurrent protective element

Info

Publication number
JP2003297605A
JP2003297605A JP2002099996A JP2002099996A JP2003297605A JP 2003297605 A JP2003297605 A JP 2003297605A JP 2002099996 A JP2002099996 A JP 2002099996A JP 2002099996 A JP2002099996 A JP 2002099996A JP 2003297605 A JP2003297605 A JP 2003297605A
Authority
JP
Japan
Prior art keywords
resistance
layer
resistance layer
thermoplastic resin
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002099996A
Other languages
Japanese (ja)
Inventor
Hisashi Kobuke
恆 小更
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002099996A priority Critical patent/JP2003297605A/en
Publication of JP2003297605A publication Critical patent/JP2003297605A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chip-type overcurrent protective element, which can suppress the increase of its resistance value due to its thermal deformation generated, when the heat of a temperature exceeding the melting point of a thermoplastic resin constituting its resistance layer is applied to it, when the repeat of its ON-OFF and its reflow. <P>SOLUTION: The chip-type overcurrent protective element has a positive resistance-temperature characteristic bearing resistance layer 1, wherein the conductive substances are dispersed in a thermoplastic resin and has at least one positive temperature coefficient thermistor 3, having a pair of electrodes 2 wherebetween the resistance layer 1, is interposed. Further, each bonding layer 3, made of a thermoplastic resin which has no PTC characteristics and contains conductive substances, is interposed in between each principal surface of the resistance layer 1 and each electrode 2. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、熱可塑性樹脂中に
導電性物質を分散混合して正の抵抗温度特性(PTC特
性)を持たせたサーミスタにより構成されるチップ型過
電流保護素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip type overcurrent protection device composed of a thermistor having a positive resistance temperature characteristic (PTC characteristic) obtained by dispersing and mixing a conductive material in a thermoplastic resin.

【0002】[0002]

【従来の技術】昨今のデジタル家電化、マルチメディア
化等により、パソコンを中心に各種機器が多く接続され
る傾向にある。特に、USBやIEEE1394等のイ
ンターフェイスは、今後の主力となるインターフェイス
として注目されている。それらのインターフェイスにお
いては、周辺機器に信号だけでなく、電源をも供給して
いる。一般的には、インターフェイスには一対の信号ラ
インと電源供給ラインとグランドラインとが接続され
る。よって、それらのシステムにおいては、従来からの
ノイズ伝播、輻射の対策だけではなく、各種の誤動作に
よる過電流に対しても対策が必要となっている。そのた
め、過電流保護素子を設けて対策している。また、この
ような過電流保護素子の形状は、一般的には、面実装が
可能なようにチップタイプをなし、リフロー半田付けに
より基板上に装着されている。
2. Description of the Related Art With the recent trend toward digital home appliances, multimedia, etc., there is a tendency that many devices are connected mainly to personal computers. In particular, interfaces such as USB and IEEE 1394 have been attracting attention as main interfaces in the future. In these interfaces, not only signals but also power are supplied to peripheral devices. Generally, a pair of signal lines, a power supply line, and a ground line are connected to the interface. Therefore, in these systems, in addition to the conventional measures against noise propagation and radiation, measures against overcurrent due to various malfunctions are required. Therefore, an overcurrent protection element is provided to take measures. The shape of such an overcurrent protection element is generally a chip type so that surface mounting is possible, and is mounted on the substrate by reflow soldering.

【0003】[0003]

【発明が解決しようとする課題】上述のように、リフロ
ーにより過電流保護素子を基板に表面実装する場合、過
電流保護素子はおおよそ230〜250℃程度の温度に
さらされる。このため、過電流保護素子は熱可塑性樹脂
の融点以上の温度にさらされてしまい、その結果、熱変
形を起こして抵抗値がアップしてしまい、本来の性能を
劣化させてしまうという問題点がある。近年の鉛フリー
化の動きの中では半田のリフロー温度が上昇するので、
いままで以上に抵抗値がアップしてしまうおそれがあ
る。このような抵抗値アップを防ぐために樹脂に架橋処
理を施すことにより、耐熱性の向上を図っているが、ま
だ完全なものではない。
As described above, when the overcurrent protection element is surface-mounted on the substrate by reflow, the overcurrent protection element is exposed to a temperature of about 230 to 250 ° C. Therefore, the overcurrent protection element is exposed to a temperature equal to or higher than the melting point of the thermoplastic resin, and as a result, thermal deformation occurs to increase the resistance value, degrading the original performance. is there. In the recent trend of lead-free, solder reflow temperature rises,
There is a possibility that the resistance value will increase more than ever. Although heat resistance is improved by subjecting the resin to a crosslinking treatment in order to prevent such an increase in resistance value, it is not yet complete.

【0004】また、特開平2−281707号公報に
は、熱可塑性樹脂中に導電性物質が分散された正の抵抗
温度特性を持つ抵抗層と電極との間に、導電性物質をエ
ポキシ樹脂やアミド樹脂のような熱硬化性樹脂に含有さ
せた接着剤を介在させたものが開示されている。しかし
ながら、このような熱硬化性樹脂からなる接着層を用い
た場合には、抵抗層に用いられる熱可塑性樹脂との接着
強度が低く、クラックが生じ易く、オンオフの繰り返し
やリフローによる抵抗値の増大が起きるという問題点が
ある。
Further, in Japanese Patent Laid-Open No. 2-281707, an electrically conductive substance such as an epoxy resin is used between a resistance layer in which an electrically conductive substance is dispersed in a thermoplastic resin and having a positive resistance temperature characteristic and an electrode. It is disclosed that an adhesive contained in a thermosetting resin such as an amide resin is interposed. However, when an adhesive layer made of such a thermosetting resin is used, the adhesive strength with the thermoplastic resin used for the resistance layer is low, cracks easily occur, and resistance increases due to repeated on / off and reflow. There is a problem that occurs.

【0005】本発明は、このような従来技術の問題点に
鑑み、オンオフの繰り返しやリフロー時に抵抗層を構成
する熱可塑性樹脂の融点を越える温度の熱が加わった時
に生じる熱変形により生じる抵抗値の上昇を抑制するこ
とができるチップ型過電流保護素子を提供することを目
的とする。
In view of the problems of the prior art as described above, the present invention provides a resistance value generated by thermal deformation that occurs when a temperature exceeding the melting point of the thermoplastic resin forming the resistance layer is applied during repeated on / off and reflow. It is an object of the present invention to provide a chip-type overcurrent protection device that can suppress the rise of the current.

【0006】[0006]

【課題を解決するための手段】 本発明のチップ型過電
流保護素子は、熱可塑性樹脂中に導電性物質が分散され
た正の抵抗温度特性を持つ抵抗層と、該抵抗層を挟む一
対の電極とを有する少なくとも1つの正特性サーミスタ
層を有するチップ型過電流保護素子であって、前記抵抗
層の両主面と電極との間に、PTC特性を持たずかつ導
電性物質を含む熱可塑性樹脂を介在させたことを特徴と
する。
Means for Solving the Problems A chip-type overcurrent protection device of the present invention comprises a resistance layer having a positive resistance temperature characteristic in which a conductive substance is dispersed in a thermoplastic resin, and a pair of resistance layers sandwiching the resistance layer. A chip-type overcurrent protection device having at least one positive temperature coefficient thermistor layer having an electrode, wherein the thermoplastic layer does not have a PTC property and contains a conductive material between both main surfaces of the resistance layer and the electrode. It is characterized in that a resin is interposed.

【0007】このように、抵抗層の両面と電極との間
に、熱可塑性樹脂に導電性物質を含ませた接着層を介在
させることにより、オンオフの繰り返しやリフローによ
る温度上昇の際に、抵抗層と接着層との接着状態が変化
せず抵抗値の上昇を抑制することができる。
As described above, by interposing the adhesive layer containing the conductive material in the thermoplastic resin between the both surfaces of the resistance layer and the electrode, the resistance is increased when the temperature is increased by repeated on / off and reflow. It is possible to suppress an increase in the resistance value without changing the adhesion state between the layer and the adhesive layer.

【0008】また、抵抗層と電極との間に導電性が高い
接着層が形成されるので、界面抵抗が小さくなり、過電
流保護素子としての比抵抗も小さくすることができる。
Further, since the adhesive layer having high conductivity is formed between the resistance layer and the electrode, the interface resistance becomes small and the specific resistance as the overcurrent protection element can be made small.

【0009】本発明において、前記熱可塑性樹脂の融点
を抵抗層を構成する熱可塑性樹脂の融点以上とすること
により、温度上昇時における接着層の変形をよりよく防
止することができ、オンオフの繰り返しやリフローによ
る抵抗値の上昇をよりよく抑制することができる。
In the present invention, by setting the melting point of the thermoplastic resin to be equal to or higher than the melting point of the thermoplastic resin forming the resistance layer, it is possible to better prevent the deformation of the adhesive layer when the temperature rises, and to repeatedly turn on and off. It is possible to better suppress an increase in resistance value due to reflow or reflow.

【0010】また、本発明において、前記電極の前記接
着層との界面を粗面化することにより、電極と接着層、
ひいては電極と抵抗層との接着強度を大とし、接着層の
リフローによる剥離等の原因となる変形をより良く抑え
ることができる。特に、アルミニウムの拡面化箔を用い
ることにより、粗面の凹凸が深くなり、接着層と電極と
の接着強度がより大となる。
Further, in the present invention, by roughening the interface between the electrode and the adhesive layer, the electrode and the adhesive layer,
As a result, the adhesive strength between the electrode and the resistance layer can be increased, and deformation that causes peeling or the like due to reflow of the adhesive layer can be further suppressed. In particular, the use of the aluminum surface-expansion foil deepens the unevenness of the rough surface, and the adhesive strength between the adhesive layer and the electrode is further increased.

【0011】なお、本発明の前記構造は、前記抵抗層を
複数層有し、その間に電極が介在する多層構造の過電流
保護素子にも採用できる。
The structure of the present invention can also be applied to an overcurrent protection device having a multilayer structure having a plurality of the resistance layers and electrodes interposed therebetween.

【0012】[0012]

【発明の実施の形態】 図1(A)、(B)はそれぞれ
本発明による過電流保護素子の一実施の形態を示す斜視
図および平面図である。1は熱可塑性樹脂中に導電性物
質が分散された正の抵抗温度特性を持つ抵抗層、2はそ
の両主面に接着層3を介して固着される電極である。接
着層3はPTC特性を有しない層であり、抵抗層1を構
成する樹脂と同じかまたは異なる熱可塑性樹脂中に導電
性物質を混合してなる。
1A and 1B are a perspective view and a plan view showing an embodiment of an overcurrent protection element according to the present invention, respectively. Reference numeral 1 is a resistance layer having a positive resistance temperature characteristic in which a conductive substance is dispersed in a thermoplastic resin, and 2 is an electrode fixed to both main surfaces of the resistance layer via adhesive layers 3. The adhesive layer 3 is a layer that does not have PTC characteristics, and is formed by mixing a conductive material in a thermoplastic resin that is the same as or different from the resin that forms the resistance layer 1.

【0013】電極2は銅、ニッケル、アルミニウムある
いはこれ等の金属を主体としてこれらに必要に応じて半
田付け用の処理を施したものでなり、接着層3との接着
面は粗面2aに形成される。この電極2には、通常の金
属箔をエッチングにより粗面化したものや、表面が粗面
化された電解金属箔や、アルミニウム箔を拡面化処理し
たものが用いられる。特にアルミニウムを拡面化処理し
たものは、凹凸が深いために、接着層3との接着強度を
高める上でさらに好ましい。接着層3の抵抗層1との接
着面3aもまた粗面3aに形成される。
The electrode 2 is mainly composed of copper, nickel, aluminum or a metal such as these, and is subjected to a soldering treatment if necessary, and the adhesive surface with the adhesive layer 3 is formed on the rough surface 2a. To be done. As the electrode 2, an ordinary metal foil roughened by etching, an electrolytic metal foil whose surface is roughened, or an aluminum foil surface-enlarged is used. In particular, the aluminum surface-expanded is more preferable because the unevenness is deep and therefore the adhesive strength with the adhesive layer 3 is increased. The adhesive surface 3a of the adhesive layer 3 with the resistance layer 1 is also formed on the rough surface 3a.

【0014】前記抵抗層1や接着層3は、例えばポリエ
チレン樹脂、ポリフッ化ビニリデン(PVDF)樹脂、
ポリプロピレン樹脂、ポリ酢酸ビニル樹脂、アイオノマ
−のいずれかまたはこれらの共重合体である結晶性樹脂
の1種以上のもの等が用いられる。特にPVDFは自消
性がある点において、着火の可能性のある箇所において
使用するものに適している。この抵抗層1の厚みは好ま
しくは50μm〜2000μm、より好ましくは100
μm〜500μmである。また、接着層3の厚みは好ま
しくは5μm〜30μm、より好ましくは10μm〜2
0μmである。
The resistance layer 1 and the adhesive layer 3 are made of, for example, polyethylene resin, polyvinylidene fluoride (PVDF) resin,
Any one of polypropylene resin, polyvinyl acetate resin, ionomer, or a crystalline resin which is a copolymer thereof may be used. In particular, PVDF is suitable for use in a place where ignition is likely because PVDF is self-extinguishing. The thickness of the resistance layer 1 is preferably 50 μm to 2000 μm, more preferably 100 μm.
It is μm to 500 μm. The thickness of the adhesive layer 3 is preferably 5 μm to 30 μm, more preferably 10 μm to 2
It is 0 μm.

【0015】また、抵抗層1や接着層3に用いる導電性
物質としては、例えば銅、ニッケル、アルミニウム、
銀、パラジウム、チタン、タングステン等の金属やこれ
らの合金、導電性を有するホウ化物、チッ化物、炭化物
およびカーボンブラックが用いられる。また、導電性物
質の混合率は、所定値以上の導電性を得るためにはこれ
らの導電材の添加量が20体積%以上であることが好ま
しく、また、PTC特性を得るためには、50体積%以
下であることが好ましい。前記電極層2a、2bの厚み
は好ましくは5μm〜70μm、より好ましくは18μ
m〜35μmである。
As the conductive material used for the resistance layer 1 and the adhesive layer 3, for example, copper, nickel, aluminum,
Metals such as silver, palladium, titanium and tungsten, alloys thereof, electrically conductive borides, nitrides, carbides and carbon black are used. The mixing ratio of the conductive material is preferably 20% by volume or more in order to obtain conductivity of a predetermined value or more, and 50% in order to obtain PTC characteristics. It is preferably not more than volume%. The thickness of the electrode layers 2a and 2b is preferably 5 μm to 70 μm, more preferably 18 μm.
It is m-35 micrometers.

【0016】図2は前記過電流保護素子を製造する工程
を示す図である。図示のように、粉末状の導電性物質4
と樹脂5とを秤量してニーダーにより例えば100〜2
00℃で0.5〜1時間混合し、その混合物6を加熱加
圧プレスにより100〜200℃、1から10MPaで
加圧して抵抗層1用のシート1Aを作製する。図2では
シートのうちの過電流保護素子1個分について示す。
FIG. 2 is a diagram showing a process of manufacturing the overcurrent protection element. As shown, powdery conductive material 4
And resin 5 are weighed and, for example, 100 to 2 by a kneader.
The mixture 6 is mixed at 00 ° C. for 0.5 to 1 hour, and the mixture 6 is heated and pressed at 100 to 200 ° C. and 1 to 10 MPa to prepare a sheet 1A for the resistance layer 1. FIG. 2 shows only one overcurrent protection element of the sheet.

【0017】抵抗層1にガラスクロスを埋設する場合に
は、導電性物質4と樹脂5と溶剤とを秤量し、ボールミ
ルにより混合して塗料化し、その中に帯状のガラスクロ
スを浸漬し、ロールに通した後、乾燥し、その後、加熱
プレスによりシート1Aを作製する。
In the case of embedding a glass cloth in the resistance layer 1, the conductive substance 4, the resin 5 and the solvent are weighed and mixed by a ball mill to form a coating material, and the belt-shaped glass cloth is dipped in the coating material and rolled. And then dried, and then a sheet 1A is prepared by hot pressing.

【0018】一方、接着層3を電極2の粗面2a上に形
成するため、粉末状の導電性物質7と樹脂8と溶剤とを
秤量し、ボールミルにより混合して塗料化としたもの9
をスプレー装置10により電極となる金属箔2Aの粗面
2a上に塗布して乾燥する。
On the other hand, in order to form the adhesive layer 3 on the rough surface 2a of the electrode 2, the powdery conductive substance 7, the resin 8 and the solvent are weighed and mixed by a ball mill to form a paint 9.
Is applied to the rough surface 2a of the metal foil 2A to be an electrode by the spray device 10 and dried.

【0019】前述のようにして得たシート1Aの両面
に、接着層3を粗面に塗布した金属箔2Aで挟み、10
0〜200℃、1から10MPaで加熱加圧して素材を
作製する。そしてそのシート状の素材を打ち抜いて図1
(A)、(B)に示した過電流保護素子を得る。なお、
該接着層3は、そのシート化したものを金属箔2Aと抵
抗層用シート1Aとの間に介在させて加熱加圧して一体
化するようにしてもよい。
On both sides of the sheet 1A obtained as described above, the adhesive layer 3 is sandwiched between the metal foils 2A coated with rough surfaces, and 10
A material is prepared by heating and pressing at 0 to 200 ° C. and 1 to 10 MPa. Then, punch out the sheet-shaped material and
The overcurrent protection element shown in (A) and (B) is obtained. In addition,
The adhesive layer 3 may be integrated by heating and pressurizing it by interposing the sheet-shaped one between the metal foil 2A and the resistance layer sheet 1A.

【0020】本実施の形態では抵抗層1を1層のみ備え
た構造について示したが、多層構造にする場合には、中
間層の電極2の両面を粗面2aに形成し、最上下面の電
極2は片面のみを粗面にしてその粗面上に接着層3を形
成し、接着層3間に抵抗層1を挟んで積層し、加熱加圧
して接着する。
In the present embodiment, the structure in which only one resistance layer 1 is provided has been described, but in the case of a multilayer structure, both surfaces of the intermediate layer electrode 2 are formed on the rough surface 2a, and the upper and lower electrodes are formed. In No. 2, the adhesive layer 3 is formed on the rough surface with only one surface being a rough surface, and the resistance layer 1 is sandwiched between the adhesive layers 3 and laminated by heating and pressing.

【0021】[0021]

【実施例1】(1)抵抗層1の形成 図1に示す構造の過電流保護素子を下記の工程により得
た。抵抗層1を構成する熱可塑性樹脂としてのPVDF
(米国エルフ・アトケム・ノース・アメリカ社製カイナ
ー711)に対し、該樹脂と導電性物質とのぬれ性向上
のためのシランカップリング剤(信越化学工業株式会社
製 KBC1003)を、PVDF100重量部に対し
て10重量部を加え、また、架橋反応を促進させて耐熱
性を向上させるための有機過酸化物である2、5−ジメ
チル−2、5−ジ(t−ブチルパーオキシン)ヘキシン
−3を1重量部加えてNMP(N−メチル−ピロリド
ン)溶液中に溶解させ、さらに導電性物質としてのWC
粉(日本新金属株式会社製WC−F、平均粒径0.65
μm)を、その樹脂との混合物中の含有率が最終的に3
0体積%となるように、攪拌槽にて秤量混合し、さら
に、スチールボールがメディアとして混入したボールミ
ルによって塗料化を行った。
Example 1 (1) Formation of Resistance Layer 1 An overcurrent protection device having the structure shown in FIG. 1 was obtained by the following steps. PVDF as a thermoplastic resin forming the resistance layer 1
A silane coupling agent (KBC1003, manufactured by Shin-Etsu Chemical Co., Ltd.) for improving the wettability between the resin and the conductive material is added to 100 parts by weight of PVDF for (Kiner 711, manufactured by Elf Atchem North America, USA). On the other hand, 2,5-dimethyl-2,5-di (t-butylperoxine) hexyne-3, which is an organic peroxide for adding 10 parts by weight, and promoting a crosslinking reaction to improve heat resistance. 1 part by weight was added and dissolved in an NMP (N-methyl-pyrrolidone) solution, and WC as a conductive substance was further added.
Powder (WC-F manufactured by Nippon Shinkin Co., Ltd., average particle size 0.65)
μm) in the mixture with the resin to a final content of 3
The mixture was weighed and mixed in a stirring tank so as to be 0% by volume, and was further made into a paint by a ball mill in which steel balls were mixed as a medium.

【0022】上述のような工程によって導電性物質を上
記混合物に適度に分散させた後、塗工槽に前記塗料化混
合物を入れておき、リールから繰り出されるガラスクロ
スを前記混合物中に浸漬し、その後、膜厚制御用ローラ
に通して膜厚を一定に制御した。その後、乾燥炉に通し
て前記NMP溶液を飛ばしてPVDFの乾燥を行うこと
により、PTC特性を有する抵抗層用シート1Aを得
た。そしてこのシート1Aを冷却後、巻き取りリールに
巻き取った。
After the conductive substance is appropriately dispersed in the mixture by the above-mentioned steps, the coating mixture is put in a coating tank, and the glass cloth fed from the reel is dipped in the mixture, Then, the film thickness was controlled to be constant by passing through a film thickness control roller. After that, the NMP solution was blown through a drying furnace to dry PVDF to obtain a resistance layer sheet 1A having PTC characteristics. Then, after cooling this sheet 1A, it was wound up on a winding reel.

【0023】次にリールに巻かれたシート1Aを繰り出
しながらカッターにより一定幅に切断した。次にこのよ
うにして得たシートを、200℃に加熱されたプレス板
にて、上下より、2MPaの圧力にて15分の間加圧・
加熱して0.2mmの厚みのシートに成形した。
Next, the sheet 1A wound on the reel was cut out into a constant width by a cutter while being fed out. Next, the sheet thus obtained was pressed from above and below with a press plate heated to 200 ° C. at a pressure of 2 MPa for 15 minutes.
It was heated and formed into a sheet having a thickness of 0.2 mm.

【0024】(2)電極用金属箔2Aおよび接着層3の
形成 電極用金属箔2Aには表面が粗面化された電解銅箔を用
いた。接着層3を形成するための樹脂には前記PVDF
(カイナー711:融点170℃)を用いた。また、導
電性物質としては、カーボンブラック(CB)(ケッチ
ェンブラック・インターナショナル社製EC600)を
用いた。他の添加物、溶剤は抵抗層1の製法と同じに
し、カーボンブラックの樹脂とカーボンブラックとの総
量に対する添加量が20VOL%となるように混合して
塗料化した。この塗料を前記電極2となるシートに塗布
して乾燥した。なお、金属箔2Aの厚みは35μm、接
着層3の厚みは15μmであった。
(2) Formation of Electrode Metal Foil 2A and Adhesive Layer 3 Electrode copper foil having a roughened surface was used as the electrode metal foil 2A. The resin for forming the adhesive layer 3 is PVDF.
(Kainer 711: melting point 170 ° C.) was used. Carbon black (CB) (EC600 manufactured by Ketjen Black International) was used as the conductive material. Other additives and solvents were used in the same manner as in the production method for the resistance layer 1, and the mixture was mixed so that the addition amount of the carbon black resin and the carbon black was 20 VOL% with respect to the total amount, to form a paint. This paint was applied to a sheet which will be the electrode 2 and dried. The thickness of the metal foil 2A was 35 μm, and the thickness of the adhesive layer 3 was 15 μm.

【0025】(3)積層 前記(1)に記載したように切断、加熱、加圧成形した
抵抗層用シート1Aを、前記接着層3を粗面に設けた電
極用シート2Aで挟み、200℃で、5MPaの圧力に
て10分の間加圧・加熱して固着した。
(3) Lamination The resistance layer sheet 1A cut, heated and pressure-molded as described in (1) above is sandwiched between the electrode sheets 2A having the adhesive layer 3 provided on the rough surface, and 200 ° C. Then, it was fixed by pressurizing and heating at a pressure of 5 MPa for 10 minutes.

【0026】(4)チップ化 次に、打ち抜きあるいはダイサーによりチップサイズに
切り出した。
(4) Chip formation Next, it was cut out into a chip size by punching or dicing.

【0027】[0027]

【実施例2】抵抗層1の導電性物質の添加量を25VO
L%にした以外は実施例1と同様にしてサンプルを作製
した。
Example 2 The amount of conductive material added to the resistance layer 1 is 25 VO.
A sample was prepared in the same manner as in Example 1 except that the content was changed to L%.

【0028】[0028]

【実施例3】接着層3の樹脂として、融点が220℃の
ポリクロロトリフルオロエチレン樹脂(ダイキン工業社
製ダイフロン)を用いた以外は実施例1と同様にしてサ
ンプルを作製した。
Example 3 A sample was prepared in the same manner as in Example 1 except that a polychlorotrifluoroethylene resin having a melting point of 220 ° C. (Daiflon manufactured by Daikin Industries, Ltd.) was used as the resin for the adhesive layer 3.

【0029】[0029]

【実施例4】抵抗層1の導電性物質にカーボンブラック
(東海カーボン社製トーカブラック#4500)を用
い、その添加量を25VOL%にした以外は実施例1と
同様にしてサンプルを作製した。
Example 4 A sample was produced in the same manner as in Example 1 except that carbon black (Tokai Black # 4500 manufactured by Tokai Carbon Co., Ltd.) was used as the conductive material of the resistance layer 1 and the addition amount was 25 VOL%.

【0030】[0030]

【実施例5】抵抗層1の電極2にアルミニウムの拡面化
処理したものを用いた以外は実施例1と同様にしてサン
プルを作製した。
[Example 5] A sample was prepared in the same manner as in Example 1 except that the electrode 2 of the resistance layer 1 was subjected to surface-expansion treatment of aluminum.

【0031】[0031]

【比較例1】接着層3が無い点以外は実施例1と同様に
してサンプルを作製した。
Comparative Example 1 A sample was prepared in the same manner as in Example 1 except that the adhesive layer 3 was not provided.

【0032】[0032]

【比較例2】接着層3に用いる樹脂として、実施例1〜
4より融点が低いのPVDF(米国エルフ・アトケム・
ノース・アメリカ社製カイナーADS(融点:93
℃))を用いた点以外は実施例1と同様にしてサンプル
を作製した。
Comparative Example 2 As a resin used for the adhesive layer 3, Examples 1 to 1
PVDF with a melting point lower than 4 (US Elf Atchem.
Kainer ADS manufactured by North America (melting point: 93
A sample was prepared in the same manner as in Example 1 except that (.degree. C.)) was used.

【0033】[0033]

【比較例3】接着層3として、熱硬化性樹脂であるエポ
キシ樹脂を用いた点以外は実施例1と同様にしてサンプ
ルを作製した。
Comparative Example 3 A sample was prepared in the same manner as in Example 1 except that an epoxy resin which was a thermosetting resin was used as the adhesive layer 3.

【0034】[評価]前記実施例1〜5、比較例1〜3
の初期抵抗値とリフローによる抵抗変化率を求めた。リ
フロー試験の条件は、予熱温度が150℃で100秒、
ピーク温度230℃で50秒とした。リフロー抵抗変化
率rは下記の(1)式により算出した。 r=(R2-R1)/R1 …(1) ただしR2:リフロー後の抵抗値、R1:初期抵抗値 表1に前記実施例1〜5、比較例1〜3における組成、
初期抵抗値、リフローによる抵抗変化率を示す。
[Evaluation] Examples 1 to 5 and Comparative Examples 1 to 3
The initial resistance value and the rate of resistance change due to reflow were obtained. The conditions for the reflow test are that the preheating temperature is 150 ° C. for 100 seconds,
The peak temperature was 230 ° C. for 50 seconds. The reflow resistance change rate r was calculated by the following equation (1). r = (R2-R1) / R1 (1) where R2: resistance after reflow, R1: initial resistance Table 1 shows the compositions in Examples 1 to 5 and Comparative Examples 1 to 3,
The initial resistance value and the resistance change rate due to reflow are shown.

【0035】[0035]

【表1】 [Table 1]

【0036】表1に示すように、本発明による接着層3
を設けた実施例1〜5の場合、比較例1のように接着層
3が無い場合に比較して、リフローによる抵抗の変化率
が低下する(すなわちリフローによる抵抗値の増大が抑
制される)ことが分かる。
As shown in Table 1, the adhesive layer 3 according to the present invention
In the case of Examples 1 to 5 provided with, the rate of change in resistance due to reflow is reduced as compared with the case where the adhesive layer 3 is not provided as in Comparative Example 1 (that is, increase in resistance value due to reflow is suppressed). I understand.

【0037】また、実施例5の電極2にアルミニウムの
拡面化処理を行ったものは初期抵抗値が低くなる上、リ
フローによる抵抗変化率が小さくなる。
Further, the electrode 2 of Example 5 which has been subjected to the surface widening treatment of aluminum has a low initial resistance value and a small resistance change rate due to reflow.

【0038】また、接着層3の樹脂として、抵抗層1よ
り低い融点を用いた比較例2の場合、リフローによる抵
抗変化率が大きくなる。一方、接着層3の樹脂として、
抵抗層1と同じか高い融点を用いた実施例1〜5の場
合、リフローによる抵抗変化率が小さくなる。特に、接
着層3の樹脂として、抵抗層1より高い融点を用いた実
施例3の場合、リフローによる抵抗変化率が小さくな
る。
Further, in the case of Comparative Example 2 in which the melting point lower than that of the resistance layer 1 is used as the resin of the adhesive layer 3, the resistance change rate due to the reflow becomes large. On the other hand, as the resin of the adhesive layer 3,
In the case of Examples 1 to 5 in which the melting point is the same as or higher than that of the resistance layer 1, the rate of resistance change due to reflow is small. In particular, in the case of Example 3 in which the melting point higher than that of the resistance layer 1 was used as the resin of the adhesive layer 3, the rate of resistance change due to reflow was small.

【0039】比較例3のように、接着層3を構成する樹
脂として熱硬化性樹脂を用いた場合、実施例1〜5のよ
うに熱可塑性樹脂を用いた場合に比較しリフローによる
抵抗の変化率が非常に大きくなる。
When a thermosetting resin is used as the resin forming the adhesive layer 3 as in Comparative Example 3, a change in resistance due to reflow is compared with the case where a thermoplastic resin is used as in Examples 1 to 5. The rate becomes very large.

【0040】[0040]

【発明の効果】本発明によれば、抵抗層の両主面と電極
との間に、PTC特性を持たずかつ導電性物質を含む熱
可塑性樹脂からなる接着層を介在させたので、オンオフ
の繰り返しやリフロー時に抵抗層を構成する熱可塑性樹
脂の融点を越える温度の熱が加わった時に生じる熱変形
により生じる抵抗値の上昇を抑制することができる。
According to the present invention, since an adhesive layer made of a thermoplastic resin having no PTC characteristic and containing a conductive substance is interposed between both main surfaces of the resistance layer and the electrode, the on / off state is improved. It is possible to suppress an increase in resistance value caused by thermal deformation that occurs when heat having a temperature exceeding the melting point of the thermoplastic resin forming the resistance layer is applied during repetition or reflow.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明による過電流保護素子の一実施
の形態を示す斜視図、(B)はその断面図である。
FIG. 1A is a perspective view showing an embodiment of an overcurrent protection element according to the present invention, and FIG. 1B is a sectional view thereof.

【図2】本発明の過電流保護素子の製造工程の一例を示
す工程図である。
FIG. 2 is a process drawing showing an example of a manufacturing process of an overcurrent protection element of the present invention.

【符号の説明】[Explanation of symbols]

1:抵抗層、1A:抵抗層用シート、2:電極、2A:
金属箔、2a:粗面、3:接着層、3a:粗面
1: Resistance layer, 1A: Resistance layer sheet, 2: Electrode, 2A:
Metal foil, 2a: rough surface, 3: adhesive layer, 3a: rough surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】熱可塑性樹脂中に導電性物質が分散された
正の抵抗温度特性を持つ抵抗層と、該抵抗層を挟む一対
の電極を有する少なくとも1つの正特性サーミスタ層と
を有するチップ型過電流保護素子であって、 前記抵抗層の両主面と電極との間に、PTC特性を持た
ずかつ導電性物質を含む熱可塑性樹脂からなる接着層を
介在させたことを特徴とするチップ型過電流保護素子。
1. A chip type having a resistance layer having a positive resistance temperature characteristic in which a conductive material is dispersed in a thermoplastic resin, and at least one positive temperature coefficient thermistor layer having a pair of electrodes sandwiching the resistance layer. An overcurrent protection element, characterized in that an adhesive layer made of a thermoplastic resin having no PTC characteristic and containing a conductive substance is interposed between both main surfaces of the resistance layer and the electrode. Type overcurrent protection element.
【請求項2】請求項1に記載のチップ型過電流保護素子
において、 前記接着層を構成する熱可塑性樹脂の融点が前記抵抗層
を構成する熱可塑性樹脂の融点以上であることを特徴と
するチップ型過電流保護素子。
2. The chip-type overcurrent protection device according to claim 1, wherein the melting point of the thermoplastic resin forming the adhesive layer is equal to or higher than the melting point of the thermoplastic resin forming the resistance layer. Chip type overcurrent protection device.
【請求項3】請求項1または2のいずれかに記載のチッ
プ型過電流保護素子において、 前記電極がアルミニウムの拡面化箔でなることを特徴と
するチップ型過電流保護素子。
3. The chip-type overcurrent protection device according to claim 1, wherein the electrode is a surface-expansion foil of aluminum.
JP2002099996A 2002-04-02 2002-04-02 Chip-type overcurrent protective element Withdrawn JP2003297605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002099996A JP2003297605A (en) 2002-04-02 2002-04-02 Chip-type overcurrent protective element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002099996A JP2003297605A (en) 2002-04-02 2002-04-02 Chip-type overcurrent protective element

Publications (1)

Publication Number Publication Date
JP2003297605A true JP2003297605A (en) 2003-10-17

Family

ID=29388290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002099996A Withdrawn JP2003297605A (en) 2002-04-02 2002-04-02 Chip-type overcurrent protective element

Country Status (1)

Country Link
JP (1) JP2003297605A (en)

Similar Documents

Publication Publication Date Title
US6558616B2 (en) Electrode for PTC thermistor and method for producing the same, and PTC thermistor
JP3257521B2 (en) PTC element, protection device and circuit board
US4876439A (en) PTC devices
WO2012003661A1 (en) Conductive composite material with positive temperature coefficient of resistance and over-current protection component
TWI449059B (en) Metal plate resistor for current detection and manufacturing method thereof
WO2013097664A1 (en) Macromolecule-based conductive composite material and ptc element
CN101271751B (en) Surface labeling type polymer PTC senistor and manufacturing method thereof
JP2009010321A (en) Surface-mount type overcurrent and overheat protective device
EP0790625A2 (en) PTC element
JP2006269588A (en) Thick film resistor paste, thick film resistor, and manufacturing method thereof
CN210805371U (en) Overcurrent protection element
JPS63211701A (en) Ptc device
JP2003297604A (en) Chip-type overcurrent protection element
JP2003297605A (en) Chip-type overcurrent protective element
JP3416594B2 (en) PTC thermistor and method of manufacturing the same
WO2017010216A1 (en) Electronic component
US10257923B2 (en) Resin substrate and electronic device
JPH09320808A (en) Ptc thermistor
CN206134677U (en) High resistance precision chip resistor of metal sheet structure high power
CN110853849A (en) Overcurrent protection element
JP3084197B2 (en) Planar heating element
JPH09199302A (en) Chip thermistor and its manufacture
JP2005259823A (en) Organic ptc thermistor and its manufacturing method
JPH09246013A (en) Chip ptc thermistor
WO2011018842A1 (en) Low-resistance chip resistor and method of manufacturing same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050607