JP2003297364A - Electrode material for electrochemical cell and electrochemical cell using it - Google Patents

Electrode material for electrochemical cell and electrochemical cell using it

Info

Publication number
JP2003297364A
JP2003297364A JP2002095417A JP2002095417A JP2003297364A JP 2003297364 A JP2003297364 A JP 2003297364A JP 2002095417 A JP2002095417 A JP 2002095417A JP 2002095417 A JP2002095417 A JP 2002095417A JP 2003297364 A JP2003297364 A JP 2003297364A
Authority
JP
Japan
Prior art keywords
electrode material
lithium
electrochemical cell
electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002095417A
Other languages
Japanese (ja)
Other versions
JP4029273B2 (en
Inventor
Tokuo Inamasu
徳雄 稲益
Noboru Ono
昇 小野
Hiroyuki Tani
弘幸 谷
Daisuke Yuutoku
大介 由徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP2002095417A priority Critical patent/JP4029273B2/en
Publication of JP2003297364A publication Critical patent/JP2003297364A/en
Application granted granted Critical
Publication of JP4029273B2 publication Critical patent/JP4029273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material for fabricating a cell having a high energy density and capable of forming an electrode having excellent reversibility and provide a lithium battery having an excellent rate performance using the electrode material. <P>SOLUTION: The electrode material for the lithium battery is an organic sulfur compound capable of making an electrolytic oxidative and reductive reaction, wherein each molecule of the organic sulfur compound has a phenanthrene structure. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ジスルフィド基を有す
る電気化学セル用電極材料に関する。
TECHNICAL FIELD The present invention relates to an electrode material for an electrochemical cell having a disulfide group.

【0002】[0002]

【従来の技術】高エネルギ−密度が期待できる電気化学
セル用電極材料として、有機硫黄化合物であるジスルフ
ィド系化合物が米国特許第4,833,048号公報に
示されている。この有機硫黄化合物は最も簡単にはR−
S−S−R(Rは炭化水素、Sは硫黄を示す)で示さ
れ、S−S結合は電解還元反応により開裂し、電解質中
の金属イオンM+とで2R-・M+で表される金属塩を生
成する。この金属塩は電解酸化反応により元のR−S−
S−Rに戻る。金属イオンM+を供給・捕捉する金属M
とジスルフィド系化合物を組み合わせた金属−ジスルフ
ィド二次電池が前述の米国特許に提案されている。この
電池は、150Wh/kg以上の高エネルギー密度が期
待できる。
2. Description of the Related Art As an electrode material for an electrochemical cell which can be expected to have a high energy density, a disulfide compound which is an organic sulfur compound is disclosed in U.S. Pat. No. 4,833,048. This organic sulfur compound is most simply R-
S—S—R (R is a hydrocarbon, S is sulfur), the S—S bond is cleaved by an electrolytic reduction reaction, and is represented by 2R · M + with a metal ion M + in the electrolyte. To produce a metal salt. This metal salt is converted to the original R-S- by the electrolytic oxidation reaction.
Return to SR. Metal M that supplies and captures metal ions M +
A metal-disulfide secondary battery, which is a combination of a disulfide-based compound and a disulfide-based compound, has been proposed in the aforementioned US patent. This battery can be expected to have a high energy density of 150 Wh / kg or more.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記金
属塩は有機電解液に溶解しやすいため、例えば有機電解
液を用いる電気化学セル、特に二次電池用の電極材料と
して用いようとした場合に、困難であった。
However, since the metal salt is easily dissolved in an organic electrolytic solution, for example, when it is used as an electrode material for an electrochemical cell using an organic electrolytic solution, particularly a secondary battery, It was difficult.

【0004】[0004]

【課題を解決するための手段】本発明は、請求項1に記
載されているように、電解酸化還元反応が可能な有機硫
黄化合物であって、該有機硫黄化合物は、分子内にフェ
ナントレン構造を有していることを特徴とする電気化学
セル用電極材料である。
The present invention, as described in claim 1, is an organic sulfur compound capable of electrolytic redox reaction, wherein the organic sulfur compound has a phenanthrene structure in its molecule. It is an electrode material for electrochemical cells characterized by having.

【0005】即ち、酸化還元可能な有機硫黄化合物が、
フェナントレン構造を有していることにより、電解液へ
の溶解性を抑制することが可能である。また。フェナン
トレン構造を有することから、導電剤としてカーボン材
料を使用した場合になじみが良く、有機硫黄化合物と導
電剤との電子の授受が容易に進行する。
That is, the redox-reducible organic sulfur compound is
By having a phenanthrene structure, solubility in an electrolytic solution can be suppressed. Also. Since it has a phenanthrene structure, it is well suited when a carbon material is used as the conductive agent, and the transfer of electrons between the organic sulfur compound and the conductive agent easily proceeds.

【0006】また、本発明は請求項2に記載されている
ように、3,6−フェナントレンジチオール、1,10
−ジチオフェナントレン、4,5−ジチオフェナントレ
ン、またはその金属塩からなる電気化学セル用電極材料
である。
The present invention also provides 3,6-phenanthrenedithiol, 1,10 as described in claim 2.
-An electrode material for an electrochemical cell comprising dithiophenanthrene, 4,5-dithiophenanthrene, or a metal salt thereof.

【0007】3,6−フェナントレンジチオール、1,
10−ジチオフェナントレン、4,5−ジチオフェナン
トレン、またはその金属塩であれば、比較的合成が容易
である。
3,6-phenanthrene thiol, 1,
10-dithiophenanthrene, 4,5-dithiophenanthrene, or a metal salt thereof is relatively easy to synthesize.

【0008】また、本発明は、請求項3に記載されてい
るように、これらの電気化学セル用電極材料を用いた電
気化学セルである。本発明の電極材料は、キャパシタや
電池等の電気化学セルに用いることができる。電池とし
ては、プロトン系電池や、非プロトン系電池に用いるこ
とができる。
Further, the present invention provides an electrochemical cell using these electrode materials for an electrochemical cell as described in claim 3. The electrode material of the present invention can be used in electrochemical cells such as capacitors and batteries. As a battery, a proton battery or an aproton battery can be used.

【0009】[0009]

【発明実施の形態】以下、リチウム電池用電極材料とし
て本発明の電極材料を用いることを想定して記載する
が、本発明は、以下の記述により限定されるものではな
い。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, description will be made assuming that the electrode material of the present invention is used as an electrode material for a lithium battery, but the present invention is not limited by the following description.

【0010】本発明の電気化学セル用電極材料をリチウ
ム電池の正極活物質として用いる場合、負極活物質に
は、一般にリチウム電池用負極に用いられる材料を用い
ることができる。例えば、リチウム金属、リチウム−ア
ルミニウム、リチウム−鉛、リチウム−スズ、リチウム
−アルミニウム−スズ、リチウム−ガリウム、およびウ
ッド合金などのリチウム含有合金、さらに、以下のよう
な炭素材料が挙げられる。例えば、天然黒鉛、人造黒
鉛、無定形炭素、繊維状炭素、粉末状炭素、石油ピッチ
系炭素、石炭コークス系炭素がある。これら炭素材料
は、直径あるいは繊維径が0.01〜10μm、繊維長
が数μmから数mmまでの粒子あるいは繊維が好まし
い。特に前記炭素材料が、 エックス線回折等による分析結果; 格子面間隔(d002) 0.333〜0.350nm a軸方向の結晶子の大きさ La 20nm以上 c軸方向の結晶子の大きさ Lc 20nm以上 真密度; 2.00〜2.25g/cm3 のグラファイトは高容量を示すことから好ましい。しか
しながら、これらの範囲に限定されるものではない。
When the electrode material for an electrochemical cell of the present invention is used as a positive electrode active material for a lithium battery, the negative electrode active material may be any material generally used for negative electrodes for lithium batteries. For example, lithium-containing alloys such as lithium metal, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys, and the following carbon materials can be mentioned. For example, there are natural graphite, artificial graphite, amorphous carbon, fibrous carbon, powdery carbon, petroleum pitch carbon, and coal coke carbon. These carbon materials are preferably particles or fibers having a diameter or fiber diameter of 0.01 to 10 μm and a fiber length of several μm to several mm. In particular, the carbon material is analyzed by X-ray diffraction or the like; Lattice plane spacing (d 002 ) 0.333 to 0.350 nm Crystallite size in the a-axis direction La 20 nm or more Crystallite size in the c-axis direction Lc 20 nm As described above, graphite having a true density of 2.00 to 2.25 g / cm 3 is preferable because it exhibits a high capacity. However, it is not limited to these ranges.

【0011】さらに、炭素材料にはスズ酸化物や珪素酸
化物といった金属酸化物を添加したり、リンやホウ素を
添加し改質を行うことも可能である。また、グラファイ
トとリチウム金属、リチウム含有合金などを併用するこ
とや、あらかじめ電気化学的に還元することによって、
本発明に用いる炭素質材料にあらかじめリチウムを挿入
することも可能である。
Further, the carbon material can be modified by adding a metal oxide such as tin oxide or silicon oxide, or by adding phosphorus or boron. Also, by using graphite in combination with lithium metal, a lithium-containing alloy, or by performing electrochemical reduction in advance,
It is also possible to insert lithium into the carbonaceous material used in the present invention in advance.

【0012】本発明の電気化学セル用電極材料をリチウ
ム電池の負極活物質として用いる場合、正極活物質に
は、一般にリチウム電池用正極に用いられる材料を用い
ることができる。例えば、リチウムに対して3V以上の
放電電圧を示すリチウム含有遷移金属酸化物、リン酸塩
などの材料が好適に用いられる。特に、4V以上の放電
電位が得られる材料は、高い電池電圧が得られるためエ
ネルギー密度が向上し、より好ましい。リチウム含有遷
移金属酸化物としては、例えば、一般式LiyCo1-x
x2、LiyMn2-xX4{Mは、IからVIII族の
金属(例えば、Li,Ca,Cr,Ni,Fe,Co,
Mn等の1種類以上の元素)であり、異種元素置換量を
示すx値については置換できる最大量まで有効である
が、好ましくは放電容量の点から0≦x≦1である。ま
た、リチウム量を示すy値についてはリチウムを可逆的
に利用しうる最大量が有効であるが、好ましくは放電容
量の点から0<y≦2である。}が挙げられるが、これ
らに限定されるものではない。ただし、本発明の電極材
料は負極に用いる場合、比較的貴な電位にあるため、よ
り貴な電位で作動する正極活物質が好ましい。
When the electrode material for an electrochemical cell of the present invention is used as the negative electrode active material of a lithium battery, the positive electrode active material may be a material generally used for a positive electrode for lithium batteries. For example, materials such as lithium-containing transition metal oxides and phosphates that exhibit a discharge voltage of 3 V or more with respect to lithium are preferably used. In particular, a material that can obtain a discharge potential of 4 V or higher is more preferable because a high battery voltage is obtained and the energy density is improved. Examples of the lithium-containing transition metal oxide include, for example, the general formula Li y Co 1-x M
x O 2 , Li y Mn 2-x M X O 4 {M is a group I to VIII metal (for example, Li, Ca, Cr, Ni, Fe, Co,
One or more kinds of elements such as Mn), and the x value indicating the substitution amount of different elements is effective up to the maximum substitutionable amount, but 0 ≦ x ≦ 1 is preferable from the viewpoint of discharge capacity. As for the y value indicating the amount of lithium, the maximum amount that can reversibly use lithium is effective, but 0 <y ≦ 2 is preferable from the viewpoint of discharge capacity. }, But is not limited thereto. However, since the electrode material of the present invention has a relatively noble potential when used for the negative electrode, a positive electrode active material that operates at a more noble potential is preferable.

【0013】上記リチウム含有遷移金属酸化物に、その
他の活物質をさらに混合して用いることができる。例え
ば、CuO、Cu2O、Ag2O、CuS、CuSO4
どのI族金属化合物、TiS2、SiO2、SnOなどの
IV族金属化合物、V25、V612、VOx、Nb
25、Bi23、Sb23などのV族金属化合物、Cr
3、Cr23、MoO3、MoS2、WO3、SeO2
どのVI族金属化合物、MnO2、Mn23などのVI
I族金属化合物、Fe23、FeO、Fe34、FeP
4、Ni23、NiO、CoO3、CoOなどのVII
I族金属化合物等が挙げられる。さらに、ポリピロー
ル、ポリアニリン、ポリパラフェニレン、ポリアセチレ
ン、ポリアセン系材料などの導電性高分子化合物、擬グ
ラファイト構造炭素質材料等を用いてもよいが、これら
に限定されるものではない。
The above-mentioned lithium-containing transition metal oxide is
Other active materials can be further mixed and used. example
For example, CuO, Cu2O, Ag2O, CuS, CuSOFourNa
Which group I metal compound, TiS2, SiO2, SnO, etc.
Group IV metal compound, V2OFive, V6O12, VOx, Nb
2OFive, Bi2O3, Sb2O3Group V metal compounds such as Cr
O 3, Cr2O3, MoO3, MoS2, WO3, SeO2Na
Which group VI metal compound, MnO2, Mn2O3VI such as
Group I metal compound, Fe2O3, FeO, Fe3OFour, FeP
OFour, Ni2O3, NiO, CoO3, CoO, etc. VII
Examples thereof include Group I metal compounds. In addition, poly pillow
Le, polyaniline, polyparaphenylene, polyacetylene
Conductive polymer compounds such as
Lafite structure carbonaceous materials may be used,
It is not limited to.

【0014】本発明の電極材料の形成方法としては、例
えば、アプリケーターロールなどのローラーコーティン
グ、スクリーンコーティング、ドクターブレード方式、
スピンコーティング、バーコーダーなどの手段を用い
て、集電体上に任意の厚さおよび任意の形状に塗布する
ことが望ましいが、これらに限定されるものではない。
なお、これらの手段を用いた場合、電解質層および集電
体と接触する電気化学的活性物質の実表面積を増加させ
ることが可能である。
Examples of the method for forming the electrode material of the present invention include roller coating for applicator rolls, screen coating, doctor blade method,
It is desirable, but not limited to, to coat the current collector in any thickness and in any shape using a means such as spin coating or a bar coder.
When these means are used, it is possible to increase the actual surface area of the electrochemically active substance that comes into contact with the electrolyte layer and the current collector.

【0015】本発明の電極材料は、その電極合剤に必要
に応じて導電剤、結着剤、フィラー等を添加することが
できる。
In the electrode material of the present invention, a conductive agent, a binder, a filler and the like can be added to the electrode mixture as needed.

【0016】前記導電剤としては、電池性能に悪影響を
及ぼさない電子伝導性材料であれば何でも良い。通常、
天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人
造黒鉛、カーボンブラック、アセチレンブラック、ケッ
チェンブラック、カーボンウイスカー、炭素繊維や金属
(銅、ニッケル、アルミニウム、銀、金など)粉、金属
繊維、導電性セラミックス材料等の導電性材料を1種ま
たはそれらの混合物として含ませることができる。これ
らの中で、導電性及び塗工性の観点よりアセチレンブラ
ックが望ましい。その添加量は1〜50重量%が好まし
く、特に2〜30重量%が好ましい。これらの混合方法
は、物理的な混合であり、その理想とするところは均一
混合である。そのため、V型混合機、S型混合機、擂か
い機、ボールミル、遊星ボールミルといったような粉体
混合機を乾式、あるいは湿式で混合することが可能であ
る。
The conductive agent may be any electron conductive material that does not adversely affect the battery performance. Normal,
Natural graphite (scaly graphite, flake graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, Ketjen black, carbon whiskers, carbon fiber and metal (copper, nickel, aluminum, silver, gold, etc.) powder, A conductive material such as a metal fiber or a conductive ceramic material may be contained as one kind or a mixture thereof. Of these, acetylene black is preferable from the viewpoint of conductivity and coatability. The addition amount is preferably 1 to 50% by weight, and particularly preferably 2 to 30% by weight. These mixing methods are physical mixing, and ideally, they are homogeneous mixing. Therefore, a powder mixer such as a V-type mixer, an S-type mixer, a grinder, a ball mill, and a planetary ball mill can be mixed in a dry or wet manner.

【0017】前記結着剤としては、通常、テトラフルオ
ロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポ
リプロピレン、エチレン−プロピレンジエンターポリマ
ー(EPDM)、スルホン化EPDM、スチレンブタジ
エンゴム(SBR)、フッ素ゴム、カルボキシメチルセ
ルロース等といった熱可塑性樹脂、ゴム弾性を有するポ
リマー、多糖類等を1種または2種以上の混合物として
用いることができる。また、多糖類のようにリチウムと
反応する官能基を有する結着剤は、例えばメチル化する
などしてその官能基を失活させておくことが望ましい。
その添加量としては、1〜50重量%が好ましく、特に
2〜30重量%が好ましい。
The binder is usually tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber, carboxymethyl cellulose. A thermoplastic resin, a polymer having rubber elasticity, a polysaccharide and the like can be used as one kind or as a mixture of two or more kinds. In addition, it is desirable that the binder having a functional group that reacts with lithium such as a polysaccharide is deactivated by, for example, methylating.
The amount added is preferably 1 to 50% by weight, and particularly preferably 2 to 30% by weight.

【0018】前記フィラーとしては、電池性能に悪影響
を及ぼさない材料であれば何でも良い。通常、ポリプロ
ピレン、ポリエチレン等のオレフィン系ポリマー、アエ
ロジル、ゼオライト、ガラス、炭素等が用いられる。フ
ィラーの添加量は0〜30重量%が好ましい。
The filler may be any material as long as it does not adversely affect the battery performance. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, zeolite, glass, carbon and the like are used. The amount of the filler added is preferably 0 to 30% by weight.

【0019】本発明の電極材料に、さらに、硫黄、セレ
ン、テルルなどのカルコゲン元素を添加することも可能
である。前記カルコゲン元素は、電極材料が有するジス
ルフィド基のS−S結合に付加し、電気化学的容量がさ
らに増大する。前記カルコゲン元素の添加量は、本発明
の電極材料に対して、30重量%以下が好ましい。
It is also possible to add a chalcogen element such as sulfur, selenium or tellurium to the electrode material of the present invention. The chalcogen element is added to the S—S bond of the disulfide group contained in the electrode material to further increase the electrochemical capacity. The amount of the chalcogen element added is preferably 30% by weight or less based on the electrode material of the present invention.

【0020】正極集電体及び負極集電体としては、構成
された電池において悪影響を及ぼさない電子伝導体であ
れば何でもよい。例えば、正極集電体としては、アルミ
ニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、
導電性高分子、導電性ガラス等の他、接着性、導電性、
耐酸化性向上の目的で、アルミニウムや銅等の表面をカ
ーボン、ニッケル、チタンや銀等で処理した物を用いる
ことができる。負極集電体としては、銅、ニッケル、
鉄、ステンレス鋼、チタン、アルミニウム、焼成炭素、
導電性高分子、導電性ガラス、Al−Cd合金等の他
に、接着性、導電性、耐酸化性向上の目的で、銅等の表
面をカーボン、ニッケル、チタンや銀等で処理した物を
用いることができる。これらの材料については表面を酸
化処理することも可能である。これらの形状について
は、フォイル状の他、フィルム状、シート状、ネット
状、パンチ又はエキスパンドされた物、ラス体、多孔質
体、発砲体、繊維群の形成体等が用いられる。厚さは特
に限定はないが、1〜500μmのものが用いられる。
これらの集電体の中で、正極には耐酸化性に優れている
アルミニウム箔が、負極には還元場において安定であ
り、且つ電導性に優れ、安価な銅箔、ニッケル箔、鉄
箔、およびそれらの一部を含む合金箔が好ましい。さら
に、電気化学的活性物質層と集電体との密着性が優れて
いる粗面表面粗さが0.2μmRa以上の箔であること
が望ましい。このような粗面を得る目的で電解箔は優れ
ている。
As the positive electrode current collector and the negative electrode current collector, any electron conductor may be used so long as it does not adversely affect the constructed battery. For example, as the positive electrode current collector, aluminum, titanium, stainless steel, nickel, baked carbon,
In addition to conductive polymers, conductive glass, etc., adhesiveness, conductivity,
For the purpose of improving the oxidation resistance, a material obtained by treating the surface of aluminum, copper or the like with carbon, nickel, titanium, silver or the like can be used. As the negative electrode current collector, copper, nickel,
Iron, stainless steel, titanium, aluminum, calcined carbon,
In addition to conductive polymers, conductive glass, Al-Cd alloys, etc., those obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver or the like for the purpose of improving adhesiveness, conductivity, and oxidation resistance. Can be used. It is also possible to oxidize the surface of these materials. With respect to these shapes, in addition to the foil shape, a film shape, a sheet shape, a net shape, a punched or expanded material, a lath body, a porous body, a foamed body, a fiber group formed body or the like is used. The thickness is not particularly limited, but one having a thickness of 1 to 500 μm is used.
Among these current collectors, the positive electrode is an aluminum foil having excellent oxidation resistance, the negative electrode is stable in a reducing field, and has excellent conductivity, and an inexpensive copper foil, nickel foil, iron foil, And alloy foils containing a part thereof are preferred. Furthermore, it is desirable that the foil has a rough surface and a surface roughness of 0.2 μmRa or more, which has excellent adhesion between the electrochemically active substance layer and the current collector. Electrolytic foils are excellent for the purpose of obtaining such a rough surface.

【0021】本発明の電極材料を用いた電池の外装材と
しては、鉄、ステンレススチール、アルミニウム等の金
属缶を用いることが可能であるが、重量エネルギー密度
の観点から、金属箔と樹脂フィルムを積層した金属樹脂
複合フィルムが好ましい。金属箔の例として、アルミニ
ウム、鉄、ニッケル、銅、SUS、チタン、金、銀等、
ピンホールのない箔であれば何でもよいが、軽量で安価
なアルミニウム箔が好ましい。また、外面にポリエチレ
ンテレフタレートフィルム、ナイロンフィルム等の突き
刺し強度が優れた樹脂フィルムを、内面にポリエチレン
フィルム、ナイロンフィルム等の熱可塑性であって融着
可能なフィルムを配した樹脂フィルムも好適に用いられ
る。耐溶剤性の観点からこのような樹脂フィルムの開口
部は、熱可塑性樹脂で封止することが望ましい。
A metal can made of iron, stainless steel, aluminum or the like can be used as an outer casing material for a battery using the electrode material of the present invention. From the viewpoint of weight energy density, a metal foil and a resin film are used. A laminated metal resin composite film is preferred. Examples of the metal foil include aluminum, iron, nickel, copper, SUS, titanium, gold, silver, etc.
Although any foil without pinholes may be used, lightweight and inexpensive aluminum foil is preferable. Further, a resin film having an excellent puncture strength such as a polyethylene terephthalate film or a nylon film on the outer surface, and a thermoplastic and fusible film such as a polyethylene film or a nylon film on the inner surface is preferably used. . From the viewpoint of solvent resistance, it is desirable to seal the opening of such a resin film with a thermoplastic resin.

【0022】本発明の電極材料を用いた電池のセパレー
タは、ポリオレフィン系、ポリエステル系、ポリアクリ
ロニトリル系、ポリフェニレンサルファイド系、ポリイ
ミド系、及びフッ素樹脂系の微孔膜や不織布を用いるこ
とが可能である。それらの中で、濡れ性の悪い微孔膜に
は界面活性剤等の処理を施すことが好ましい。
As the battery separator using the electrode material of the present invention, it is possible to use a microporous membrane or nonwoven fabric of polyolefin type, polyester type, polyacrylonitrile type, polyphenylene sulfide type, polyimide type, and fluororesin type. . Among them, it is preferable that the microporous film having poor wettability is treated with a surfactant or the like.

【0023】上記セパレータの空孔率は、強度の観点か
ら98体積%以下が好ましい。また、充放電特性の観点
から空孔率は20体積%以上が好ましい。
From the viewpoint of strength, the porosity of the separator is preferably 98% by volume or less. From the viewpoint of charge / discharge characteristics, the porosity is preferably 20% by volume or more.

【0024】本発明の電極材料を用いた電池における電
解質に用いるイオン性化合物としては、例えば、LiC
lO4、LiBF4、LiAsF6、LiPF6、LiCF
3SO3、LiCF3CO2、LiSCN、LiBr、Li
I、Li2SO4、Li210Cl10、NaClO4、Na
I、NaSCN、NaBr、KClO4、KSCN、な
どのLi、NaまたはKの1種を含む無機イオン塩、L
iN(CF3SO22、LiN(C25SO22、(C
3 4NBF4、(CH34NBr、(C254NC
lO4、(C254NI、(C374NBr、(n−
494NClO4、(n−C494NI、(C2
54N−maleate、(C254N−benzo
ate、(C254N−phtalateなどの四級
アンモニウム塩、ステアリルスルホン酸リチウム、オク
チルスルホン酸リチウム、ドデシルベンゼンスルホン酸
リチウムなどの有機イオン塩等が例示される。
The ionic compound used as the electrolyte in the battery using the electrode material of the present invention is, for example, LiC.
lO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF
3 SO 3 , LiCF 3 CO 2 , LiSCN, LiBr, Li
I, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , Na
I, NaSCN, NaBr, KClO 4 , KSCN, and other inorganic ion salts containing one of Li, Na or K, L
iN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , (C
H 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (C 2 H 5 ) 4 NC
lO 4, (C 2 H 5 ) 4 NI, (C 3 H 7) 4 NBr, (n-
C 4 H 9) 4 NClO 4 , (n-C 4 H 9) 4 NI, (C 2 H
5 ) 4 N-maleate, (C 2 H 5 ) 4 N-benzo
ate, quaternary ammonium salts such as (C 2 H 5 ) 4 N-phthalate, and organic ionic salts such as lithium stearyl sulfonate, lithium octyl sulfonate, and lithium dodecylbenzene sulfonate.

【0025】上記イオン性化合物は、有機溶剤等に溶解
して用いることができる。前記有機溶媒としては、エチ
レンカーボネート、プロピレンカーボネート、ブチレン
カーボネート、クロロエチレンカーボネート、ビニレン
カーボネートなどの環状炭酸エステル;γ−ブチロラク
トン、γ−バレロラクトンなどの環状エステル;ジメチ
ルカーボネート、エチルメチルカーボネート、ジエチル
カーボネートなどの鎖状炭酸エステル;酢酸メチル、酪
酸メチルなどの鎖状エステル;テトラヒドロフランまた
はその誘導体、1,3−ジオキサン、1,2−ジメトキ
シエタン、メチルジグライムなどのエーテル類;アセト
ニトリル、ベンゾニトリルなどのニトリル類;ジオキサ
ランまたはその誘導体;スルホラン、スルトンまたはそ
の誘導体などの単独またはそれら2種以上の混合物など
を添加することも可能である。しかしこれらに限定され
るものではない。このような有機溶剤を添加することに
より、サイクル特性や安定性等の電池特性を改善するこ
とができる。
The ionic compound can be used by dissolving it in an organic solvent or the like. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, chloroethylene carbonate and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate. Chain ester carbonates; methyl acetate, methyl butyrate and other chain esters; tetrahydrofuran or its derivatives, ethers such as 1,3-dioxane, 1,2-dimethoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile It is also possible to add a group; dioxalane or a derivative thereof; sulfolane, sultone or a derivative thereof alone or a mixture of two or more thereof. However, it is not limited to these. By adding such an organic solvent, battery characteristics such as cycle characteristics and stability can be improved.

【0026】上記の電解液は、電極間に本発明のセパレ
ータを挟み込み積層したり、巻き込んだりした後に上記
電解液を注液してもよい。注液法としては、常圧で注液
することも可能であるが真空含浸方法や加圧含浸方法を
用いてもよい。
The above electrolytic solution may be poured after the separator of the present invention is sandwiched between electrodes to be laminated or rolled up. As the injection method, it is possible to inject at normal pressure, but a vacuum impregnation method or a pressure impregnation method may be used.

【0027】本発明の電極材料を用いた電池の電解質と
して、−20〜60℃の温度で固体あるいは固形状であ
るリチウムイオン伝導性の固体電解質を用いることもで
きる。前記固体電解質は、上記イオン性化合物を溶解さ
せたポリエチレンオキサイド誘導体又は少なくとも該誘
導体を含むポリマー、ポリプロピレンオキサイド誘導体
又は少なくとも該誘導体を含むポリマー、ポリフォスフ
ァゼンや該誘導体、イオン解離基を含むポリマー、リン
酸エステルポリマー誘導体、さらにポリビニルピリジン
誘導体、ビスフェノールA誘導体、ポリアクリロニトリ
ル、ポリビニリデンフルオライド、フッ素ゴム等に非水
電解液を含有させた高分子マトリックス材料(ゲル電解
質)、及び無機固体電解質等のイオン導伝性化合物から
なるものを用いることができる。
As the electrolyte of the battery using the electrode material of the present invention, a lithium ion conductive solid electrolyte which is solid or solid at a temperature of −20 to 60 ° C. can be used. The solid electrolyte is a polyethylene oxide derivative in which the above ionic compound is dissolved or a polymer containing at least the derivative, a polypropylene oxide derivative or a polymer containing at least the derivative, polyphosphazene or the derivative, a polymer containing an ion dissociative group, phosphorus. Ion such as acid ester polymer derivative, polyvinyl pyridine derivative, bisphenol A derivative, polyacrylonitrile, polyvinylidene fluoride, polymer matrix material (gel electrolyte) containing non-aqueous electrolyte in fluororubber, and inorganic solid electrolyte A conductive compound can be used.

【0028】本発明の電極材料を用いた電池の電極とし
ては、電極材料の電解質への溶出を抑制しつつ、十分な
イオン伝導性を確保するために前記固体電解質と複合し
て用いることが好ましい。例えば、以下に述べる方法で
得られた3,6−フェナントレンジチオール及び導電剤
であるアセチレンブラックを混練し、さらに前記ポリエ
チレンオキサイド誘導体であるアクリレート変性ポリエ
チレングリコールと前記イオン性化合物であるLiN
(CF3SO22及びラジカル開始剤としてアゾビスイ
ソブチロニトリルを加え混練し、アセトニトリルを加え
てできたペースト状物質をアルミニウム箔上に塗布し、
約80℃に加熱してアセトニトリルを除去し、さらに約
100℃で熱架橋を行い電極として用いる方法が挙げら
れる。架橋の方法としてはラジカル開始剤を用いる熱架
橋やUV架橋の他に、活性光線を用いる方法も好まし
い。また、本発明の電極材料である有機硫黄化合物をあ
らかじめ酸化処理してジスルフィド化処理しておくこと
も可能である。リチウム電池の電極材料として用いる場
合、チオールの活性プロトンはリチウムと反応して水素
ガスを発生するため、あらかじめ酸化処理しておくこと
が望ましい。
As an electrode of a battery using the electrode material of the present invention, it is preferable to use it in combination with the solid electrolyte in order to secure sufficient ionic conductivity while suppressing the elution of the electrode material into the electrolyte. . For example, 3,6-phenanthrene thiol obtained by the method described below and acetylene black which is a conductive agent are kneaded, and acrylate-modified polyethylene glycol which is the polyethylene oxide derivative and LiN which is the ionic compound are kneaded.
(CF 3 SO 2 ) 2 and azobisisobutyronitrile as a radical initiator are added and kneaded, and a paste-like substance made by adding acetonitrile is applied on an aluminum foil,
Examples include a method of heating to about 80 ° C. to remove acetonitrile, and further performing thermal crosslinking at about 100 ° C. to use as an electrode. As a method for crosslinking, in addition to thermal crosslinking using a radical initiator and UV crosslinking, a method using active rays is also preferable. It is also possible to previously subject the organic sulfur compound, which is the electrode material of the present invention, to an oxidation treatment and a disulfide treatment. When used as an electrode material of a lithium battery, active protons of thiol react with lithium to generate hydrogen gas, so it is desirable to perform oxidation treatment in advance.

【0029】[0029]

【実施例】[3,6−フェナントレンジチオール(36
PDT)の合成]3,6−PDTの合成はパラブロモト
ルエンを出発原料にして6段階で合成した。
EXAMPLES [3,6-phenanthrenedithiol (36
Synthesis of PDT] 3,6-PDT was synthesized in six steps using para-bromotoluene as a starting material.

【0030】[第1段階:パラブロモベンジルブロマイ
ドの合成]パラブロモトルエン20.6ml(168.
5mmol)を四塩化炭素200mlに混ぜ、N−ブロ
モスクシンイミド30g(168.5mmol)と、
α,α’−アゾビスイソブチロニトリル(AIBN)
0.3g(1.8mmol)を加え、80℃で二時間還
流した。その後室温まで冷却し、セライトにより不溶物
を除き、濾液を濃縮して得られた粗結晶をジエチルエー
テルで再結晶することでパラブロモベンジルブロマイド
を得た。
[Step 1: Synthesis of para-bromobenzyl bromide] 20.6 ml of para-bromotoluene (168.
5 mmol) in 200 ml of carbon tetrachloride, and 30 g (168.5 mmol) of N-bromosuccinimide,
α, α'-Azobisisobutyronitrile (AIBN)
0.3 g (1.8 mmol) was added and the mixture was refluxed at 80 ° C. for 2 hours. Thereafter, the mixture was cooled to room temperature, insoluble matter was removed with Celite, and the filtrate was concentrated to recrystallize the obtained crude crystal to obtain para-bromobenzyl bromide.

【0031】[第2段階:パラブロモベンズアルデヒド
の合成]パラブロモベンジルブロマイド8.5g(50
mmol)をクロロホルム50mlに溶解させ、撹拌を
しながらヘキサメチレンテトラミン9.09g(65m
mol)を徐々に加え溶解させた。室温で3時間ほど撹
拌を続けると白色沈殿(パラブロモベンジルブロマイド
ヘキサメチレンテトラミン塩)が析出してくるので、こ
れを濾取し、30分ほど風乾した。得られた白色沈殿1
2.12g(31mmol)を酢酸水溶液100ml
(酢酸90ml、水10ml)に加え、120℃で16
時間還流した。その後、温度を維持したまま水100m
lを加え10分ほど加熱撹拌を続けた後、室温まで冷却
するとパラブロモベンズアルデヒドが結晶で析出してく
るので、濾取し、水、飽和重曹水の順でよく洗浄し、風
乾してパラブロモベンズアルデヒドを得た。
[Second Step: Synthesis of Parabromobenzaldehyde] 8.5 g of parabromobenzyl bromide (50
mmol) in 50 ml of chloroform, and with stirring, 9.09 g of hexamethylenetetramine (65 m
(mol) was gradually added and dissolved. A white precipitate (para-bromobenzyl bromide hexamethylenetetramine salt) begins to precipitate when stirring is continued at room temperature for about 3 hours, and this was collected by filtration and air-dried for about 30 minutes. White precipitate 1 obtained
2.12 g (31 mmol) of acetic acid aqueous solution 100 ml
(90 ml of acetic acid, 10 ml of water)
Reflux for hours. Then 100m of water while maintaining the temperature
After adding 1 and continuing heating and stirring for about 10 minutes, when cooled to room temperature, para-bromobenzaldehyde begins to precipitate as crystals, so it is filtered off, washed well with water and saturated aqueous sodium hydrogencarbonate in this order, and dried in air to remove para-bromobenzaldehyde. Benzaldehyde was obtained.

【0032】[第3段階:パラブロモベンジルブロマイ
ドトリフェニルホスフィン塩の合成]パラブロモベンジ
ルブロマイド11.89g(47.6mmol)をアセ
トン50mlに溶解させ、撹拌しながらトリフェニルホ
スフィン13.11g(50mmol)を徐々に加え溶
解させた。室温で2時間ほど撹拌を続けると目的物が析
出してくるのでこれを濾取し、十分に風乾してパラブロ
モベンジルブロマイドトリフェニルホスフィン塩を得
た。
[Third step: Synthesis of parabromobenzyl bromide triphenylphosphine salt] 11.89 g (47.6 mmol) of parabromobenzyl bromide was dissolved in 50 ml of acetone, and 13.11 g (50 mmol) of triphenylphosphine was stirred while stirring. Was gradually added and dissolved. When stirring was continued at room temperature for about 2 hours, the desired product began to precipitate, and this was collected by filtration and sufficiently air-dried to obtain para-bromobenzyl bromide triphenylphosphine salt.

【0033】[第4段階:トランス−4,4’−ジブロ
モスチルベンの合成]窒素気流下、パラブロモベンジル
ブロマイドトリフェニルホスフィン塩9.23g(18
mmol)とパラブロモベンズアルデヒド4g(21.
6mmol)を乾燥THF(テトラヒドロフラン)10
0mlに懸濁させておき、そこへ乾燥THF50mlと
ターシャリーブトキシカリウム(t−BuOK) 2.
63g(23.4mmol)で調製した溶液を徐々に滴
下していった。室温で5時間ほど撹拌した後、水で反応
を止め、ジエチルエーテルで抽出し、水、飽和食塩水で
よく洗浄した後、硫酸ナトリウムで乾燥させ減圧蒸留し
て得られた粗生成物をクロロホルムで再結晶してトラン
ス−4,4’−ジブロモスチルベンを得た。
[Fourth stage: Synthesis of trans-4,4'-dibromostilbene] 9.23 g (18) of para-bromobenzyl bromide triphenylphosphine salt under a nitrogen stream.
and 4 g of para-bromobenzaldehyde (21.
6 mmol) in dry THF (tetrahydrofuran) 10
0 ml and suspended in it, and 50 ml of dry THF and potassium tertiary butoxide (t-BuOK) 2.
The solution prepared with 63 g (23.4 mmol) was gradually added dropwise. After stirring at room temperature for about 5 hours, the reaction was stopped with water, extracted with diethyl ether, washed well with water and saturated brine, dried over sodium sulfate, and distilled under reduced pressure to obtain a crude product with chloroform. Recrystallization gave trans-4,4'-dibromostilbene.

【0034】[第5段階:3,6−ジブロモフェナント
レンの合成]4,4’−ジブロモスチルベン676mg
(2mmol)をシクロヘキサン250mlに溶かし、
ヨウ素一片を加え、室温で高圧水銀灯を用いて撹拌しな
がら紫外線を照射した。その後ヨウ素の色が消えるまで
(約3時間)紫外線照射・撹拌を続けた。溶液のヨウ素
色が消えたら紫外線照射を止め、反応溶液を減圧下にて
溶媒を除去し、得られた粗生成物をシリカゲルカラムク
ロマトグラフィー(ヘキサン)にて精製することで3,
6−ジブロモフェナントレンを得た。
[Step 5: Synthesis of 3,6-dibromophenanthrene] 676 mg of 4,4′-dibromostilbene
(2 mmol) is dissolved in 250 ml of cyclohexane,
A piece of iodine was added, and the mixture was irradiated with ultraviolet rays while stirring with a high pressure mercury lamp at room temperature. Thereafter, UV irradiation and stirring were continued until the color of iodine disappeared (about 3 hours). When the iodine color of the solution disappears, the ultraviolet irradiation is stopped, the solvent is removed from the reaction solution under reduced pressure, and the obtained crude product is purified by silica gel column chromatography (hexane).
6-Dibromophenanthrene was obtained.

【0035】[第6段階:3,6−フェナントレンジチ
オールの合成]3,6−ジブロモフェナントレン33
6.03mg(1mmol)を乾燥THF50mlに溶
かし、−78℃に冷却し20分撹拌した。その後、温度
を保ったまま1.6M ノルマルブチルリチウムヘキサ
ン溶液1.26mlをゆっくり滴下していった。更に温
度に気を付けながら約1時間撹拌を続けた後、あらかじ
め昇華精製しておいた硫黄64mg(2mmol)を加
え、その後13分間撹拌を続けた。10%塩酸で反応を
止め、トルエンで抽出し、飽和重曹水、飽和食塩水で洗
浄した後、硫酸ナトリウムで乾燥させ減圧下、溶媒を除
去することで3,6−フェナントレンジチオールを得
た。
[Sixth step: Synthesis of 3,6-phenanthrenedithiol] 3,6-dibromophenanthrene 33
6.03 mg (1 mmol) was dissolved in 50 ml of dry THF, cooled to -78 ° C, and stirred for 20 minutes. Then, 1.26 ml of 1.6 M normal butyl lithium hexane solution was slowly added dropwise while maintaining the temperature. Further, while paying attention to the temperature, the stirring was continued for about 1 hour, 64 mg (2 mmol) of sulfur which had been sublimated and purified was added, and the stirring was continued for 13 minutes thereafter. The reaction was stopped with 10% hydrochloric acid, extracted with toluene, washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over sodium sulfate, and the solvent was removed under reduced pressure to give 3,6-phenanthrenedithiol.

【0036】[1,10−ジチオフェナントレン(11
0DTP)および4,5−ジチオフェナントレン(45
DTP)の合成]110DTP及び45DTPの合成
は、Ashe,A.J.III; Kampf, J.W.; Savla,P.M. The Reac
tion of Sulfur with Dilithio Compounds.The Synthes
es and Structures Phenanthro[1,10-cd]-1,2-dithiole
and Phenanthro[4,5-cde][1,2]dithiin. Heteroatom C
hem.,vol.5,no.4,1994,pp.113-119.に記載の方法に基づ
いて行った。
[1,10-Dithiophenanthrene (11
ODTP) and 4,5-dithiophenanthrene (45
DTP)] 110DTP and 45DTP are synthesized by Ashe, AJIII; Kampf, JW; Savla, PM The Reac.
tion of Sulfur with Dilithio Compounds.The Synthes
es and Structures Phenanthro [1,10-cd] -1,2-dithiole
and Phenanthro [4,5-cde] [1,2] dithiin. Heteroatom C
hem., vol.5, no.4,1994, pp.113-119.

【0037】窒素雰囲気下、1.6mol/lのn−ブ
チルリチウムヘキサン溶液13mlと乾燥TMEDA
(テトラメチルエチレンジアミン)3mlを室温で30
分ほど混ぜておく。これを「溶液1」とする。別の容器
にフェナントレン0.9g(5mmol)を測りとり、
真空下で乾燥した後、窒素雰囲気下にする。ここに先ほ
ど用意した「溶液1」を、トランスファーチューブを用
いて、徐々に滴下していく。滴下後、60℃で3時間加
熱撹拌し、室温に戻した後、乾燥THF25mlでうす
め、−78℃まで冷却し、あらかじめ昇華精製しておい
た硫黄1.28g(40mmol)を加え、温度を保ち
ながら約3時間撹拌した後、室温にて12時間撹拌を続
けた。その後、10%塩酸で反応を止め、クロロホルム
で抽出し、有機層を水、飽和重曹水、飽和食塩水の順で
洗浄し、硫酸ナトリウムで乾燥した後、減圧下にて溶媒
を除去し、シリカゲルカラムクロマトグラフィー(ヘキ
サン)で精製することで4,5−ジチオフェナントレン
及び1,10−ジチオフェナントレンを得た。
Under nitrogen atmosphere, 13 ml of 1.6 mol / l n-butyllithium hexane solution and dry TMEDA were used.
(Tetramethylethylenediamine) 3 ml at room temperature 30
Mix for about a minute. This is designated as "solution 1". Weigh 0.9 g (5 mmol) of phenanthrene into another container,
After drying under vacuum, it is placed under a nitrogen atmosphere. The "solution 1" prepared previously is gradually added dropwise using a transfer tube. After dropping, the mixture was heated and stirred at 60 ° C. for 3 hours, returned to room temperature, diluted with 25 ml of dry THF, cooled to −78 ° C., and 1.28 g (40 mmol) of sulfur that had been sublimated and purified was added to keep the temperature. While stirring for about 3 hours, stirring was continued at room temperature for 12 hours. After that, the reaction was stopped with 10% hydrochloric acid, and the mixture was extracted with chloroform. The organic layer was washed with water, saturated aqueous sodium hydrogen carbonate and saturated brine in that order, dried over sodium sulfate, and then the solvent was removed under reduced pressure to remove silica gel. Purification by column chromatography (hexane) gave 4,5-dithiophenanthrene and 1,10-dithiophenanthrene.

【0038】(試験セル1)図1に示す試験セルを試作
した。上記で得られた36PDT34mg及びアセチレ
ンブラック10mgをめのう乳鉢で混練し、12重量%
ポリフッ化ビニリデンを溶解したN−メチルピロリドン
溶液283mgを加え、さらに混練した。次に約2ml
のN−メチルピロリドンを加え、ペースト状にした。前
記ペースト状物質を作用極集電体12としてのアルミニウ
ム箔上に塗布し、約80℃に加熱してN−メチルピロリ
ドンを除去し、作用極集電体12上に36PDTを含む作
用極材料11が形成された作用極1を得た。
(Test Cell 1) A test cell shown in FIG. 1 was manufactured. 34 PDT of 34 mg and acetylene black of 10 mg obtained above were kneaded in an agate mortar to give 12% by weight.
283 mg of an N-methylpyrrolidone solution in which polyvinylidene fluoride was dissolved was added and further kneaded. Then about 2 ml
N-methylpyrrolidone of was added to form a paste. The pasty substance is applied onto an aluminum foil as a working electrode current collector 12, heated to about 80 ° C. to remove N-methylpyrrolidone, and a working electrode material 11 containing 36 PDT on the working electrode current collector 12 A working electrode 1 was formed.

【0039】電解質兼セパレータ3として、不織布に担
持させたイオン伝導性化合物を用いた。電解質兼セパレ
ータ3の作製方法は以下の通りである。すなわち、ポリ
エチレン製の不織布にイオン伝導性化合物層を担持させ
るべく、アクリレート変性ポリエチレングリコール10
重量%、四フッ化ホウ酸リチウム6重量%及びエチレン
カーボネート30重量%を混合したものを、上記不織布
両面にキャストし、不活性ガス雰囲気中、電子線量80
kGyの電子線を照射して硬化させ、電解質兼セパレー
タ3を得た。これによって得られた電解質兼セパレータ3
の厚さは、30μmであった。
As the electrolyte / separator 3, an ion conductive compound supported on a non-woven fabric was used. The method for producing the electrolyte / separator 3 is as follows. That is, in order to support the ion conductive compound layer on the non-woven fabric made of polyethylene, acrylate-modified polyethylene glycol 10
Wt%, 6 wt% lithium tetrafluoroborate and 30 wt% ethylene carbonate were mixed and cast on both sides of the non-woven fabric, and the electron dose was 80 in an inert gas atmosphere.
It was irradiated with an electron beam of kGy and cured to obtain an electrolyte / separator 3. Electrolyte / separator 3 obtained by this
Had a thickness of 30 μm.

【0040】対極集電体22としてのニッケル板に対極材
料21としてのリチウムを圧着することにより対極2を得
た。作用極1および対極2にそれぞれ端子6,6を取り付け
た。前記対極2、前記電解質兼セパレータ3及び前記作用
極1の順に積層して電気化学セル要素4を構成し、外装体
5に金属樹脂複合フィルムを用い、試験セル1を作製し
た。
The counter electrode 2 was obtained by pressure-bonding lithium as the counter electrode material 21 onto a nickel plate as the counter electrode current collector 22. Terminals 6 and 6 were attached to the working electrode 1 and the counter electrode 2, respectively. The counter electrode 2, the electrolyte / separator 3 and the working electrode 1 are laminated in this order to form an electrochemical cell element 4, and an exterior body.
A test cell 1 was prepared by using a metal resin composite film for 5.

【0041】(試験セル2)前記36PDTに代えて前
記110PDTを用いたこと以外は試験セル1と同様に
組立て、試験セル2を得た。
(Test Cell 2) A test cell 2 was obtained by assembling the test cell 1 except that the 110 PDT was used in place of the 36 PDT.

【0042】(試験セル3)前記36PDTに代えて、
45PDTを用いたこと以外は試験セル1と同様に組立
て、試験セル3を得た。
(Test Cell 3) Instead of the 36PDT,
Test cell 3 was obtained by assembling test cell 1 except that 45 PDT was used.

【0043】得られた試験セル1,2,3に対し、サイ
クリックボルタンメトリー(CV)測定を行った。走査
電位の上下限を+1.5〜+3.0Vとし、10mV/
secの速度2サイクルのリニアスキャンにより測定し
た。結果を図3,5,7に示す。
Cyclic voltammetry (CV) measurement was performed on the obtained test cells 1, 2, and 3. The upper and lower limits of the scanning potential are +1.5 to +3.0 V, and 10 mV /
It was measured by a linear scan at a speed of 2 cycles of sec. The results are shown in FIGS.

【0044】前記試験セル1,2,3について、作用極
および対極をそれぞれ正極および負極とする電池として
次の操作を行った。試験セル1に対し、電流0.1m
A、終止電圧4.0Vの定電流充電を行った後、電流
0.1mA、終止電圧1.5V定電流放電を行った。ま
た、試験セル2,3に対し、電流0.1mA、終止電圧
1.5Vの定電流放電を行った後、電流0.1mA、終
止電圧3.7V定電流充電を行った。その結果、図4,
6,8に示される充放電特性を得た。
The following operations were performed on the test cells 1, 2, and 3 as batteries having a working electrode and a counter electrode as a positive electrode and a negative electrode, respectively. Current 0.1m for test cell 1
A, constant voltage charging with a final voltage of 4.0 V was performed, and then constant current discharging with a current of 0.1 mA and a final voltage of 1.5 V was performed. Further, the test cells 2 and 3 were subjected to constant current discharge with a current of 0.1 mA and a final voltage of 1.5 V, and then with constant current of 0.1 mA and a final voltage of 3.7 V. As a result, FIG.
The charge and discharge characteristics shown in Nos. 6 and 8 were obtained.

【0045】[0045]

【発明の効果】以上のように本発明の電極材料を用いる
ことにより、高容量で、サイクル特性が優れた電極を得
ることができる。また、電極作製段階で溶剤に可溶な活
物質から、溶剤に不溶な活物質へと加工ができるため、
薄く塗布することが可能であり、レートを要求される電
池への応用性は計り知れない。
As described above, by using the electrode material of the present invention, an electrode having high capacity and excellent cycle characteristics can be obtained. In addition, since the active material soluble in the solvent can be processed into the active material insoluble in the solvent at the stage of electrode preparation,
It can be applied thinly, and its applicability to batteries requiring rate is immeasurable.

【図面の簡単な説明】[Brief description of drawings]

【図1】 試験セルの外観図である。FIG. 1 is an external view of a test cell.

【図2】 試験セルの断面図である。FIG. 2 is a sectional view of a test cell.

【図3】 試験セル1による電流−電位特性図である。FIG. 3 is a current-potential characteristic diagram of the test cell 1.

【図4】 試験セル1の充放電特性図である。FIG. 4 is a charge / discharge characteristic diagram of test cell 1.

【図5】 試験セル2による電流−電位特性図である。5 is a current-potential characteristic diagram of the test cell 2. FIG.

【図6】 試験セル2の充放電特性図である。FIG. 6 is a charge / discharge characteristic diagram of test cell 2.

【図7】 試験セル3による電流−電位特性図である。FIG. 7 is a current-potential characteristic diagram of the test cell 3.

【図8】 試験セル3の充放電特性図である。FIG. 8 is a charge / discharge characteristic diagram of test cell 3.

【符号の説明】[Explanation of symbols]

1 作用極 11 作用極材料 12 作用極集電体 2 対極 21 対極材料 22 対極集電体 3 電解質兼セパレータ 4 電気化学セル要素 5 外装体 6 端子 1 Working pole 11 Working electrode material 12 Working electrode current collector 2 opposite poles 21 Counter electrode material 22 Counter electrode current collector 3 Electrolyte and separator 4 Electrochemical cell elements 5 exterior body 6 terminals

───────────────────────────────────────────────────── フロントページの続き (72)発明者 由徳 大介 愛媛県大洲市菅田町菅田甲1010番地の60 Fターム(参考) 5H029 AJ03 AJ05 AK02 AK03 AK15 AL06 AL07 AL12 AL15 AM03 AM04 AM07 HJ02 5H050 AA07 AA08 BA15 CA02 CA07 CA26 CB07 CB08 CB12 CB26 HA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor, Daisuke Yutoku             60, 1010, Sugada Kou, Sugata Town, Ozu City, Ehime Prefecture F term (reference) 5H029 AJ03 AJ05 AK02 AK03 AK15                       AL06 AL07 AL12 AL15 AM03                       AM04 AM07 HJ02                 5H050 AA07 AA08 BA15 CA02 CA07                       CA26 CB07 CB08 CB12 CB26                       HA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電解酸化還元反応が可能な有機硫黄化合
物であって、該有機硫黄化合物は、分子内にフェナント
レン構造を有していることを特徴とする電気化学セル用
電極材料。
1. An electrode material for an electrochemical cell, which is an organic sulfur compound capable of electrolytic redox reaction, wherein the organic sulfur compound has a phenanthrene structure in the molecule.
【請求項2】 3,6−フェナントレンジチオール、
1,10−ジチオフェナントレン、4,5−ジチオフェ
ナントレン、またはその金属塩からなる電気化学セル用
電極材料。
2. A 3,6-phenanthrene dithiol,
An electrode material for an electrochemical cell comprising 1,10-dithiophenanthrene, 4,5-dithiophenanthrene, or a metal salt thereof.
【請求項3】 請求項1または2記載の電気化学セル用
電極材料を用いた電池。
3. A battery using the electrode material for an electrochemical cell according to claim 1 or 2.
JP2002095417A 2002-03-29 2002-03-29 Electrode cell electrode material and electrochemical cell using the same Expired - Fee Related JP4029273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002095417A JP4029273B2 (en) 2002-03-29 2002-03-29 Electrode cell electrode material and electrochemical cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002095417A JP4029273B2 (en) 2002-03-29 2002-03-29 Electrode cell electrode material and electrochemical cell using the same

Publications (2)

Publication Number Publication Date
JP2003297364A true JP2003297364A (en) 2003-10-17
JP4029273B2 JP4029273B2 (en) 2008-01-09

Family

ID=29387211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002095417A Expired - Fee Related JP4029273B2 (en) 2002-03-29 2002-03-29 Electrode cell electrode material and electrochemical cell using the same

Country Status (1)

Country Link
JP (1) JP4029273B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199190A (en) * 2004-01-16 2005-07-28 Mitsubishi Heavy Ind Ltd Coating method and coating apparatus
JP2005327645A (en) * 2004-05-17 2005-11-24 Yuasa Corp Organic sulfur secondary battery
WO2012098597A1 (en) * 2011-01-18 2012-07-26 株式会社豊田自動織機 Sulfur-based positive electrode active material, method of producing the same, and positive electrode for lithium ion secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047714A (en) * 2006-09-19 2009-03-05 Ricoh Co Ltd Developer carrying device, developing device, process unit, and image forming apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005199190A (en) * 2004-01-16 2005-07-28 Mitsubishi Heavy Ind Ltd Coating method and coating apparatus
JP4709491B2 (en) * 2004-01-16 2011-06-22 三菱重工業株式会社 Coating method and coating apparatus
JP2005327645A (en) * 2004-05-17 2005-11-24 Yuasa Corp Organic sulfur secondary battery
JP4670258B2 (en) * 2004-05-17 2011-04-13 株式会社Gsユアサ Electrode material for electrochemical device and electrochemical device provided with the same
WO2012098597A1 (en) * 2011-01-18 2012-07-26 株式会社豊田自動織機 Sulfur-based positive electrode active material, method of producing the same, and positive electrode for lithium ion secondary battery
JP2012150934A (en) * 2011-01-18 2012-08-09 Toyota Industries Corp Sulfur-based positive electrode active material, method for manufacturing the same, and positive electrode for lithium ion secondary battery

Also Published As

Publication number Publication date
JP4029273B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JP6675000B2 (en) Manufacturing method and use of carbon-selenium composite material
US7468224B2 (en) Battery having improved positive electrode and method of manufacturing the same
JP5471284B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY HAVING THE SAME
KR101430615B1 (en) Cathode and lithium battery using the same
JP5617457B2 (en) Electrode material for electricity storage device, electrode for electricity storage device, electricity storage device, and method for producing electrode material for electricity storage device
US8415074B2 (en) Nonaqueous electrolyte battery
JP5440003B2 (en) Electric storage device and method for manufacturing electrode active material
JPWO2003091198A1 (en) Ionic liquid and dehydration method, electric double layer capacitor and secondary battery
CN103545113B (en) A kind of lithium ion hybrid super capacitor
Wu et al. Boosting the electrochemical performance of lithium-sulfur batteries by using a carbon black/LiMn2O4-modified separator
JP2012169132A (en) Electrode material, power storage device and method for utilizing power storage device
JPH08195199A (en) Electrode for battery and secondary battery using it
KR20120092918A (en) Polymer composite electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
Song et al. Freestanding CuV2O6/carbon nanotube composite films for flexible aqueous zinc-ion batteries
DE102022105096A1 (en) PRELITHIATED NEGATIVE ELECTRODES WITH LI-SI ALLOY COMPOSITE PARTICLES AND PROCESS FOR THEIR MANUFACTURE
JP5870610B2 (en) Non-aqueous electrolyte iodine battery
JP4029273B2 (en) Electrode cell electrode material and electrochemical cell using the same
JP2005166459A (en) Electrochemical device, electrode for electrochemical device, electrode material for electrochemical device and manufacturing method of the same
JP2002093416A (en) Negative electrode material for lithium secondary battery, negative electrode and secondary battery using the same
JP2001273901A (en) Electrode material
KR20130107927A (en) Composite cathode active material, electrode for lithium secondary battery comprising the same and lithium secondary battery
JP4045831B2 (en) Electrode cell electrode material and electrochemical cell using the same
JP2002175836A (en) Nonaqueous electrolyte battery
JP4670258B2 (en) Electrode material for electrochemical device and electrochemical device provided with the same
JP5272810B2 (en) Capacitors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees