JP2003297412A - Winding device for electrode - Google Patents

Winding device for electrode

Info

Publication number
JP2003297412A
JP2003297412A JP2002092581A JP2002092581A JP2003297412A JP 2003297412 A JP2003297412 A JP 2003297412A JP 2002092581 A JP2002092581 A JP 2002092581A JP 2002092581 A JP2002092581 A JP 2002092581A JP 2003297412 A JP2003297412 A JP 2003297412A
Authority
JP
Japan
Prior art keywords
electrode plate
winding
negative electrode
positive electrode
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002092581A
Other languages
Japanese (ja)
Inventor
Tatsuya Nagare
達也 流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002092581A priority Critical patent/JP2003297412A/en
Publication of JP2003297412A publication Critical patent/JP2003297412A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a winding device for an electrode capable of correcting the dislocation quickly by enhancing the responsiveness of each EPC unit, locating the EPC unit in the neighborhood of a winding means by constructing it small, and thereby certainly suppressing a dislocation of a positive or a negative plate. <P>SOLUTION: A first correcting means 8 constitutes an EPC unit on the side with the positive plate 10 while a second correcting means 9 constitutes an EPC unit on the side with the negative plate 11, wherein at least one of the correcting means 8 and 9 is driven by a piezo element 30. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、電極体の巻き取り
装置に関し、特に、正極板や負極板の位置ズレを補正し
つつ、正極板と負極板とをセパレータを介して渦巻き状
に巻き取る電極体の巻き取り装置に関する。 【0002】 【従来の技術】近年、LiCoO2 等のリチウム含有複
合酸化物を正極材料とする一方、金属リチウム又はリチ
ウムイオンを吸蔵、放出し得る合金又は炭素材料を負極
材料とするリチウムイオン電池が、高容量化が可能な電
池として注目されている。このようにリチウムイオン電
池は優れた性能を有するということから、円筒型電池等
の各種形態の電池に用いられている。 【0003】ここで、上記電池は、通常、外装缶に渦巻
き状の電極体を備えており、渦巻き状の電極体は、正極
板と負極板とをセパレータを介して重ね合わせて巻き取
るような巻き取り装置によって作製される。従来の巻き
取り装置は、図5に示すように、正極板供給手段50か
ら供給された正極板51と、負極板供給手段52から供
給された負極板53とを、セパレータ供給手段54・5
5から供給されたセパレータ56・57を介して重ね合
わせ、巻き取り軸58を回転させることにより、これら
を渦巻き状に巻き取る巻き取り手段59を備えた構造で
ある。この場合、正極板供給手段50や負極板供給手段
52と巻き取り軸58との位置が遠くなっているため、
正極板51の供給経路63や負極板53の供給経路64
で正極板51や負極板53の位置ズレが生じ、図6(本
図では正負極板51・53を巻き取った状態から展開し
た図であり、また、理解の容易のためセパレータ56・
57は省略している)に示すように、正極板51と負極
板52との幅方向にズレが生じる。そこで、正極板供給
手段50と巻き取り軸58との間(正極板供給経路63
内)と、負極板供給手段52と巻き取り軸58との間
(負極板供給経路64内)とに、中間ガイドロール式の
エッジポジションコントロール(以下、EPCと称す)
ユニット61・62を配置して、正極板51と負極板5
2とが幅方向にズレるのを抑制している。 【0004】ここで、上記EPCユニット61・62
は、巻き取り軸58に近接して配置し、正極板51や負
極板53を高速で修正するのが望ましいが、上記従来の
電極体の巻き取り装置では、EPCユニット61・62
の回転駆動部にサーボモータが用いられているため、応
答性に劣り、高速で修正することができないという課題
を有していた。加えて、サーボモータは大きく、EPC
ユニット61・62の大型化を招くため、正極板51や
負極板53やセパレータ56・57が密集している巻き
取り手段59の近傍にEPCユニット61・62を配置
することができない。このため、EPCユニット61・
62で正極板51や負極板52の位置が修正されても、
EPCユニット61・62と巻き取り手段59との間
で、再度、正極板51や負極板52の位置ズレが生じる
という課題を有していた。 【0005】 【発明が解決しようとする課題】本発明は、以上の事情
に鑑みなされたものであって、EPCユニットの応答性
を向上させて高速で修正しうると共に、EPCユニット
を小型化して、巻き取り手段の近傍にEPCユニットを
配置することにより、正極板や負極板に位置ズレが生じ
るのを確実に抑制することができる電極体の巻き取り装
置を提供することを目的としている。 【0006】 【課題を解決するための手段】上記目的を達成するため
に、請求項1記載の発明は、正極板と負極板とをセパレ
ータを介して重ね合わせつつ、巻き取り軸を回転させる
ことにより、これらを渦巻き状に巻き取る巻き取り手段
と、上記巻き取り手段に上記正極板を供給する正極板供
給手段と、上記巻き取り手段に上記負極板を供給する負
極板供給手段と、上記巻き取り手段に上記セパレータを
供給するセパレータ供給手段と、上記正極板供給手段か
ら上記巻き取り手段に至る正極板供給経路上に設けら
れ、正極板の位置ズレを検出する第1検出手段と、上記
負極板供給手段から上記巻き取り手段に至る負極板供給
経路上に設けられ、負極板の位置ズレを検出する第2検
出手段と、上記第1検出手段の検出結果に基づいて、正
極板の位置ズレを補正する第1補正手段と、上記第2検
出手段の検出結果に基づいて、負極板の位置ズレを補正
する第2補正手段と、を備えた電極体の巻き取り装置に
おいて、上記第1補正手段及び第2補正手段のうち少な
くとも1つの補正手段は圧電素子により駆動されること
を特徴とする。 【0007】上記構成の如く、補正手段の駆動を圧電素
子により行うと、圧電素子はサーボモータに比較して応
答性に優れるということから、正負極板が位置ズレを生
じた場合であっても、素早く修正することができる。加
えて、圧電素子はサーボモータと比較して小さいので、
検出手段と補正手段とから成るEPCユニットを小型化
することができる。したがって、正負極板やセパレータ
が密集している巻き取り手段の近傍にEPCユニットを
配置することができるので、EPCユニットと巻き取り
手段との間で、正極板や負極板の位置ズレが生じるのを
抑制することができる。 【0008】 【発明の実施の形態】本発明の実施の形態を、図1〜図
4に基づいて、以下に説明する。図1は本発明の一例に
係る電極体の巻き取り装置の概念構成図、図2はEPC
ユニットの拡大図であり、同図(a)は側面図、同図
(b)は正面図、図3はEPCユニットが作動した状態
を示す側面図、図4は電極体の巻き取り装置の制御機構
の電気的構成を示すブロック図である。 【0009】図1に示すように、本発明の一例に係る電
極体の巻き取り装置は、巻き取り手段1と、正極板供給
手段2と、負極板供給手段3と、セパレータ供給手段4
・5と、第1検出手段6と、第2検出手段7と、第1補
正手段8と、第2補正手段9とを有している。上記巻き
取り手段1は、正極板10と負極板11とをセパレータ
12・12を介して重ね合わせ、巻き取り軸13を回転
させることにより、これらを渦巻き状に巻き取る。 【0010】上記正極板供給手段2は、巻き出し軸14
に巻回された正極板10を、多数の案内ロール15…に
案内されつつ上記巻き取り手段1に供給し、上記負極板
供給手段3は、巻き出し軸16に巻回された負極板11
を、多数の案内ロール15…に案内されつつ上記巻き取
り手段1に供給し、上記セパレータ供給手段4・5は、
巻き出し軸17・18に巻回されたセパレータ12・1
2を、多数の案内ロール15…に案内されつつ上記巻き
取り手段1に供給する。 【0011】上記第1検出手段6は、正極板供給手段2
から上記巻き取り手段1に至る正極板供給経路20上に
設けられて正極板10の位置ズレを検出する。また、第
1検出手段6はレーザー光を照射して正極板10のエッ
ジ部分を検出するエッジ検出センサから成るものであ
り、後述の第2検出手段7と同様の構成となっている。
上記第1補正手段8は、上記第1検出手段6の検出結果
に基づいて、正極板10の位置ズレを補正する。また、
第1補正手段8の駆動は、従来技術と同様に、サーボモ
ータによってなされるが、その他の構成は後述の第2補
正手段9と同様の構成である。尚、上記第1検出手段6
と第1補正手段8とによりEPCユニットが構成され
る。 【0012】上記第2検出手段7は、負極板供給手段3
から上記巻き取り手段1に至る負極板供給経路21上に
設けられ、負極板11の位置ズレを検出する。また、上
記第2検出手段7は、図2に示すように、レーザー光を
発光する発光部25と、光電変換機能を兼ね備えた受光
部26とを備えたエッジ検出センサから成り、負極板1
1のエッジ部分を検出する。上記第2補正手段9は、上
記第2検出手段7の検出結果に基づいて、負極板11の
位置ズレを補正する。また、上記第2補正手段9は、軸
27と、この軸27に対して回動自在の回動部29と、
この回動部29の動きに対応して回動するガイドロール
28・28と、回動部29を回動させるための動力源で
あり押圧棒30aを備えた圧電素子30とを有してい
る。尚、上記第2検出手段7と第2補正手段9とにより
EPCユニットが構成される。 【0013】一方、電極体の巻き取り装置における制御
機構の電気的な構成は、図4に示すように、エッジ検出
センサである第2検出手段7からの検出電圧と基準位置
における基準電圧32とを比較して差分信号を送出する
比較回路33と、この比較回路33からの差分信号(ア
ナログ信号)をデジタル信号に変換するA/D変換器3
4と、A/D変換器34からの出力信号に応じた値を、
例えば変換テーブルから成るROM35から読み出して
演算処理する制御部36と、制御部36からのデジタル
信号をアナログ信号に変換するD/A変換器37とを有
し、このD/A変換器37からの出力信号により圧電素
子30を駆動する。尚、正極板10の位置ズレを補正す
る制御機構の電気的な構成は、上記負極板11のそれと
略同様であるが、正極板10の場合には図4において、
第2検出手段7の代わりに第1検出手段6を用い、且
つ、圧電素子30の代わりにサーボモータを用いている
点が異なる。 【0014】ここで、上記構成の電極体の巻き取り装置
は、以下のようにして作動する。先ず、操作板(図示せ
ず)のスイッチをONにすると、制御部36から、巻き
取り手段1の巻き取り軸13のモータ(図示せず)、正
極板供給手段2と負極板供給手段3とセパレータ供給手
段4・5を駆動するモータ(図示せず)、第1検出手段
6、第2検出手段7、第1補正手段8、及び第2補正手
段9等に開始信号が送出される。これにより、正極板1
0と負極板11とがセパレータ12・12を介して重ね
合わされつつ、巻き取りが開始される。 【0015】そして、第2検出手段7により、負極板1
1のエッジが検出される。この際、受光部26の受光量
が50%の時、ガイドロール28・28がニュートラル
の位置(図2(a)の状態)になるように調節してお
き、受光部26における受光量が、発光部25における
発光量の50%を超えたり50%未満となった場合に
は、比較回路33から差分信号が送出され、A/D変換
器34でデジタル信号に変換された後、制御部36で演
算処理される。そして、制御部36からの制御信号はD
/A変換器37でアナログ信号に変換された後、当該信
号が圧電素子30に印加される。これにより、図3に示
すように、圧電素子30の押圧棒30aが回動部29を
押圧して、軸27に対して回動部29が回動し、この回
動部29の動きに対応してガイドロール28・28も同
方向に回動する。この結果、負極板11のズレが修正さ
れる(例えば、図3の場合のように反時計方向(図中A
方向)に回動したときには、ガイドロール28・28に
対する負極板11の位置が右方向に移動)。尚、圧電素
子30の押圧棒30aの変化量は、比較回路33から差
分信号の量に対応しているので、差分信号が大きければ
(ズレが大きければ)変化量も大きくなり、差分信号が
小さければ(ズレが小さければ)変化量も小さくなる。
そして、差分信号が送出されなくなると、押圧棒30a
はニュートラルの位置(図2に示す位置)となる。 【0016】一方、正極板10の場合には、圧電素子1
0の代わりにサーボモータが駆動する他は、上記負極板
11の場合と同様な駆動がなされる。尚、上記実施の形
態では、第2補正手段9にのみ圧電素子を用いている
が、第1補正手段8にのみ圧電素子を用いても良く、更
に、第1補正手段8及び第2補正手段9の両者に圧電素
子を用いても良いことは勿論である。 【0017】 【実施例】〔実施例〕実施例1としては上記発明の実施
の形態に示す電極体の巻き取り装置を用いた。このよう
な構造の装置を、以下、本発明装置Aと称する。 【0018】〔比較例〕従来の技術で説明した電極体の
巻き取り装置を用いた。このような構造の装置を、以
下、比較装置Xと称する。 【0019】〔実験〕上記本発明装置A及び比較装置X
における正極板と負極板とのズレ量(図6におけるL
1)、EPCユニットの取付面積、EPCユニットの取
付位置とを調べたので、その結果を表1に示す。 【0020】 【表1】 【0021】表1から明らかなように、本発明装置Aは
比較装置Xに比べて、正極板と負極板とのズレ量が1/
3程度に低減していることが認められる。これは、圧電
素子で駆動するEPCユニットを用いた本発明装置A
は、サーボモータで駆動するEPCユニットを用いた比
較装置Xに比べて、EPCユニットの取付面積が70%
程度と小さくなるため、巻き取り部に近接してEPCユ
ニットを配置でき(巻き取り手段とEPCユニットとの
距離は従来の約半分の距離)、且つ、圧電素子はサーボ
モータに比べて応答性が優れているということに起因す
るものと考えられる。 【0022】 【発明の効果】以上説明したように、本発明によれば、
EPCユニットの応答性を向上させることができるの
で、正極板や負極板のズレを高速で修正しうると共に、
EPCユニットを小型化して、巻き取り手段の近傍にE
PCユニットを配置することができるので、正極板や負
極板に位置ズレが生じるのを確実に抑制することができ
るといった優れた効果を奏する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a winding device for an electrode body, and more particularly to a device for winding a positive electrode plate and a negative electrode plate while correcting positional deviation of the positive electrode plate and the negative electrode plate. The present invention relates to a device for winding an electrode body, which winds a spirally through a separator. In recent years, lithium ion batteries using a lithium-containing composite oxide such as LiCoO 2 as a positive electrode material and an alloy or a carbon material capable of occluding and releasing metallic lithium or lithium ions as a negative electrode material have been developed. Has attracted attention as a battery capable of increasing capacity. As described above, the lithium ion battery has excellent performance, and thus is used for various types of batteries such as a cylindrical battery. [0003] Here, the above battery usually has a spirally wound electrode body in an outer can, and the spirally wound electrode body is formed by winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween. It is produced by a winding device. As shown in FIG. 5, a conventional winding device is configured to separate a positive electrode plate 51 supplied from a positive electrode plate supply unit 50 and a negative electrode plate 53 supplied from a negative plate supply unit 52 into separator supply units 54 and 5.
The structure is provided with a winding means 59 that winds these up in a spiral by rotating the winding shaft 58 by overlapping them via the separators 56 and 57 supplied from 5. In this case, since the positions of the positive electrode plate supply means 50 and the negative electrode plate supply means 52 and the winding shaft 58 are far apart,
Supply path 63 for the positive electrode plate 51 and supply path 64 for the negative electrode plate 53
As a result, the displacement of the positive electrode plate 51 and the negative electrode plate 53 occurs, and FIG. 6 (in this drawing, the positive and negative electrode plates 51 and 53 are expanded from the wound state.
57 is omitted), a displacement occurs in the width direction between the positive electrode plate 51 and the negative electrode plate 52. Therefore, between the positive electrode plate supply means 50 and the winding shaft 58 (the positive electrode plate supply path 63).
(Inside), and between the negative electrode plate supply means 52 and the winding shaft 58 (in the negative electrode supply path 64), an intermediate guide roll type edge position control (hereinafter, referred to as EPC).
The units 61 and 62 are arranged so that the positive plate 51 and the negative plate 5
2 is suppressed from shifting in the width direction. Here, the EPC units 61 and 62
It is desirable that the EPC units 61 and 62 be disposed close to the winding shaft 58 and correct the positive electrode plate 51 and the negative electrode plate 53 at high speed.
However, since the servomotor is used in the rotary drive unit, the response is poor, and there is a problem that the correction cannot be performed at high speed. In addition, servo motors are large and EPC
Since the units 61 and 62 are increased in size, the EPC units 61 and 62 cannot be arranged near the winding means 59 where the positive electrode plate 51, the negative electrode plate 53, and the separators 56 and 57 are densely packed. Therefore, the EPC unit 61
Even if the positions of the positive electrode plate 51 and the negative electrode plate 52 are corrected in 62,
There was a problem that the displacement of the positive electrode plate 51 and the negative electrode plate 52 again occurred between the EPC units 61 and 62 and the winding means 59. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and can improve the responsiveness of an EPC unit so that it can be corrected at a high speed. It is another object of the present invention to provide a winding device for an electrode body, in which an EPC unit is disposed in the vicinity of a winding device, whereby a displacement of a positive electrode plate or a negative electrode plate can be reliably suppressed. [0006] In order to achieve the above object, an invention according to claim 1 is to rotate a winding shaft while overlapping a positive electrode plate and a negative electrode plate with a separator interposed therebetween. A winding means for winding these in a spiral, a positive plate supply means for supplying the positive plate to the winding means, a negative plate supply means for supplying the negative plate to the winding means, A separator supply means for supplying the separator to the take-up means; a first detection means provided on a positive plate supply path from the positive plate supply means to the winding means for detecting a displacement of the positive plate; A second detection unit provided on a negative electrode plate supply path from the plate supply unit to the winding unit, for detecting a positional shift of the negative electrode plate, and a positive electrode plate based on a detection result of the first detection unit. The winding device for an electrode body, comprising: a first correction unit configured to correct the positional deviation; and a second correction unit configured to correct the positional deviation of the negative electrode plate based on a detection result of the second detection unit. At least one of the first correction means and the second correction means is driven by a piezoelectric element. As described above, when the correcting means is driven by the piezoelectric element, the piezoelectric element is superior in response to the servomotor, and therefore, even when the positive and negative plates are displaced. Can be fixed quickly. In addition, since the piezoelectric element is small compared to the servomotor,
The size of the EPC unit including the detecting means and the correcting means can be reduced. Therefore, the EPC unit can be arranged near the winding means in which the positive and negative electrode plates and the separator are densely packed, so that the displacement of the positive electrode plate and the negative electrode plate between the EPC unit and the winding means is caused. Can be suppressed. An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a conceptual configuration diagram of an electrode body winding device according to an example of the present invention, and FIG. 2 is an EPC.
FIG. 3A is a side view, FIG. 3B is a front view, FIG. 3 is a side view showing a state in which an EPC unit is operated, and FIG. 4 is a control of a winding device for an electrode body. FIG. 3 is a block diagram showing an electrical configuration of the mechanism. As shown in FIG. 1, a winding device for an electrode body according to an example of the present invention comprises a winding means 1, a positive plate supply means 2, a negative plate supply means 3, and a separator supply means 4.
5, a first detecting means 6, a second detecting means 7, a first correcting means 8, and a second correcting means 9. The winding means 1 superposes the positive electrode plate 10 and the negative electrode plate 11 via the separators 12 and 12 and rotates the winding shaft 13 to wind them in a spiral shape. The positive electrode plate supply means 2 includes an unwinding shaft 14
Is supplied to the winding means 1 while being guided by a large number of guide rolls 15..., And the negative electrode plate supplying means 3 supplies the negative electrode plate 11 wound on an unwinding shaft 16.
Is supplied to the winding means 1 while being guided by a large number of guide rolls 15.
Separator 12.1 wound on unwinding shafts 17,18
2 is supplied to the winding means 1 while being guided by a number of guide rolls 15. The first detecting means 6 includes the positive electrode plate supplying means 2
And is provided on a positive electrode plate supply path 20 extending to the winding means 1 to detect a displacement of the positive electrode plate 10. The first detecting means 6 is composed of an edge detecting sensor that detects an edge portion of the positive electrode plate 10 by irradiating a laser beam, and has the same configuration as a second detecting means 7 described later.
The first correction means 8 corrects the positional shift of the positive electrode plate 10 based on the detection result of the first detection means 6. Also,
The driving of the first correction means 8 is performed by a servomotor, similarly to the related art, but the other configuration is the same as that of the second correction means 9 described later. The first detecting means 6
The first correction means 8 and the EPC unit are constituted. The second detecting means 7 includes the negative electrode plate supplying means 3
And is provided on the negative electrode plate supply path 21 extending to the winding means 1 to detect a displacement of the negative electrode plate 11. Further, as shown in FIG. 2, the second detecting means 7 includes an edge detecting sensor having a light emitting unit 25 that emits a laser beam and a light receiving unit 26 having a photoelectric conversion function.
1 is detected. The second correction means 9 corrects the displacement of the negative electrode plate 11 based on the detection result of the second detection means 7. Further, the second correction means 9 includes a shaft 27, a rotating portion 29 rotatable with respect to the shaft 27,
It has guide rolls 28 that rotate in response to the movement of the rotating portion 29, and a piezoelectric element 30 that is a power source for rotating the rotating portion 29 and that has a pressing rod 30a. . The EPC unit is constituted by the second detecting means 7 and the second correcting means 9. On the other hand, as shown in FIG. 4, the electrical configuration of the control mechanism in the electrode winding device is such that the detection voltage from the second detection means 7 which is an edge detection sensor and the reference voltage 32 at the reference position. And an A / D converter 3 that converts the difference signal (analog signal) from the comparison circuit 33 into a digital signal.
4 and a value corresponding to the output signal from the A / D converter 34,
For example, it has a control unit 36 that reads out from a ROM 35 composed of a conversion table and performs arithmetic processing, and a D / A converter 37 that converts a digital signal from the control unit 36 into an analog signal. The piezoelectric element 30 is driven by the output signal. The electrical configuration of the control mechanism for correcting the displacement of the positive electrode plate 10 is substantially the same as that of the negative electrode plate 11, but in the case of the positive electrode plate 10, in FIG.
The difference is that the first detecting means 6 is used in place of the second detecting means 7 and a servomotor is used in place of the piezoelectric element 30. Here, the winding device for the electrode body having the above-mentioned structure operates as follows. First, when a switch of an operation plate (not shown) is turned ON, a motor (not shown) of the winding shaft 13 of the winding unit 1, the positive plate supply unit 2 and the negative plate supply unit 3 are controlled by the control unit 36. A start signal is sent to a motor (not shown) that drives the separator supply units 4 and 5, the first detection unit 6, the second detection unit 7, the first correction unit 8, the second correction unit 9, and the like. Thereby, the positive electrode plate 1
The winding is started while the 0 and the negative electrode plate 11 are overlapped via the separators 12. The negative electrode plate 1 is detected by the second detecting means 7.
One edge is detected. At this time, when the amount of light received by the light receiving unit 26 is 50%, the guide rolls 28 are adjusted so as to be in the neutral position (the state of FIG. 2A), and the amount of light received by the light receiving unit 26 is When the light emission amount in the light emitting unit 25 exceeds 50% or becomes less than 50%, a difference signal is transmitted from the comparison circuit 33, and is converted into a digital signal by the A / D converter 34. Is calculated. The control signal from the control unit 36 is D
After being converted into an analog signal by the / A converter 37, the signal is applied to the piezoelectric element 30. Thereby, as shown in FIG. 3, the pressing rod 30 a of the piezoelectric element 30 presses the rotating part 29, and the rotating part 29 rotates with respect to the shaft 27, and corresponds to the movement of the rotating part 29. Then, the guide rolls 28 also rotate in the same direction. As a result, the displacement of the negative electrode plate 11 is corrected (for example, as shown in FIG.
Direction), the position of the negative electrode plate 11 with respect to the guide rolls 28 moves rightward. Since the amount of change of the pressing rod 30a of the piezoelectric element 30 corresponds to the amount of the difference signal from the comparison circuit 33, the larger the difference signal (the larger the deviation), the larger the change amount and the smaller the difference signal. If the deviation is small, the change amount is also small.
When the difference signal is no longer transmitted, the pressing rod 30a
Is the neutral position (the position shown in FIG. 2). On the other hand, in the case of the positive electrode plate 10, the piezoelectric element 1
The same driving as that of the negative electrode plate 11 is performed except that the servo motor is driven instead of 0. In the above-described embodiment, a piezoelectric element is used only for the second correction means 9, but a piezoelectric element may be used only for the first correction means 8. Further, the first correction means 8 and the second correction means Needless to say, a piezoelectric element may be used for both of them. [Example] [Example] In Example 1, the apparatus for winding an electrode shown in the embodiment of the present invention was used. The device having such a structure is hereinafter referred to as device A of the present invention. [Comparative Example] An electrode winding device described in the prior art was used. The device having such a structure is hereinafter referred to as a comparison device X. [Experiment] The device A of the present invention and the comparison device X
Of the positive electrode plate and the negative electrode plate in FIG.
1) The mounting area of the EPC unit and the mounting position of the EPC unit were examined, and the results are shown in Table 1. [Table 1] As is clear from Table 1, the displacement of the positive electrode plate and the negative electrode plate of the device A of the present invention was 1 / compared to that of the comparative device X.
It is recognized that it has been reduced to about 3. This is a device A of the present invention using an EPC unit driven by a piezoelectric element.
Shows that the mounting area of the EPC unit is 70% as compared with the comparison device X using the EPC unit driven by the servomotor.
As a result, the EPC unit can be arranged close to the winding unit (the distance between the winding unit and the EPC unit is about half the distance of the conventional one), and the responsiveness of the piezoelectric element is higher than that of the servomotor. It is thought to be due to its superiority. As described above, according to the present invention,
Since the response of the EPC unit can be improved, the displacement of the positive electrode plate and the negative electrode plate can be corrected at high speed, and
Reduce the size of the EPC unit so that E
Since the PC unit can be arranged, an excellent effect that the displacement of the positive electrode plate and the negative electrode plate can be reliably suppressed can be achieved.

【図面の簡単な説明】 【図1】本発明の一例に係る電極体の巻き取り装置の概
念構成図。 【図2】EPCユニットを示す拡大図であり、同図
(a)は側面図、同図(b)は正面図。 【図3】EPCユニットが作動した状態を示す側面図。 【図4】電極体の巻き取り装置の制御機構の電気的構成
を示すブロック図。 【図5】従来の巻き取り装置の概念構成図。 【図6】正極板と負極板とのズレ状態を示す説明図。 【符号の説明】 1:巻き取り手段 2:正極板供給手段 3:負極板供給手段 4・5:セパレータ供給手段 6:第1検出手段 7:第2検出手段 8:第1補正手段 9:第2補正手段 10:正極板 11:負極板 12:セパレータ 13:巻き取り軸 20:正極板供給経路 21:負極板供給経路 30:圧電素子
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a conceptual configuration diagram of a device for winding an electrode body according to an example of the present invention. FIGS. 2A and 2B are enlarged views showing an EPC unit, wherein FIG. 2A is a side view and FIG. 2B is a front view. FIG. 3 is a side view showing a state in which an EPC unit is operated. FIG. 4 is a block diagram showing an electrical configuration of a control mechanism of the winding device for the electrode body. FIG. 5 is a conceptual configuration diagram of a conventional winding device. FIG. 6 is an explanatory diagram showing a state of displacement between a positive electrode plate and a negative electrode plate. [Description of Signs] 1: Winding means 2: Positive plate supply means 3: Negative plate supply means 4.5: Separator supply means 6: First detection means 7: Second detection means 8: First correction means 9: First 2 correction means 10: positive electrode plate 11: negative electrode plate 12: separator 13: winding shaft 20: positive electrode plate supply path 21: negative electrode supply path 30: piezoelectric element

Claims (1)

【特許請求の範囲】 【請求項1】 正極板と負極板とをセパレータを介して
重ね合わせつつ、巻き取り軸を回転させることにより、
これらを渦巻き状に巻き取る巻き取り手段と、 上記巻き取り手段に上記正極板を供給する正極板供給手
段と、 上記巻き取り手段に上記負極板を供給する負極板供給手
段と、 上記巻き取り手段に上記セパレータを供給するセパレー
タ供給手段と、 上記正極板供給手段から上記巻き取り手段に至る正極板
供給経路上に設けられ、正極板の位置ズレを検出する第
1検出手段と、 上記負極板供給手段から上記巻き取り手段に至る負極板
供給経路上に設けられ、負極板の位置ズレを検出する第
2検出手段と、 上記第1検出手段の検出結果に基づいて、上記正極板の
位置ズレを補正する第1補正手段と、 上記第2検出手段の検出結果に基づいて、上記負極板の
位置ズレを補正する第2補正手段と、 を備えた電極体の巻き取り装置において、 上記第1補正手段及び第2補正手段のうち少なくとも1
つの補正手段は圧電素子により駆動されることを特徴と
する電極体の巻き取り装置。
Claims 1. By winding a winding shaft while overlapping a positive electrode plate and a negative electrode plate via a separator,
A winding means for winding these in a spiral shape; a positive plate supply means for supplying the positive plate to the winding means; a negative plate supply means for supplying the negative plate to the winding means; Separator supply means for supplying the separator to the positive electrode plate supply means, a first detection means provided on a positive electrode plate supply path from the positive electrode plate supply means to the winding means, and detecting a displacement of the positive electrode plate; Means for detecting a position shift of the negative electrode plate, provided on the negative electrode plate supply path from the means to the winding means, and detecting the position shift of the positive electrode plate based on the detection result of the first detection means. A first correcting means for correcting the position of the negative electrode plate based on a detection result of the second detecting means; and a second correcting means for correcting a positional shift of the negative electrode plate. At least one of the positive section and the second correction means
The two winding means are driven by a piezoelectric element.
JP2002092581A 2002-03-28 2002-03-28 Winding device for electrode Pending JP2003297412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002092581A JP2003297412A (en) 2002-03-28 2002-03-28 Winding device for electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002092581A JP2003297412A (en) 2002-03-28 2002-03-28 Winding device for electrode

Publications (1)

Publication Number Publication Date
JP2003297412A true JP2003297412A (en) 2003-10-17

Family

ID=29386678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002092581A Pending JP2003297412A (en) 2002-03-28 2002-03-28 Winding device for electrode

Country Status (1)

Country Link
JP (1) JP2003297412A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035202A1 (en) 2011-09-09 2013-03-14 トヨタ自動車株式会社 Secondary cell inspecting method
US9293782B2 (en) 2010-06-01 2016-03-22 Samsung Sdi Co., Ltd. Winder for electrode assembly of rechargeable battery and electrode assembly manufacturing method using the same
JP2016051645A (en) * 2014-09-01 2016-04-11 株式会社Gsユアサ Winder and winding method of electrode
JP2016219352A (en) * 2015-05-25 2016-12-22 トヨタ自動車株式会社 Manufacturing apparatus for secondary battery
KR102433653B1 (en) * 2022-05-10 2022-08-18 (주)도원위즈테크 Electrode winding device for secondary battery with improved assembly structure
CN116081370A (en) * 2023-03-22 2023-05-09 宁德时代新能源科技股份有限公司 Pole piece feeding device, winding equipment and pole piece deviation correcting method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293782B2 (en) 2010-06-01 2016-03-22 Samsung Sdi Co., Ltd. Winder for electrode assembly of rechargeable battery and electrode assembly manufacturing method using the same
WO2013035202A1 (en) 2011-09-09 2013-03-14 トヨタ自動車株式会社 Secondary cell inspecting method
KR20140059284A (en) 2011-09-09 2014-05-15 도요타지도샤가부시키가이샤 Secondary cell inspecting method
US9261565B2 (en) 2011-09-09 2016-02-16 Toyota Jidosha Kabushiki Kaisha Method of testing secondary battery
JP2016051645A (en) * 2014-09-01 2016-04-11 株式会社Gsユアサ Winder and winding method of electrode
JP2016219352A (en) * 2015-05-25 2016-12-22 トヨタ自動車株式会社 Manufacturing apparatus for secondary battery
KR102433653B1 (en) * 2022-05-10 2022-08-18 (주)도원위즈테크 Electrode winding device for secondary battery with improved assembly structure
CN116081370A (en) * 2023-03-22 2023-05-09 宁德时代新能源科技股份有限公司 Pole piece feeding device, winding equipment and pole piece deviation correcting method
CN116081370B (en) * 2023-03-22 2023-09-08 宁德时代新能源科技股份有限公司 Pole piece feeding device, winding equipment and pole piece deviation correcting method

Similar Documents

Publication Publication Date Title
JP5808421B2 (en) New equipment for cutting
JP4775668B2 (en) Method and apparatus for manufacturing wound electrode body, and method for manufacturing battery
EP2092591B1 (en) Bipolar battery and method of manufacturing same
KR101262034B1 (en) Device for Folding Electrode Assembly
JP5703387B2 (en) New device for incision processing and secondary battery produced by using the same
KR101334618B1 (en) Device for Folding Electrode Assembly
US20100281685A1 (en) Electrode winding apparatus and electrode winding method (as amended)
WO2015125048A1 (en) Current collector, secondary battery, electronic device, and manufacturing method thereof
CN111247667B (en) Method for manufacturing collector electrode sheet, and battery
US20030099878A1 (en) Discontinuous cathode sheet halfcell web
JP2019003948A (en) Secondary battery having jelly roll-type electrode assembly comprising intermittent blank portion formed on positive electrode collector
JP2002042881A (en) Device and method for sticking tape
JP2017103111A (en) Eddy-shaped electrode and method of manufacturing eddy-shaped electrode
JP2003297412A (en) Winding device for electrode
JP4605779B2 (en) Reel
JP2009295553A (en) Method and device for manufacturing bipolar battery
US20220190391A1 (en) Transport drum for electrode assembly
KR100635707B1 (en) Electrode plate rolling Device for Secondary battery
KR101738728B1 (en) Winding device
KR100635758B1 (en) Electrode plate rolling Device for Secondary battery
JP2000058012A (en) Flat-battery and its manufacture
JP2009064667A (en) All solid thin film battery, its manufacturing method, and its manufacturing apparatus
JP2006302799A (en) Manufacturing device of electrode for cylindrical battery
US20210280841A1 (en) Bundling method, manufacturing method of battery, and bundling apparatus
JP3658816B2 (en) Electrode group, electrode group manufacturing apparatus, and electrode group manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070626