JP4045831B2 - Electrode cell electrode material and electrochemical cell using the same - Google Patents

Electrode cell electrode material and electrochemical cell using the same Download PDF

Info

Publication number
JP4045831B2
JP4045831B2 JP2002095416A JP2002095416A JP4045831B2 JP 4045831 B2 JP4045831 B2 JP 4045831B2 JP 2002095416 A JP2002095416 A JP 2002095416A JP 2002095416 A JP2002095416 A JP 2002095416A JP 4045831 B2 JP4045831 B2 JP 4045831B2
Authority
JP
Japan
Prior art keywords
electrode material
electrode
mmol
mercaptophenyl
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002095416A
Other languages
Japanese (ja)
Other versions
JP2003297363A (en
Inventor
徳雄 稲益
昇 小野
弘幸 谷
大介 由徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2002095416A priority Critical patent/JP4045831B2/en
Publication of JP2003297363A publication Critical patent/JP2003297363A/en
Application granted granted Critical
Publication of JP4045831B2 publication Critical patent/JP4045831B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は、ジスルフィド基を有する電気化学セル用電極材料に関する。
【0002】
【従来の技術】
高エネルギ−密度が期待できる電気化学セル用電極材料として、有機硫黄化合物であるジスルフィド系化合物が米国特許第4,833,048号公報に示されている。この有機硫黄化合物は最も簡単にはR−S−S−R(Rは炭化水素、Sは硫黄を示す)で示され、S−S結合は電解還元反応により開裂し、電解質中の金属イオンM+とで2R-・M+で表される金属塩を生成する。この金属塩は電解酸化反応により元のR−S−S−Rに戻る。金属イオンM+を供給・捕捉する金属Mとジスルフィド系化合物を組み合わせた金属−ジスルフィド二次電池が前述の米国特許に提案されている。この電池は、150Wh/kg以上の高エネルギー密度が期待できる。
【0003】
【発明が解決しようとする課題】
しかしながら、前記金属塩は有機電解液に溶解しやすいため、例えば有機電解液を用いる電気化学セル、特に二次電池用の電極材料として用いようとした場合に、困難であった。
【0006】
【課題を解決するための手段】
発明は請求項に記載されているように、分子内に、アルケン構造と、電解酸化還元反応が可能電解酸化状態においてR−S−S−R(Rは炭化水素、Sは硫黄を示す)で示される構造を取る硫黄と、を有する有機硫黄化合物の前記アルケンが化学架橋されてなる高分子硫黄化合物を有することを特徴とする電気化学セル用電極材料である。
【0007】
本発明電気化学セル用電極材料は、化学架橋可能アルケンが架橋した高分子有機硫黄化合物であるため、薄膜極板が作製可能である。即ち、化学架橋可能なアルケンを溶剤に溶かして薄膜を作製した後、架橋により高分子化することが可能となるため、薄い電極を作製するのに都合が良い。また、電子伝導性の優れた芯材(導電剤)の表面で本発明の化学架橋可能なアルケンを架橋することで導電剤−高分子有機硫黄化合物複合体として用いることも可能である。
【0008】
また、本発明は請求項に記載されているように、前記有機硫黄化合物は、次の(化学式1)で表されることを特徴とする電気化学セル用電極材料である。
【0009】
【化2】
【0010】
(但し、R1,R2,R3,R4のうち少なくとも1つは電解酸化還元反応が可能な硫黄を含む有機官能基である。)
即ち、電解酸化還元反応が可能な硫黄を含む有機官能基が、(化学式1)中R1,R2,R3,R4のいずれか一つ以上である。このような構造であれば、比較的合成が容易であり、化学架橋反応も容易に進行する。
【0011】
また、本発明は請求項に記載されているように、前記(化学式1)中、R1,R2,R3またはR4のうち少なくとも1つは、o−メルカプトフェニル、m−メルカプトフェニル、p−メルカプトフェニルまたはそれらの金属塩を有することを特徴とする。即ち、電解酸化還元反応が可能な硫黄を含む有機官能基が、o−メルカプトフェニル、m−メルカプトフェニル、p−メルカプトフェニル、またはそれらの金属塩のいずれかであれば、比較的合成が容易である。
【0012】
また、本発明は請求項に記載されているように、前記(化学式1)中、R1,R2,R3またはR4のうち2つ以上が、o−メルカプトフェニル、m−メルカプトフェニル、p−メルカプトフェニルまたはそれらの金属塩を有することを特徴とする。即ち、電解酸化還元反応が可能な硫黄を含む有機官能基が、o−メルカプトフェニル、m−メルカプトフェニル、p−メルカプトフェニル、またはそれらの金属塩のいずれかであれば、比較的合成が容易であり、反応点が多く理論容量が増大するので高容量な電極材料となる。
【0013】
また、本発明は、請求項に記載されているように、これらの電気化学セル用電極材料を用いた電気化学セルである。
【0014】
本発明の電極材料は、キャパシタや電池等の電気化学セルに用いることができる。電池としては、プロトン系電池や、非プロトン系電池に用いることができる。
【0015】
【発明実施の形態】
以下、リチウム電池用電極材料として本発明の電極材料を用いることを想定して記載するが、本発明は、以下の記述により限定されるものではない。
【0016】
本発明の電気化学セル用電極材料をリチウム電池の正極活物質として用いる場合、負極活物質には、一般にリチウム電池用負極に用いられる材料を用いることができる。例えば、リチウム金属、リチウム−アルミニウム、リチウム−鉛、リチウム−スズ、リチウム−アルミニウム−スズ、リチウム−ガリウム、およびウッド合金などのリチウム含有合金、さらに、以下のような炭素材料が挙げられる。例えば、天然黒鉛、人造黒鉛、無定形炭素、繊維状炭素、粉末状炭素、石油ピッチ系炭素、石炭コークス系炭素がある。これら炭素材料は、直径あるいは繊維径が0.01〜10μm、繊維長が数μmから数mmまでの粒子あるいは繊維が好ましい。特に前記炭素材料が、
のグラファイトは高容量を示すことから好ましい。しかしながら、これらの範囲に限定されるものではない。
【0017】
さらに、炭素材料にはスズ酸化物や珪素酸化物といった金属酸化物を添加したり、リンやホウ素を添加し改質を行うことも可能である。また、グラファイトとリチウム金属、リチウム含有合金などを併用することや、あらかじめ電気化学的に還元することによって、本発明に用いる炭素質材料にあらかじめリチウムを挿入することも可能である。
【0018】
本発明の電気化学セル用電極材料をリチウム電池の負極活物質として用いる場合、正極活物質には、一般にリチウム電池用正極に用いられる材料を用いることができる。例えば、リチウムに対して3V以上の放電電圧を示すリチウム含有遷移金属酸化物、リン酸塩などの材料が好適に用いられる。特に、4V以上の放電電位が得られる材料は、高い電池電圧が得られるためエネルギー密度が向上し、より好ましい。リチウム含有遷移金属酸化物としては、例えば、一般式LiyCo1-xx2、LiyMn2-xX4{Mは、IからVIII族の金属(例えば、Li,Ca,Cr,Ni,Fe,Co,Mn等の1種類以上の元素)であり、異種元素置換量を示すx値については置換できる最大量まで有効であるが、好ましくは放電容量の点から0≦x≦1である。また、リチウム量を示すy値についてはリチウムを可逆的に利用しうる最大量が有効であるが、好ましくは放電容量の点から0<y≦2である。}が挙げられるが、これらに限定されるものではない。ただし、本発明の電極材料は負極に用いる場合、比較的貴な電位にあるため、より貴な電位で作動する正極活物質が好ましい。
【0019】
前記リチウム含有遷移金属酸化物に、その他の活物質をさらに混合して用いることができる。例えば、CuO、Cu2O、Ag2O、CuS、CuSO4 などのI族金属化合物、TiS2、SiO2 、SnOなどのIV族金属化合物、V25、V612、VOx、Nb2 5、Bi23、Sb23などのV族金属化合物、CrO3、Cr23、MoO3、MoS2、WO3、SeO2などのVI族金属化合物、MnO2、Mn23などのVII族金属化合物、Fe23、FeO、Fe34、FePO4、Ni23、NiO、CoO3、CoOなどのVIII族金属化合物等が挙げられる。さらに、ポリピロール、ポリアニリン、ポリパラフェニレン、ポリアセチレン、ポリアセン系材料などの導電性高分子化合物、擬グラファイト構造炭素質材料等を用いてもよいが、これらに限定されるものではない。
【0020】
本発明の電極材料の形成方法としては、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコーダーなどの手段を用いて、集電体上に任意の厚さおよび任意の形状に塗布することが望ましいが、これらに限定されるものではない。なお、これらの手段を用いた場合、電解質層および集電体と接触する電気化学的活性物質の実表面積を増加させることが可能である。
【0021】
本発明の電極材料は、その電極合剤に必要に応じて導電剤、結着剤、フィラー等を添加することができる。
【0022】
前記導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば何でも良い。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維や金属(銅、ニッケル、アルミニウム、銀、金など)粉、金属繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。これらの中で、導電性及び塗工性の観点よりアセチレンブラックが望ましい。その添加量は1〜50重量%が好ましく、特に2〜30重量%が好ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。
【0023】
前記結着剤としては、通常、テトラフルオロエチレン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピレン、エチレン−プロピレンジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム、カルボキシメチルセルロース等といった熱可塑性樹脂、ゴム弾性を有するポリマー、多糖類等を1種または2種以上の混合物として用いることができる。また、多糖類のようにリチウムと反応する官能基を有する結着剤は、例えばメチル化するなどしてその官能基を失活させておくことが望ましい。その添加量としては、1〜50重量%が好ましく、特に2〜30重量%が好ましい。
【0024】
前記フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、アエロジル、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は0〜30重量%が好ましい。
【0025】
本発明の電極材料に、さらに、硫黄、セレン、テルルなどのカルコゲン元素を添加することも可能である。前記カルコゲン元素は、電極材料が有するジスルフィド基のS−S結合に付加し、電気化学的容量がさらに増大する。前記カルコゲン元素の添加量は、本発明の電極材料に対して、30重量%以下が好ましい。
【0026】
正極集電体及び負極集電体としては、構成された電池において悪影響を及ぼさない電子伝導体であれば何でもよい。例えば、正極集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他、接着性、導電性、耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。負極集電体としては、銅、ニッケル、鉄、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−Cd合金等の他に、接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。これらの材料については表面を酸化処理することも可能である。これらの形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発泡体、繊維群の形成体等が用いられる。厚さは特に限定はないが、1〜500μmのものが用いられる。これらの集電体の中で、正極には耐酸化性に優れているアルミニウム箔が、負極には還元場において安定であり、且つ電導性に優れ、安価な銅箔、ニッケル箔、鉄箔、およびそれらの一部を含む合金箔が好ましい。さらに、電気化学的活性物質層と集電体との密着性が優れている粗面表面粗さが0.2μmRa以上の箔であることが望ましい。このような粗面を得る目的で電解箔は優れている。
【0027】
本発明の電極材料を用いた電池の外装材としては、鉄、ステンレススチール、アルミニウム等の金属缶を用いることが可能であるが、重量エネルギー密度の観点から、金属箔と樹脂フィルムを積層した金属樹脂複合フィルムが好ましい。金属箔の例として、アルミニウム、鉄、ニッケル、銅、SUS、チタン、金、銀等、ピンホールのない箔であれば何でもよいが、軽量で安価なアルミニウム箔が好ましい。また、外面にポリエチレンテレフタレートフィルム、ナイロンフィルム等の突き刺し強度が優れた樹脂フィルムを、内面にポリエチレンフィルム、ナイロンフィルム等の熱可塑性であって融着可能なフィルムを配した樹脂フィルムも好適に用いられる。耐溶剤性の観点からこのような樹脂フィルムの開口部は、熱可塑性樹脂で封止することが望ましい。
【0028】
本発明の電極材料を用いた電池のセパレータは、ポリオレフィン系、ポリエステル系、ポリアクリロニトリル系、ポリフェニレンサルファイド系、ポリイミド系、及びフッ素樹脂系の微孔膜や不織布を用いることが可能である。それらの中で、濡れ性の悪い微孔膜には界面活性剤等の処理を施すことが好ましい。
【0029】
前記セパレータの空孔率は、強度の観点から98体積%以下が好ましい。また、充放電特性の観点から空孔率は20体積%以上が好ましい。
【0030】
本発明の電極材料を用いた電池における電解質に用いるイオン性化合物としては、例えば、LiClO4、LiBF4、LiAsF6、LiPF6、LiCF3SO3、LiCF3CO2、LiSCN、LiBr、LiI、Li2SO4、Li210Cl10、NaClO4、NaI、NaSCN、NaBr、KClO4、KSCN、などのLi、Na、またはKの1種を含む無機イオン塩、LiN(CF3SO22、LiN(C25SO22、(CH34NBF4、(CH34NBr、(C254NClO4、(C254NI、(C374NBr、(n−C494NClO4、(n−C494NI、(C254N−maleate、(C254N−benzoate、(C254N−phtalateなどの四級アンモニウム塩、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウムなどの有機イオン塩等が例示される。
【0031】
前記イオン性化合物は、有機溶剤等に溶解して用いることができる。前記有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネートなどの環状炭酸エステル;γ−ブチロラクトン、γ−バレロラクトンなどの環状エステル;ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの鎖状炭酸エステル;酢酸メチル、酪酸メチルなどの鎖状エステル;テトラヒドロフランまたはその誘導体、1,3−ジオキサン、1,2−ジメトキシエタン、メチルジグライムなどのエーテル類;アセトニトリル、ベンゾニトリルなどのニトリル類;ジオキサランまたはその誘導体;スルホラン、スルトンまたはその誘導体などの単独またはそれら2種以上の混合物などを添加することも可能である。しかしこれらに限定されるものではない。このような有機溶剤を添加することにより、サイクル特性や安定性等の電池特性を改善することができる。
【0032】
前記の電解液は、電極間に本発明のセパレータを挟み込み積層したり、巻き込んだりした後に前記電解液を注液してもよい。注液法としては、常圧で注液することも可能であるが真空含浸方法や加圧含浸方法を用いてもよい。
【0033】
本発明の電極材料を用いた電池の電解質として、−20〜60℃の温度で固体あるいは固形状であるリチウムイオン伝導性の固体電解質を用いることもできる。前記固体電解質は、前記イオン性化合物を溶解させたポリエチレンオキサイド誘導体又は少なくとも該誘導体を含むポリマー、ポリプロピレンオキサイド誘導体又は少なくとも該誘導体を含むポリマー、ポリフォスファゼンや該誘導体、イオン解離基を含むポリマー、リン酸エステルポリマー誘導体、さらにポリビニルピリジン誘導体、ビスフェノールA誘導体、ポリアクリロニトリル、ポリビニリデンフルオライド、フッ素ゴム等に非水電解液を含有させた高分子マトリックス材料(ゲル電解質)、及び無機固体電解質等のイオン導伝性化合物からなるものを用いることができる。
【0034】
本発明の電極材料を用いた電池の電極としては、電極材料の電解質への溶出を抑制しつつ、十分なイオン伝導性を確保するために前記固体電解質と複合して用いることが好ましい。例えば、以下に述べる方法で得られた4,4’−スチルベンジチオール及び導電剤であるアセチレンブラックを
混練し、さらに前記ポリエチレンオキサイド誘導体であるアクリレート変性ポリエチレングリコールと前記イオン性化合物であるLiN(CF3SO22及びラジカル開始剤としてアゾビスイソブチロニトリルを加え混練し、アセトニトリルを加えてできたペースト状物質をアルミニウム箔上に塗布し、約80℃に加熱してアセトニトリルを除去し、さらに約100℃で熱架橋を行い電極として用いる方法が挙げられる。架橋の方法としてはラジカル開始剤を用いる熱架橋や紫外線(UV)架橋の他に、活性光線を用いる方法も好ましい。
【0035】
また、本発明の電極材料である有機硫黄化合物をあらかじめ酸化処理してジスルフィド化処理しておくことも可能である。リチウム電池の電極材料として用いる場合、チオールの活性プロトンはリチウムと反応して水素ガスを発生するため、あらかじめ酸化処理しておくことが望ましい。
【0036】
【実施例】
[(1)4,4’−スチルベンジチオール(4SDT)の合成]
4SDTの合成はパラブロモトルエンを出発原料にして5段階で合成した。
【0037】
[第1段階:パラブロモベンジルブロマイドの合成]
パラブロモトルエン20.6ml(168.5mmol)を四塩化炭素200mlに混ぜ、N−ブロモスクシンイミド30g(168.5mmol)と、α,α’−アゾビスイソブチロニトリル
(AIBN)0.3g(1.8mmol)を加え、80℃で二時間還流した。その後室温まで冷却し、セライトにより不溶物を除き、濾液を濃縮して得られた粗結晶をジエチルエーテルで再結晶することでパラブロモベンジルブロマイドを得た。
【0038】
[第2段階:パラブロモベンズアルデヒドの合成]
パラブロモベンジルブロマイド8.5g(50mmol)をクロロホルム50mlに溶解させ、撹拌をしながらヘキサメチレンテトラミン9.09g(65mmol)を徐々に加え溶解させた。室温で3時間ほど撹拌を続けると白色沈殿(パラブロモベンジルブロマイドヘキサメチレンテトラミン塩)が析出してくるので、これを濾取し、30分ほど風乾した。得られた白色沈殿12.12g(31mmol)を酢酸水溶液100ml(酢酸90ml、水10ml)に加え、120℃で16時間還流した。その後、温度を維持したまま水100mlを加え10分ほど加熱撹拌を続けた後、室温まで冷却するとパラブロモベンズアルデヒドが結晶で析出してくるので、濾取し、水、飽和重曹水でよく洗い、風乾してパラブロモベンズアルデヒドを得た。
【0039】
[第3段階:パラブロモベンジルブロマイドトリフェニルホスホニウム塩の合成]
パラブロモベンジルブロマイド11.89g(47.6mmol)をアセトン50mlに溶解させ、撹拌しながらトリフェニルホスフィン13.11g(50mmol)を徐々に加え溶解させた。室温で2時間ほど撹拌を続けると目的物が析出してくるのでこれを濾取し、十分に風乾してパラブロモベンジルブロマイドトリフェニルホスホニウム塩を得た。
【0040】
[第4段階:トランス−4,4’−ジブロモスチルベンの合成]
窒素気流下、パラブロモベンジルブロマイドトリフェニルホスホニウム塩9.23g(18mmol)とパラブロモベンズアルデヒド4g(21.6mmol)を乾燥THF(テトラヒドロフラン)100mlに懸濁させておき、そこへ乾燥THF50mlとターシャリーブトキシカリウム(t−BuOK) 2.63g (23.4mmol)で調製した溶液を徐々に滴下していった。室温で5時間ほど撹拌した後、水で反応を止め、ジエチルエーテルで抽出し、水、飽和食塩水の順でよく洗浄した後、硫酸ナトリウムで乾燥させ減圧下濃縮して得られた粗生成物をクロロホルムで再結晶してトランス−4,4’−ジブロモスチルベンを得た。
【0041】
[第5段階:トランス−4,4’−スチルベンジチオール(4SDT)の合成]
トランス−4,4’−ジブロモスチルベン338mg(1mmol)を乾燥THF50mlに溶かし、−78℃に冷却し、20分撹拌した。その後、温度を保ったまま1.6Mノルマルブチルリチウムヘキサン溶液1.26mlをゆっくり滴下していった。更に温度に気を付けながら約1時間撹拌を続けた後、あらかじめ昇華精製しておいた硫黄64mg(2mmol)を加えた。その後13分間撹拌を続け、10%塩酸で反応を止め、トルエンで抽出し、飽和重曹水、飽和食塩水で洗浄した後、硫酸ナトリウムで乾燥させ、減圧下で濃縮して、(化学式2)で示される構造のトランス−4,4’−スチルベンジチオール(4SDT)を得た。
【0042】
【化3】
【0043】
[(2)3,3’−スチルベンジチオール(3SDT)の合成]
3SDTの合成は、パラトルイジンを出発原料にして6段階で合成した。
【0044】
[第1段階:2−ブロモパラトルイジンの合成]
パラトルイジン10.7g(100mmol)を氷酢酸40mlに加え、2時間ほど還流し、45℃まで冷却した後50〜55℃に保ちながら、臭素5.1ml(100mmol)をゆっくり滴下した。その後、温度を保ちながら2時間ほど撹拌し、10%亜硫酸水素ナトリウム水溶液50mlおよび氷水150mlを入れたビーカーの中に流し入れ、できた白色沈殿を濾取し、一時間ほど風乾した。この濾取物をエタノール50mlに加え、還流が始まるまで撹拌しながら加熱した。還流し始めたら、濃塩酸30mlをゆっくりと加え、その後3時間ほど還流すると結晶が析出してくるので、室温まで冷却した後、濾取し、冷エタノールで2回洗浄し、30分ほど風乾して得られた粗結晶を水40mlに加え、1時間ほど撹拌した後、30%水酸化ナトリウム水溶液をゆっくりと加えた。その後、ジエチルエーテルで抽出し、有機層を10%亜硫酸水素ナトリウム水溶液、飽和食塩水の順に洗浄し、硫酸ナトリウムで乾燥した後、濃縮して2−ブロモパラトルイジンを得た。
【0045】
[第2段階:メタブロモトルエンの合成]
2−ブロモパラトルイジン47.17g(250.9mmol)をエタノール160mlに加え、0℃に冷却した。これに濃硫酸40mlを注意深く加え更に冷却、撹拌を続けながら亜硝酸ナトリウム29.6g(42.9mmol)を水50mlに溶かした水溶液を徐々に滴下していった。温度を保ちながら約30分撹拌した後、銅粉末8g(125.9mmol)を、反応が激しく進行しないよう数回に分けて加えた。さらに温度を保ち30分ほど撹拌した後、室温で2時間撹拌を続けた。その後水で反応を止め、セライトを用いて銅粉末を濾別し、濾液をヘキサンで抽出後、飽和重曹水、飽和食塩水で有機層を洗浄し、硫酸ナトリウムで乾燥した後濃縮し、減圧蒸留によりメタブロモトルエンを得た。
【0046】
[第3段階:メタブロモベンジルブロマイドの合成]
メタブロモトルエン20.6ml(168.5mmol)を四塩化炭素200mlに混ぜ、N−ブロモスクシンイミド30g(168.5mmol)と、AIBN(α,α’−アゾビスイソブチロニトリル)0.3g(1.8mmol)を加え、80℃で二時間還流した。その後室温まで冷却し、セライトにより不溶物を除き、濾液を濃縮し減圧蒸留することでメタブロモベンジルブロマイドを得た。
【0047】
[第4段階:メタブロモベンジルブロマイドトリフェニルホスホニウム塩の合成]
メタブロモベンジルブロマイド11.89g(47.6mmol)をアセトン50mlに溶解させ、撹拌しながらトリフェニルホスフィン13.11g(50mmol)を徐々に加え溶解させた。室温で2時間ほど撹拌を続けると目的物が析出してくるのでこれを濾取し、十分に風乾してメタブロモベンジルブロマイドトリフェニルホスホニウム塩を得た。
【0048】
[第5段階:トランス−3,3’−ジブロモスチルベンの合成]
窒素気流下、メタブロモベンジルブロマイドトリフェニルホスホニウム塩5.12g(10mmol)と市販のメタブロモベンズアルデヒド1.41ml(12mmol)を乾燥THF(テトラヒドロフラン)70mlに懸濁させておき、そこへ乾燥THF50mlとターシャリーブトキシカリウム(t−BuOK)2.24g(20mmol)で調製した溶液を徐々に滴下していった。室温で5時間ほど撹拌した後、水で反応を止め、ジエチルエーテルで抽出し、水、飽和食塩水の順でよく洗浄した後、硫酸ナトリウムで乾燥させ減圧下濃縮して得られた粗生成物をエタノールで再結晶してトランス−3,3’−ジブロモスチルベンを得た。
【0049】
[第6段階:トランス−3,3’−スチルベンジチオール(3SDT)の合成]
トランス−3,3’−ジブロモスチルベン338mg(1mmol)を乾燥THF50mlに溶かし、−78℃に冷却し20分撹拌した。その後、温度を保ったまま1.6Mのn―ブチルリチウムヘキサン溶液1.26mlをゆっくり滴下していった。更に温度に気を付けながら約1時間撹拌を続けた後、あらかじめ昇華精製しておいた硫黄64mg(2mmol)を加えた。その後13分間撹拌を続け、10%塩酸で反応を止め、トルエンで抽出し、飽和重曹水、飽和食塩水で洗浄した後、硫酸ナトリウムで乾燥させ減圧下濃縮してトランス−3,3’−スチルベンジチオール(3SDT)を得た。
[(3)2,2’−スチルベンジチオール(2SDT)の合成]
2SDTの合成はオルトブロモトルエンを出発原料にして5段階で合成した。
【0050】
[第1段階:オルトブロモベンジルブロマイドの合成]
オルトブロモトルエン25g(146.16mmol)を四塩化炭素350mlに混ぜ、N−ブロモスクシンイミド26.02g(146.16mmol)、AIBN(α,α’−アゾビスイソブチロニトリル)0.3g(1.8mmol)を加え2時間還流した。その後室温まで冷却し、セライトを用いて不溶物を除去し、濾液を減圧下濃縮した後、減圧蒸留してオルトブロモベンジルブロマイドを得た。
【0051】
[第2段階:オルトブロモベンジルブロマイドトリフェニルホスホニウム塩の合成]
オルトブロモベンジルブロマイド12.5g(50mmol)をアセトン50mlに混ぜ、そこにトリフェニルホスフィン14g(53mmol)を徐々に加え溶解させた。3時間ほど室温で撹拌すると白色沈殿が析出してくるので濾取し、アセトンで洗浄後、30分ほど風乾してブロモベンジルブロマイドトリフェニルホスホニウム塩を得た。
【0052】
[第3段階:オルトブロモベンズアルデヒドの合成]
オルトブロモベンジルブロマイド17.6g(70mmol)をクロロホルム60mlに混ぜ、そこにヘキサメチレンテトラミン13g(93mmol)を徐々に加えた。3時間ほど室温で撹拌すると白色沈殿が析出してくるので、濾取し、クロロホルムで洗浄した後、30分ほど風乾して得られた白色粉末を酢酸水溶液(酢酸85ml、水15ml)に混ぜ、16時間還流した。16時間後室温まで冷却した反応溶液をクロロホルムで抽出し、有機層を飽和重曹水、水、飽和食塩水の順で洗浄し、硫酸ナトリウムで乾燥した後、減圧下濃縮し、さらに減圧蒸留してオルトブロモベンズアルデヒドを得た。
【0053】
[第4段階:2,2’−ジブロモスチルベンの合成]
オルトブロモベンジルブロマイドトリフェニルホスホニウム塩5.12g(10mmol)とオルトブロモベンズアルデヒド2.22g(12mmol)を乾燥THF70mlに懸濁させておき、そこに乾燥THF50mlとターシャリーブトキシカリウム(t−BuOK)1.68g(15mmol)で調製した溶液を徐々に滴下していった。室温で5時間ほど撹拌した後、水で反応を止め、ジエチルエーテルで抽出し、水、飽和食塩水でよく洗浄した後、硫酸ナトリウムで乾燥させ減圧下濃縮して得られた粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン)で精製し、2,2’−ジブロモスチルベンシス−トランス混合体を得た。
【0054】
[第5段階:2,2’−スチルベンジチオールの合成]
2,2’−ジブロモスチルベン338mg(1mmol)を乾燥THF50mlに溶かし、−78℃に冷却し20分撹拌した。その後、温度を保ったまま1.6Mノルマルブチルリチウムヘキサン溶液1.26mlをゆっくり滴下していった。更に温度に気を付けながら約1時間撹拌を続けた後、あらかじめ昇華精製しておいた硫黄64mg(2mmol)を加えた。その後13分間撹拌を続け、10%塩酸で反応を止め、トルエンで抽出し、有機層を飽和重曹水、飽和食塩水で洗浄した後、硫酸ナトリウムで乾燥させ減圧下濃縮して2,2’−スチルベンジチオール(2SDT)を得た。
【0055】
(試験セル1)
図1に示す試験セルを作製した。図2は断面図である。上記によって得られた4SDT34mg及びアセチレンブラック10mgをめのう乳鉢で混練し、12重量%ポリフッ化ビニリデンを溶解したN−メチルピロリドン溶液283mgを加え、さらに混練した。次に約2mlのN−メチルピロリドンを加え、ペースト状にした。前記ペースト状物質を作用極集電体12としてのアルミニウム箔上に塗布し、約80℃に加熱してN−メチルピロリドンを除去し、作用極集電体12上に4SDTを含む作用極材料11が形成された作用極1を得た。
【0056】
電解質兼セパレータ3として、不織布に担持させたイオン伝導性化合物を用いた。電解質兼セパレータ3の作製方法は以下の通りである。すなわち、ポリエチレン製の不織布にイオン伝導性化合物層を担持させるべく、アクリレート変性ポリエチレングリコール10重量%、四フッ化ホウ酸リチウム6重量%及びエチレンカーボネート30重量%を混合したものを、前記不織布両面にキャストし、不活性ガス雰囲気中、電子線量80kGyの電子線を照射して硬化させ、電解質兼セパレータ3を得た。これによって得られた電解質兼セパレータ3の厚さは、30μmであった。
【0057】
対極集電体22としてのニッケル板に対極材料21としてのリチウムを圧着することにより対極2を得た。作用極1および対極2にそれぞれ端子6,6を取り付けた。前記対極2、前記電解質兼セパレータ3及び前記作用極1の順に積層して電気化学セル要素4を構成し、外装体5に金属樹脂複合フィルムを用い、試験セル1を作製した。
【0058】
(試験セル2)
前記4SDTの代わりに前記3SDTを用いたこと以外は試験セル1と同様に組立て、試験セル2を得た。
【0059】
(試験セル3)
前記4SDTの代わりに前記2SDTを用いたこと以外は試験セル1と同様に組立て、試験セル3を得た。
【0060】
前記試験セル1,2,3に対し、サイクリックボルタンメトリー(CV)測定を行った。走査電位の上下限を+1.5〜+3.5Vとし、10mV/secの走査速度で2サイクルのリニアスキャンにより測定した。結果をそれぞれ図3,5,7に示す。
【0061】
前記試験セル1,2,3について、作用極および対極をそれぞれ正極および負極とする電池として電流0.1mA、終止電圧4.0Vの定電流充電を行った後、電流0.1mA、終止電圧1.5V定電流放電を行った。その結果、図4,6,8に示される充放電特性を得た。
【0062】
【発明の効果】
以上のように本発明の電極材料を用いることにより、高容量で、サイクル特性が優れた電極を得ることができる。また、電極作製段階で溶剤に可溶な活物質から、溶剤に不溶な活物質へと加工ができるため、薄く塗布することが可能であり、レートを要求される電池への応用性は計り知れない。
【図面の簡単な説明】
【図1】 試験セルの外観図である。
【図2】 試験セルの断面図である。
【図3】 試験セル1による電流−電位特性図である。
【図4】 試験セル1の充放電特性図である。
【図5】 試験セル2による電流−電位特性図である。
【図6】 試験セル2の充放電特性図である。
【図7】 試験セル3による電流−電位特性図である。
【図8】 試験セル3の充放電特性図である。
【符号の説明】
1 作用極
11 作用極材料
12 作用極集電体
2 対極
21 対極材料
22 対極集電体
3 電解質兼セパレータ
4 電気化学セル要素
5 外装体
6 端子
[0001]
[Industrial application fields]
The present invention relates to an electrode material for an electrochemical cell having a disulfide group.
[0002]
[Prior art]
As an electrode material for an electrochemical cell that can be expected to have a high energy density, a disulfide compound that is an organic sulfur compound is disclosed in US Pat. No. 4,833,048. This organic sulfur compound is represented most simply by R—S—S—R (R is a hydrocarbon and S is sulfur), and the S—S bond is cleaved by an electroreduction reaction, and the metal ion M in the electrolyte + city with 2R - · M + to generate the metal salt represented by. This metal salt returns to the original R—S—S—R by the electrolytic oxidation reaction. A metal-disulfide secondary battery in which a metal M that supplies and captures metal ions M + and a disulfide compound is combined is proposed in the aforementioned US patent. This battery can be expected to have a high energy density of 150 Wh / kg or more.
[0003]
[Problems to be solved by the invention]
However, since the metal salt is easily dissolved in the organic electrolyte, it is difficult to use the metal salt as an electrode material for an electrochemical cell using the organic electrolyte, particularly for a secondary battery.
[0006]
[Means for Solving the Problems]
The invention as described in claim 1, in the molecule, and an alkene structure, R-S-S-R (R is a hydrocarbon in the electrolytic oxidation state possible electrolytic oxidation reduction reaction, S is sulfur organic sulfur compound having sulfur taking a structure represented by shown), wherein the alkene is an electrode material for an electrochemical cell, comprising a polymer sulfur compound formed by chemical crosslinking.
[0007]
Since the electrode material for an electrochemical cell of the present invention is a polymer organic sulfur compound in which a chemically crosslinkable alkene is crosslinked, a thin film electrode plate can be produced. That is, since a thin film is prepared by dissolving a chemically crosslinkable alkene in a solvent, it can be polymerized by crosslinking, which is convenient for preparing a thin electrode. Moreover, it can also be used as a conductive agent-polymeric organic sulfur compound complex by crosslinking the chemically crosslinkable alkene of the present invention on the surface of a core material (conductive agent) having excellent electron conductivity.
[0008]
Moreover, as described in claim 2 , the present invention is an electrode material for an electrochemical cell, wherein the organic sulfur compound is represented by the following (Chemical Formula 1).
[0009]
[Chemical 2]
[0010]
(However, at least one of R1, R2, R3 and R4 is an organic functional group containing sulfur capable of electrolytic redox reaction .)
That is, the organic functional group containing sulfur capable of electrolytic redox reaction is any one or more of R1, R2, R3, and R4 in (Chemical Formula 1). Such a structure is relatively easy to synthesize and the chemical crosslinking reaction also proceeds easily.
[0011]
Further, according to the present invention, as defined in claim 3 , in (Chemical Formula 1), at least one of R1, R2, R3 and R4 is o-mercaptophenyl, m-mercaptophenyl, p-mercapto. It is characterized by having phenyl or a metal salt thereof. That is, if the organic functional group containing sulfur capable of electrolytic redox reaction is one of o-mercaptophenyl, m-mercaptophenyl, p-mercaptophenyl, or a metal salt thereof, synthesis is relatively easy. is there.
[0012]
Further, according to the present invention, as described in claim 4 , in the chemical formula 1, two or more of R1, R2, R3 and R4 are o-mercaptophenyl, m-mercaptophenyl, p-mercapto. It is characterized by having phenyl or a metal salt thereof. That is, if the organic functional group containing sulfur capable of electrolytic redox reaction is one of o-mercaptophenyl, m-mercaptophenyl, p-mercaptophenyl, or a metal salt thereof, synthesis is relatively easy. There are many reaction points and the theoretical capacity increases, so that the electrode material has a high capacity.
[0013]
Moreover, this invention is an electrochemical cell using these electrode materials for electrochemical cells, as described in claim 5 .
[0014]
The electrode material of the present invention can be used for electrochemical cells such as capacitors and batteries. As a battery, it can be used for a proton battery or an aprotic battery.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the description will be made assuming that the electrode material of the present invention is used as the electrode material for a lithium battery, but the present invention is not limited to the following description.
[0016]
When the electrode material for electrochemical cells of the present invention is used as a positive electrode active material for a lithium battery, a material generally used for a negative electrode for a lithium battery can be used as the negative electrode active material. For example, lithium-containing alloys such as lithium metal, lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy, and the following carbon materials are exemplified. Examples include natural graphite, artificial graphite, amorphous carbon, fibrous carbon, powdered carbon, petroleum pitch-based carbon, and coal coke-based carbon. These carbon materials are preferably particles or fibers having a diameter or fiber diameter of 0.01 to 10 μm and a fiber length of several μm to several mm. In particular, the carbon material is
This graphite is preferable because of its high capacity. However, it is not limited to these ranges.
[0017]
Furthermore, it is possible to modify the carbon material by adding a metal oxide such as tin oxide or silicon oxide, or by adding phosphorus or boron. Moreover, it is also possible to insert lithium in advance into the carbonaceous material used in the present invention by using graphite and lithium metal, a lithium-containing alloy or the like in combination or by electrochemical reduction in advance.
[0018]
When the electrode material for electrochemical cells of the present invention is used as a negative electrode active material for a lithium battery, a material generally used for a positive electrode for a lithium battery can be used as the positive electrode active material. For example, materials such as lithium-containing transition metal oxides and phosphates that exhibit a discharge voltage of 3 V or more with respect to lithium are preferably used. In particular, a material capable of obtaining a discharge potential of 4 V or more is more preferable because a high battery voltage can be obtained and the energy density is improved. Examples of the lithium-containing transition metal oxide include Li y Co 1-x M x O 2 , Li y Mn 2 -x M x O 4 {M is a group I to VIII metal (for example, Li, Ca , Cr, Ni, Fe, Co, Mn, etc.), and the x value indicating the amount of substitution of different elements is effective up to the maximum amount that can be replaced, but preferably 0 ≦ from the point of discharge capacity x ≦ 1. In addition, as the y value indicating the amount of lithium, the maximum amount capable of reversibly utilizing lithium is effective, but preferably 0 <y ≦ 2 from the viewpoint of discharge capacity. }, But is not limited thereto. However, since the electrode material of the present invention has a relatively noble potential when used for a negative electrode, a positive electrode active material that operates at a more noble potential is preferable.
[0019]
Other active materials can be further mixed with the lithium-containing transition metal oxide. For example, Group I metal compounds such as CuO, Cu 2 O, Ag 2 O, CuS, CuSO 4 , Group IV metal compounds such as TiS 2 , SiO 2 , SnO, V 2 O 5 , V 6 O 12 , VO x , Group V metal compounds such as Nb 2 O 5 , Bi 2 O 3 , Sb 2 O 3 , Group VI metal compounds such as CrO 3 , Cr 2 O 3 , MoO 3 , MoS 2 , WO 3 , SeO 2 , MnO 2 , Examples include Group VII metal compounds such as Mn 2 O 3 and Group VIII metal compounds such as Fe 2 O 3 , FeO, Fe 3 O 4 , FePO 4 , Ni 2 O 3 , NiO, CoO 3 , and CoO. Furthermore, conductive polymer compounds such as polypyrrole, polyaniline, polyparaphenylene, polyacetylene, and polyacene materials, pseudographite structure carbonaceous materials, and the like may be used, but are not limited thereto.
[0020]
Examples of the method for forming the electrode material of the present invention include an arbitrary thickness and an arbitrary thickness on the current collector using means such as roller coating such as an applicator roll, screen coating, doctor blade method, spin coating, and bar coder. However, the present invention is not limited to these. In addition, when these means are used, it is possible to increase the actual surface area of the electrochemically active substance in contact with the electrolyte layer and the current collector.
[0021]
In the electrode material of the present invention, a conductive agent, a binder, a filler and the like can be added to the electrode mixture as necessary.
[0022]
As the conductive agent, any electronic conductive material that does not adversely affect battery performance may be used. Usually, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber and metal (copper, nickel, aluminum, silver, gold, etc.) Conductive materials such as powders, metal fibers, and conductive ceramic materials can be included as one type or a mixture thereof. Among these, acetylene black is desirable from the viewpoints of conductivity and coatability. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, powder mixers such as V-type mixers, S-type mixers, crackers, ball mills, and planetary ball mills can be mixed dry or wet.
[0023]
As the binder, heat such as tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, carboxymethyl cellulose, etc. A plastic resin, a polymer having rubber elasticity, a polysaccharide, or the like can be used as one kind or a mixture of two or more kinds. In addition, it is desirable that a binder having a functional group that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.
[0024]
The filler may be any material as long as it does not adversely affect battery performance. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, zeolite, glass, carbon and the like are used. The amount of filler added is preferably 0 to 30% by weight.
[0025]
It is also possible to add chalcogen elements such as sulfur, selenium and tellurium to the electrode material of the present invention. The chalcogen element is added to the S—S bond of the disulfide group of the electrode material, and the electrochemical capacity is further increased. The amount of the chalcogen element added is preferably 30% by weight or less with respect to the electrode material of the present invention.
[0026]
Any positive electrode current collector and negative electrode current collector may be used as long as they are electronic conductors that do not have an adverse effect on the constructed battery. For example, as the positive electrode current collector, aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc., as well as aluminum and copper for the purpose of improving adhesion, conductivity, and oxidation resistance. A material obtained by treating the surface such as carbon, nickel, titanium, silver, or the like can be used. In addition to copper, nickel, iron, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-Cd alloy, etc., as negative electrode current collector, adhesiveness, conductivity, oxidation resistance For the purpose of improvement, a material obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver or the like can be used. The surface of these materials can be oxidized. As for these shapes, in addition to the foil shape, a film shape, a sheet shape, a net shape, a punched or expanded product, a lath body, a porous body, a foamed body, a formed body of a fiber group, and the like are used. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used. Among these current collectors, an aluminum foil excellent in oxidation resistance is used for the positive electrode, and a copper foil, nickel foil, iron foil, which is inexpensive and stable in a reduction field and has excellent electrical conductivity, And the alloy foil containing those parts is preferable. Furthermore, it is desirable that the surface roughness of the rough surface with excellent adhesion between the electrochemically active material layer and the current collector is 0.2 μmRa or more. The electrolytic foil is excellent for the purpose of obtaining such a rough surface.
[0027]
As the battery exterior material using the electrode material of the present invention, a metal can such as iron, stainless steel, and aluminum can be used. From the viewpoint of weight energy density, a metal foil and a resin film are laminated. A resin composite film is preferred. As an example of the metal foil, any foil such as aluminum, iron, nickel, copper, SUS, titanium, gold, silver and the like having no pinhole may be used, but a lightweight and inexpensive aluminum foil is preferable. In addition, a resin film having an excellent piercing strength such as a polyethylene terephthalate film or a nylon film on the outer surface and a thermoplastic and fusible film such as a polyethylene film or a nylon film on the inner surface is also suitably used. . From the viewpoint of solvent resistance, it is desirable to seal the opening of such a resin film with a thermoplastic resin.
[0028]
As separators for batteries using the electrode material of the present invention, polyolefin-based, polyester-based, polyacrylonitrile-based, polyphenylene sulfide-based, polyimide-based, and fluororesin-based microporous membranes and nonwoven fabrics can be used. Among them, it is preferable to treat the microporous membrane with poor wettability with a surfactant or the like.
[0029]
The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.
[0030]
Examples of the ionic compound used for the electrolyte in the battery using the electrode material of the present invention include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiSCN, LiBr, LiI, Li Inorganic ion salts containing one of Li, Na, or K, such as 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr, KClO 4 , KSCN, LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , (CH 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C 4 H 9 ) 4 NI, (C 2 H 5 ) 4 N-maleate, (C 2 H 5 ) 4 N-benzoate, (C 2 H 5) 4 N -phta Quaternary ammonium salts such as ate, lithium stearyl sulfonate, lithium octyl sulfonate, organic ion salts such as dodecylbenzene lithium sulfonate are exemplified.
[0031]
The ionic compound can be used by dissolving in an organic solvent or the like. Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, and the like. Chain esters such as methyl acetate and methyl butyrate; ethers such as tetrahydrofuran or derivatives thereof, 1,3-dioxane, 1,2-dimethoxyethane, methyl diglyme; nitriles such as acetonitrile and benzonitrile Dioxalane or a derivative thereof; sulfolane, sultone or a derivative thereof alone or a mixture of two or more thereof may be added. However, it is not limited to these. By adding such an organic solvent, battery characteristics such as cycle characteristics and stability can be improved.
[0032]
The electrolytic solution may be injected after the separator of the present invention is sandwiched between electrodes or stacked or wound. As the injection method, it is possible to inject at normal pressure, but a vacuum impregnation method or a pressure impregnation method may be used.
[0033]
As a battery electrolyte using the electrode material of the present invention, a lithium ion conductive solid electrolyte that is solid or solid at a temperature of −20 to 60 ° C. may be used. The solid electrolyte includes a polyethylene oxide derivative in which the ionic compound is dissolved or a polymer containing at least the derivative, a polypropylene oxide derivative or a polymer containing at least the derivative, polyphosphazene or the derivative, a polymer containing an ion dissociating group, phosphorus Acid ester polymer derivatives, polyvinyl pyridine derivatives, bisphenol A derivatives, polyacrylonitrile, polyvinylidene fluoride, polymer matrix material containing non-aqueous electrolyte in fluororubber, etc. (gel electrolyte), and ions such as inorganic solid electrolytes What consists of a conductive compound can be used.
[0034]
The electrode of the battery using the electrode material of the present invention is preferably used in combination with the solid electrolyte in order to ensure sufficient ion conductivity while suppressing elution of the electrode material into the electrolyte. For example, 4,4′-stilbene dithiol obtained by the method described below and acetylene black as a conductive agent are kneaded, and further, acrylate-modified polyethylene glycol as the polyethylene oxide derivative and LiN (CF 3 as the ionic compound). SO 2 ) 2 and azobisisobutyronitrile as a radical initiator are added and kneaded, and a paste-like substance formed by adding acetonitrile is applied onto an aluminum foil, heated to about 80 ° C. to remove acetonitrile, and further A method of performing thermal crosslinking at about 100 ° C. and using it as an electrode can be mentioned. As a crosslinking method, in addition to thermal crosslinking using a radical initiator and ultraviolet (UV) crosslinking, a method using an actinic ray is also preferable.
[0035]
In addition, the organic sulfur compound which is the electrode material of the present invention can be oxidized and disulfidized in advance. When used as an electrode material of a lithium battery, the active proton of thiol reacts with lithium to generate hydrogen gas, so that it is desirable to oxidize in advance.
[0036]
【Example】
[(1) Synthesis of 4,4′-stilbenedithiol (4SDT)]
4SDT was synthesized in five steps using parabromotoluene as a starting material.
[0037]
[First step: Synthesis of parabromobenzyl bromide]
20.6 ml (168.5 mmol) of parabromotoluene was mixed with 200 ml of carbon tetrachloride, and 30 g (168.5 mmol) of N-bromosuccinimide and 0.3 g (1) of α, α′-azobisisobutyronitrile (AIBN) (1 .8 mmol) was added and refluxed at 80 ° C. for 2 hours. Thereafter, the mixture was cooled to room temperature, insolubles were removed by Celite, and the filtrate was concentrated. The resulting crude crystals were recrystallized from diethyl ether to obtain parabromobenzyl bromide.
[0038]
[Second stage: Synthesis of parabromobenzaldehyde]
8.5 g (50 mmol) of parabromobenzyl bromide was dissolved in 50 ml of chloroform, and 9.09 g (65 mmol) of hexamethylenetetramine was gradually added and dissolved while stirring. When stirring was continued at room temperature for about 3 hours, a white precipitate (parabromobenzyl bromide hexamethylenetetramine salt) was precipitated, which was collected by filtration and air-dried for about 30 minutes. 12.12 g (31 mmol) of the obtained white precipitate was added to 100 ml of an acetic acid aqueous solution (90 ml of acetic acid, 10 ml of water) and refluxed at 120 ° C. for 16 hours. Thereafter, 100 ml of water was added while maintaining the temperature, and the mixture was heated and stirred for about 10 minutes. After cooling to room temperature, parabromobenzaldehyde precipitated as crystals, so it was collected by filtration, washed well with water and saturated aqueous sodium bicarbonate, Air-dried to obtain parabromobenzaldehyde.
[0039]
[Stage 3: Synthesis of parabromobenzyl bromide triphenylphosphonium salt]
11.89 g (47.6 mmol) of parabromobenzyl bromide was dissolved in 50 ml of acetone, and 13.11 g (50 mmol) of triphenylphosphine was gradually added and dissolved while stirring. When the stirring was continued at room temperature for about 2 hours, the desired product was precipitated, which was collected by filtration and sufficiently air-dried to obtain a parabromobenzyl bromide triphenylphosphonium salt.
[0040]
[Fourth Step: Synthesis of trans-4,4′-dibromostilbene]
Under a nitrogen stream, 9.23 g (18 mmol) of parabromobenzyl bromide triphenylphosphonium salt and 4 g (21.6 mmol) of parabromobenzaldehyde were suspended in 100 ml of dry THF (tetrahydrofuran), to which 50 ml of dry THF and tertiary butoxy were added. A solution prepared with 2.63 g (23.4 mmol) of potassium (t-BuOK) was gradually added dropwise. After stirring at room temperature for about 5 hours, the reaction was stopped with water, extracted with diethyl ether, washed well with water and then saturated brine, dried over sodium sulfate and concentrated under reduced pressure to obtain a crude product. Was recrystallized from chloroform to obtain trans-4,4′-dibromostilbene.
[0041]
[Fifth Step: Synthesis of trans-4,4′-stilbenedithiol (4SDT)]
338 mg (1 mmol) of trans-4,4′-dibromostilbene was dissolved in 50 ml of dry THF, cooled to −78 ° C., and stirred for 20 minutes. Thereafter, 1.26 ml of 1.6 M normal butyl lithium hexane solution was slowly dropped while maintaining the temperature. Further, stirring was continued for about 1 hour while paying attention to the temperature, and 64 mg (2 mmol) of sulfur that had been purified by sublimation in advance was added. The mixture was then stirred for 13 minutes, quenched with 10% hydrochloric acid, extracted with toluene, washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over sodium sulfate, and concentrated under reduced pressure. Trans-4,4′-stilbenedithiol (4SDT) having the structure shown was obtained.
[0042]
[Chemical 3]
[0043]
[(2) Synthesis of 3,3′-stilbenedithiol (3SDT)]
The synthesis of 3SDT was synthesized in 6 steps using paratoluidine as a starting material.
[0044]
[First stage: Synthesis of 2-bromoparatoluidine]
Paratoluidine (10.7 g, 100 mmol) was added to glacial acetic acid (40 ml), refluxed for about 2 hours, cooled to 45 ° C., and maintained at 50-55 ° C., 5.1 ml (100 mmol) of bromine was slowly added dropwise. Thereafter, the mixture was stirred for 2 hours while maintaining the temperature, poured into a beaker containing 50 ml of 10% aqueous sodium hydrogen sulfite solution and 150 ml of ice water, and the resulting white precipitate was collected by filtration and air-dried for about 1 hour. The filtrate was added to 50 ml of ethanol and heated with stirring until refluxing began. When reflux begins, slowly add 30 ml of concentrated hydrochloric acid, and then reflux for about 3 hours. Crystals will precipitate, so cool to room temperature, filter, wash twice with cold ethanol, and air dry for about 30 minutes. The crude crystals thus obtained were added to 40 ml of water and stirred for about 1 hour, and then a 30% aqueous sodium hydroxide solution was slowly added. Thereafter, the mixture was extracted with diethyl ether, and the organic layer was washed with a 10% aqueous sodium bisulfite solution and saturated brine in that order, dried over sodium sulfate, and concentrated to obtain 2-bromoparatoluidine.
[0045]
[Second stage: Synthesis of metabromotoluene]
47.17 g (250.9 mmol) of 2-bromoparatoluidine was added to 160 ml of ethanol and cooled to 0 ° C. To this was carefully added 40 ml of concentrated sulfuric acid, and further cooling and stirring, an aqueous solution of 29.6 g (42.9 mmol) of sodium nitrite dissolved in 50 ml of water was gradually added dropwise. After stirring for about 30 minutes while maintaining the temperature, 8 g (125.9 mmol) of copper powder was added in several portions so that the reaction did not proceed vigorously. The mixture was further stirred for about 30 minutes while maintaining the temperature, and then stirred at room temperature for 2 hours. Thereafter, the reaction was stopped with water, the copper powder was filtered off using Celite, the filtrate was extracted with hexane, the organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over sodium sulfate, concentrated and distilled under reduced pressure. Gave metabromotoluene.
[0046]
[Stage 3: Synthesis of metabromobenzyl bromide]
20.6 ml (168.5 mmol) of metabromotoluene was mixed with 200 ml of carbon tetrachloride. 30 g (168.5 mmol) of N-bromosuccinimide and 0.3 g of AIBN (α, α′-azobisisobutyronitrile) (1 .8 mmol) was added and refluxed at 80 ° C. for 2 hours. Thereafter, the mixture was cooled to room temperature, insolubles were removed with Celite, and the filtrate was concentrated and distilled under reduced pressure to obtain metabromobenzyl bromide.
[0047]
[Fourth stage: synthesis of metabromobenzyl bromide triphenylphosphonium salt]
11.87 g (47.6 mmol) of metabromobenzyl bromide was dissolved in 50 ml of acetone, and 13.11 g (50 mmol) of triphenylphosphine was gradually added and dissolved while stirring. When the stirring was continued at room temperature for about 2 hours, the target product was precipitated, which was collected by filtration and sufficiently air-dried to obtain a metabromobenzyl bromide triphenylphosphonium salt.
[0048]
[Fifth Step: Synthesis of trans-3,3′-dibromostilbene]
Under a nitrogen stream, 5.12 g (10 mmol) of metabromobenzyl bromide triphenylphosphonium salt and 1.41 ml (12 mmol) of commercially available metabromobenzaldehyde were suspended in 70 ml of dry THF (tetrahydrofuran), and 50 ml of dry THF and Tasha were added thereto. A solution prepared with 2.24 g (20 mmol) of libutoxypotassium (t-BuOK) was gradually added dropwise. After stirring at room temperature for about 5 hours, the reaction was stopped with water, extracted with diethyl ether, washed well with water and then saturated brine, dried over sodium sulfate and concentrated under reduced pressure to obtain a crude product. Was recrystallized from ethanol to obtain trans-3,3′-dibromostilbene.
[0049]
[Step 6: Synthesis of trans-3,3′-stilbenedithiol (3SDT)]
338 mg (1 mmol) of trans-3,3′-dibromostilbene was dissolved in 50 ml of dry THF, cooled to −78 ° C., and stirred for 20 minutes. Thereafter, 1.26 ml of 1.6M n-butyllithium hexane solution was slowly added dropwise while maintaining the temperature. Further, stirring was continued for about 1 hour while paying attention to the temperature, and 64 mg (2 mmol) of sulfur that had been purified by sublimation in advance was added. The mixture was then stirred for 13 minutes, quenched with 10% hydrochloric acid, extracted with toluene, washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over sodium sulfate, and concentrated under reduced pressure to obtain trans-3,3'-stilbene. Dithiol (3SDT) was obtained.
[(3) Synthesis of 2,2′-stilbenedithiol (2SDT)]
2SDT was synthesized in five steps using orthobromotoluene as a starting material.
[0050]
[First step: Synthesis of orthobromobenzyl bromide]
25 g (146.16 mmol) of orthobromotoluene was mixed with 350 ml of carbon tetrachloride, 26.02 g (146.16 mmol) of N-bromosuccinimide, 0.3 g of AIBN (α, α′-azobisisobutyronitrile) (1. 8 mmol) was added and refluxed for 2 hours. Thereafter, the mixture was cooled to room temperature, insolubles were removed using celite, the filtrate was concentrated under reduced pressure, and then distilled under reduced pressure to obtain orthobromobenzyl bromide.
[0051]
[Second stage: Synthesis of orthobromobenzyl bromide triphenylphosphonium salt]
Orthobromobenzyl bromide (12.5 g, 50 mmol) was mixed with acetone (50 ml), and triphenylphosphine (14 g, 53 mmol) was gradually added and dissolved therein. When the mixture was stirred at room temperature for about 3 hours, a white precipitate was precipitated. The precipitate was collected by filtration, washed with acetone, and then air-dried for about 30 minutes to obtain a bromobenzyl bromide triphenylphosphonium salt.
[0052]
[Stage 3: Synthesis of orthobromobenzaldehyde]
17.6 g (70 mmol) of orthobromobenzyl bromide was mixed with 60 ml of chloroform, and 13 g (93 mmol) of hexamethylenetetramine was gradually added thereto. When stirred at room temperature for about 3 hours, a white precipitate will be deposited. After filtration and washing with chloroform, the white powder obtained by air drying for about 30 minutes was mixed with an acetic acid aqueous solution (acetic acid 85 ml, water 15 ml), Refluxed for 16 hours. After 16 hours, the reaction solution cooled to room temperature was extracted with chloroform, and the organic layer was washed with saturated sodium bicarbonate water, water and saturated brine in that order, dried over sodium sulfate, concentrated under reduced pressure, and further distilled under reduced pressure. Orthobromobenzaldehyde was obtained.
[0053]
[Fourth Step: Synthesis of 2,2′-Dibromostilbene]
Orthobromobenzyl bromide triphenylphosphonium salt (5.12 g, 10 mmol) and orthobromobenzaldehyde (2.22 g, 12 mmol) were suspended in dry THF (70 ml), and the dry THF (50 ml) and tertiary butoxypotassium (t-BuOK) 1. The solution prepared with 68 g (15 mmol) was gradually added dropwise. After stirring at room temperature for about 5 hours, the reaction was stopped with water, extracted with diethyl ether, washed well with water and saturated brine, dried over sodium sulfate, and concentrated under reduced pressure to obtain a crude product as silica gel. Purification by column chromatography (hexane) gave a 2,2′-dibromostilbene-trans mixture.
[0054]
[Fifth Stage: Synthesis of 2,2′-stilbenedithiol]
338 mg (1 mmol) of 2,2′-dibromostilbene was dissolved in 50 ml of dry THF, cooled to −78 ° C. and stirred for 20 minutes. Thereafter, 1.26 ml of 1.6 M normal butyl lithium hexane solution was slowly dropped while maintaining the temperature. Further, stirring was continued for about 1 hour while paying attention to the temperature, and 64 mg (2 mmol) of sulfur that had been purified by sublimation in advance was added. The mixture was then stirred for 13 minutes, quenched with 10% hydrochloric acid and extracted with toluene. The organic layer was washed with saturated aqueous sodium hydrogen carbonate and saturated brine, dried over sodium sulfate, and concentrated under reduced pressure to give 2,2′- Stilbene dithiol (2SDT) was obtained.
[0055]
(Test cell 1)
A test cell shown in FIG. 1 was produced. FIG. 2 is a cross-sectional view. 34 mg of 4SDT obtained as described above and 10 mg of acetylene black were kneaded in an agate mortar, and 283 mg of an N-methylpyrrolidone solution in which 12% by weight of polyvinylidene fluoride was dissolved was added and further kneaded. Next, about 2 ml of N-methylpyrrolidone was added to make a paste. The paste-like substance is applied onto an aluminum foil as a working electrode current collector 12, heated to about 80 ° C. to remove N-methylpyrrolidone, and a working electrode material 11 containing 4SDT on the working electrode current collector 12. As a result, a working electrode 1 was obtained.
[0056]
As the electrolyte / separator 3, an ion conductive compound supported on a nonwoven fabric was used. The production method of the electrolyte / separator 3 is as follows. That is, a mixture of 10% by weight of acrylate-modified polyethylene glycol, 6% by weight of lithium tetrafluoroborate, and 30% by weight of ethylene carbonate to support an ion conductive compound layer on a polyethylene non-woven fabric on both sides of the non-woven fabric. The resultant was cast and irradiated with an electron beam with an electron dose of 80 kGy in an inert gas atmosphere to obtain an electrolyte / separator 3. The thickness of the electrolyte / separator 3 thus obtained was 30 μm.
[0057]
The counter electrode 2 was obtained by press-bonding lithium as the counter electrode material 21 to a nickel plate as the counter electrode current collector 22. Terminals 6 and 6 were attached to the working electrode 1 and the counter electrode 2, respectively. The counter cell 2, the electrolyte / separator 3 and the working electrode 1 were laminated in this order to constitute an electrochemical cell element 4, and a test cell 1 was produced using a metal resin composite film for the outer package 5.
[0058]
(Test cell 2)
A test cell 2 was obtained by assembling in the same manner as in the test cell 1 except that the 3SDT was used instead of the 4SDT.
[0059]
(Test cell 3)
A test cell 3 was obtained in the same manner as in the test cell 1 except that the 2SDT was used instead of the 4SDT.
[0060]
Cyclic voltammetry (CV) measurement was performed on the test cells 1, 2 and 3. The upper and lower limits of the scanning potential were set to +1.5 to +3.5 V, and the measurement was performed by two cycles of linear scanning at a scanning speed of 10 mV / sec. The results are shown in FIGS.
[0061]
The test cells 1, 2 and 3 were subjected to constant current charging with a current of 0.1 mA and a final voltage of 4.0 V as batteries having a working electrode and a counter electrode as a positive electrode and a negative electrode, respectively, and then a current of 0.1 mA and a final voltage of 1 .5V constant current discharge was performed. As a result, the charge / discharge characteristics shown in FIGS.
[0062]
【The invention's effect】
As described above, by using the electrode material of the present invention, an electrode having a high capacity and excellent cycle characteristics can be obtained. In addition, since it can be processed from an active material soluble in a solvent into an active material insoluble in a solvent at the electrode preparation stage, it can be applied thinly, and its applicability to batteries requiring rate is immeasurable. Absent.
[Brief description of the drawings]
FIG. 1 is an external view of a test cell.
FIG. 2 is a cross-sectional view of a test cell.
FIG. 3 is a current-potential characteristic diagram of a test cell 1;
FIG. 4 is a charge / discharge characteristic diagram of a test cell 1;
FIG. 5 is a current-potential characteristic diagram of a test cell 2;
6 is a charge / discharge characteristic diagram of a test cell 2. FIG.
FIG. 7 is a current-potential characteristic diagram of the test cell 3;
FIG. 8 is a charge / discharge characteristic diagram of a test cell 3;
[Explanation of symbols]
1 Working Electrode 11 Working Electrode Material 12 Working Electrode Current Collector 2 Counter Electrode 21 Counter Electrode Material 22 Counter Electrode Current Collector 3 Electrolyte / Separator 4 Electrochemical Cell Element 5 Exterior Body 6 Terminal

Claims (5)

アルケン構造と、電解酸化還元反応が可能電解酸化状態においてR−S−S−R(Rは炭化水素、Sは硫黄を示す)で示される構造を取る硫黄と、分子内に有する有機硫黄化合物の前記アルケンが化学架橋されてなる高分子硫黄化合物を有することを特徴とする電気化学セル用電極材料。Organic sulfur having an alkene structure, R-S-S-R (R is a hydrocarbon, S is shown sulfur) in the electrolytic oxidation state possible electrolytic redox reaction with sulfur takes the structure represented by, in the inside of the molecule compounds of the electrochemical cell electrode material characterized by alkene having a polymeric sulfur compound formed by chemical crosslinking. 前記有機硫黄化合物は、次の(化学式1)で表されることを特徴とする請求項1記載の電気化学セル用電極材料。
(但し、R1,R2,R3,R4のうち少なくとも1つは電解酸化還元反応が可能な硫黄を含む有機官能基である。)
The electrode material for an electrochemical cell according to claim 1, wherein the organic sulfur compound is represented by the following (Chemical Formula 1).
(However, at least one of R1, R2, R3 and R4 is an organic functional group containing sulfur capable of electrolytic redox reaction.)
前記(化学式1)中、R1,R2,R3またはR4のうち少なくとも1つは、o−メルカプトフェニル、m−メルカプトフェニル、p−メルカプトフェニルまたはそれらの金属塩を有することを特徴とする請求項記載の電気化学セル用電極材料。The (Formula 1), R1, R2, at least one of R3 or R4 is, o- mercaptophenyl, m- mercaptophenyl, claim characterized by having a p- mercaptophenyl or their metal salts 2 The electrode material for electrochemical cells as described. 前記(化学式1)中、R1,R2,R3またはR4のうち2つ以上が、o−メルカプトフェニル、m−メルカプトフェニル、p−メルカプトフェニルまたはそれらの金属塩を有することを特徴とする請求項記載の電気化学セル用電極材料。The (Formula 1), R1, R2, two or more of R3 or R4 is, o- mercaptophenyl, m- mercaptophenyl, claim characterized by having a p- mercaptophenyl or their metal salts 2 The electrode material for electrochemical cells as described. 請求項1〜のいずれかに記載の電気化学セル用電極材料を用いた電気化学セル。The electrochemical cell using the electrode material for electrochemical cells in any one of Claims 1-4 .
JP2002095416A 2002-03-29 2002-03-29 Electrode cell electrode material and electrochemical cell using the same Expired - Fee Related JP4045831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002095416A JP4045831B2 (en) 2002-03-29 2002-03-29 Electrode cell electrode material and electrochemical cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002095416A JP4045831B2 (en) 2002-03-29 2002-03-29 Electrode cell electrode material and electrochemical cell using the same

Publications (2)

Publication Number Publication Date
JP2003297363A JP2003297363A (en) 2003-10-17
JP4045831B2 true JP4045831B2 (en) 2008-02-13

Family

ID=29387210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002095416A Expired - Fee Related JP4045831B2 (en) 2002-03-29 2002-03-29 Electrode cell electrode material and electrochemical cell using the same

Country Status (1)

Country Link
JP (1) JP4045831B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670258B2 (en) * 2004-05-17 2011-04-13 株式会社Gsユアサ Electrode material for electrochemical device and electrochemical device provided with the same
JP4752217B2 (en) * 2004-08-31 2011-08-17 日本電気株式会社 Active materials, batteries and polymers
JP5954080B2 (en) * 2011-09-30 2016-07-20 三菱化学株式会社 Method for producing asymmetric tetraarylphosphonium halide and method for producing carbonic acid diester

Also Published As

Publication number Publication date
JP2003297363A (en) 2003-10-17

Similar Documents

Publication Publication Date Title
JP5471284B2 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY HAVING THE SAME
JP5348170B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
KR102276260B1 (en) Microcapsule for rechargeable lithium battery, separator layer for rechargeable lithium battery, electrod for rechargeable lithium battery, electrod active material layer for rechargeable lithium battery, rechargeable lithium battery
JP2012059509A (en) Power storage device electrode material, power storage device electrode, power storage device, and power storage device electrode material manufacturing method
JP5509627B2 (en) Power storage device
CN112599774A (en) Flexible all-solid-state organic secondary battery and preparation method and application thereof
JP2012169132A (en) Electrode material, power storage device and method for utilizing power storage device
JP6205889B2 (en) Lithium secondary battery
JP5870610B2 (en) Non-aqueous electrolyte iodine battery
JP6346733B2 (en) Electrode, non-aqueous secondary battery and electrode manufacturing method
CN110556537B (en) Method for improving electrochemical performance of anion-embedded electrode material
KR102253022B1 (en) Particulate composite for non-aqueous electrolyte rechargeable battery electrolyte secondary battery, electrode for non-aqueous electrolyte rechargeable battery electrolyte secondary battery, and non-aqueous electrolyte rechargeable battery electrolyte secondary battery
JP4045831B2 (en) Electrode cell electrode material and electrochemical cell using the same
JP4029273B2 (en) Electrode cell electrode material and electrochemical cell using the same
JP4678927B2 (en) Nonaqueous electrolyte and lithium battery using the same
JP2012216500A (en) Lithium secondary battery
JP2001273901A (en) Electrode material
KR20130107927A (en) Composite cathode active material, electrode for lithium secondary battery comprising the same and lithium secondary battery
JP4670258B2 (en) Electrode material for electrochemical device and electrochemical device provided with the same
JP5272810B2 (en) Capacitors
JP4135348B2 (en) Non-aqueous electrolyte battery
JP2022139980A (en) Recovery agent, recovery method for non-aqueous electrolyte secondary battery, and manufacturing method for non-aqueous electrolyte secondary battery
KR102415160B1 (en) Positive electrode active material for lithium secondary battery including vanadium oxide coated with carbon and method for preparing the same
JP4524362B2 (en) Electrode material, electrode manufacturing method, electrode and battery
JP5245864B2 (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4045831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees