JP2003297339A - Positive electrode for non-aqueous electrolyte secondary battery and secondary battery using such positive electrode - Google Patents

Positive electrode for non-aqueous electrolyte secondary battery and secondary battery using such positive electrode

Info

Publication number
JP2003297339A
JP2003297339A JP2002093972A JP2002093972A JP2003297339A JP 2003297339 A JP2003297339 A JP 2003297339A JP 2002093972 A JP2002093972 A JP 2002093972A JP 2002093972 A JP2002093972 A JP 2002093972A JP 2003297339 A JP2003297339 A JP 2003297339A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
aqueous electrolyte
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002093972A
Other languages
Japanese (ja)
Inventor
Hiroaki Yoshida
吉田  浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002093972A priority Critical patent/JP2003297339A/en
Publication of JP2003297339A publication Critical patent/JP2003297339A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode having a high energy density, an excellent heavy load characteristic, and an excellent low-temperature characteristic and safety and provide a non-aqueous electrolyte secondary battery using such a positive electrode. <P>SOLUTION: The positive electrode 3 includes positive electrode active material layers 15 and 16 located on the sides of a positive electrode current collector 13 and containing LiXMn<SB>2-</SB>YMYO<SB>4</SB>provided that the conditions 0.95≤x≤1.25 and 0.01≤y≤0.20 should be met (where M is one or more metals selected among Ti, Cr, Fe, Co, Ni, Zn, Al) and Li<SB>x</SB>Co<SB>1-y</SB>M<SB>y</SB>O<SB>2</SB>provided that the conditions 0.95≤x≤1.25 and 0.01≤y≤0.50 should be met (where M is one or more metals selected among Ti, Cr, Fe, Ni, Mn, Zn, Al, Mo, W), wherein the thickness T<SB>1</SB>of the positive electrode current collector 13 and the total (T<SB>2</SB>+T<SB>3</SB>) of the thicknesses of the positive electrode active material layers 15 and 16 should meet the conditions 2.5≤(T<SB>2</SB>+T<SB>3</SB>)/T<SB>1</SB>and (T<SB>2</SB>+T<SB>3</SB>)≤250 μm. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池用正極及びそれを用いた非水電解質二次電池に関す
る。
TECHNICAL FIELD The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.

【0002】[0002]

【従来の技術】非水電解質二次電池は従来の電池と比較
して高エネルギー密度、長寿命であり、例えば、携帯電
話、ノート型パソコンなどの電源として用いられてい
る。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries have higher energy density and longer life than conventional batteries, and are used as power sources for, for example, mobile phones and notebook personal computers.

【0003】このような非水電解質二次電池では、例え
ば、負極活物質に炭素質材料、正極活物質にリチウム遷
移金属複合酸化物、電解質にリチウム塩を支持塩とする
非水電解質が用いられているが、特に正極活物質は非水
電解質二次電池の放電容量、放電電圧、サイクル寿命特
性、安全性などの性能を決定する重要な構成要素であ
る。
In such a non-aqueous electrolyte secondary battery, for example, a carbonaceous material is used as the negative electrode active material, a lithium transition metal composite oxide is used as the positive electrode active material, and a non-aqueous electrolyte having a lithium salt as a supporting salt is used as the electrolyte. However, in particular, the positive electrode active material is an important constituent element that determines performance such as discharge capacity, discharge voltage, cycle life characteristics, and safety of the non-aqueous electrolyte secondary battery.

【0004】ところで、現在市販されている小型非水電
解質二次電池では、正極活物質として層状構造を有する
コバルト酸リチウムが用いられている。しかし、コバル
ト酸リチウムは、原材料となるコバルトが希少金属で価
格が不安定であり、また、過充電時などの電池安全性が
低いため、これを単独で正極活物質として使用するには
課題が多い。
By the way, in a small non-aqueous electrolyte secondary battery currently on the market, lithium cobalt oxide having a layered structure is used as a positive electrode active material. However, lithium cobalt oxide is a rare metal, which is a raw material, and its price is unstable, and battery safety is low when it is overcharged. Therefore, there is a problem in using it alone as a positive electrode active material. Many.

【0005】そこで、埋蔵量が多く、高温時の熱安定性
に優れるマンガンを原料とし、電池コストが安価で電池
安全性が高いリチウムマンガン複合酸化物を正極活物質
に使用することが考えられた。しかしながら、リチウム
マンガン複合酸化物は電池容量が小さく、また、スピネ
ル構造の活物質であるため、リチウムイオン拡散係数が
層状構造の活物質の1/10〜1/100程度と著しく
小さいことが知られている。
Therefore, it has been considered to use, as a positive electrode active material, manganese, which has a large amount of reserves and is excellent in thermal stability at high temperatures, as a raw material and which has a low battery cost and a high battery safety. . However, since the lithium manganese oxide has a small battery capacity and is an active material having a spinel structure, it is known that the lithium ion diffusion coefficient is remarkably small, which is about 1/10 to 1/100 of that of the active material having a layered structure. ing.

【0006】従って、重負荷特性、及び低温特性は必ず
しも十分とは言えず、重負荷特性、及び低温特性の向上
が切望されていた。また、エネルギー密度の向上も望ま
れている。
Therefore, the heavy load characteristics and the low temperature characteristics are not always sufficient, and improvement of the heavy load characteristics and the low temperature characteristics has been earnestly desired. Further, improvement of energy density is also desired.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記のような
事情に基づいて完成されたものであって、高いエネルギ
ー密度、優れた重負荷特性、優れた低温特性、および高
い安全性を有する正極、及び、これを用いた非水電解質
二次電池を提供することを目的とする。
The present invention has been completed based on the above circumstances, and is a positive electrode having high energy density, excellent heavy load characteristics, excellent low temperature characteristics, and high safety. And a non-aqueous electrolyte secondary battery using the same.

【0008】[0008]

【課題を解決するための手段】本発明者等は、かかる問
題点を解決し得る正極、及び、これを用いた非水電解質
二次電池を開発すべく鋭意研究を重ねた。その結果、エ
ネルギー密度が高く、かつリチウムの拡散速度に優れる
リチウムコバルト複合酸化物と、安全性が高く安価なリ
チウムマンガン複合酸化物とを混合させた正極活物質を
用いることにより、高いエネルギー密度、優れた重負荷
特性、優れた低温特性、および高い安全性を持つ非水電
解質二次電池が得られることを見い出し、本発明を完成
するに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to develop a positive electrode that can solve the above problems and a non-aqueous electrolyte secondary battery using the positive electrode. As a result, high energy density, and by using a positive electrode active material obtained by mixing a lithium cobalt composite oxide having an excellent lithium diffusion rate and a lithium manganese composite oxide having high safety and high energy density, It was found that a non-aqueous electrolyte secondary battery having excellent heavy load characteristics, excellent low temperature characteristics, and high safety can be obtained, and the present invention has been completed.

【0009】即ち、請求項1の発明は、正極集電体の両
側に、LiX Mn2-Y Y 4 (0.95 ≦x≦1.
25、0.01≦y≦0.20、Mは、Ti,Cr,F
e,Co,Ni,Zn,Alの中から選んだ少なくとも
1種以上の金属)とLiX Co1-Y Y 2 (0.95
≦x≦1.25、0.01≦y≦0.50、Mは、T
i,Cr,Fe,Ni,Mn,Zn,Al,Mo,Wの
中から選んだ少なくとも1種以上の金属)とを含有する
正極活物質層を配した正極において、前記正極集電体の
厚さT1と、前記正極活物質層の厚さの合計(T2+T
3)とが、2.5≦(T2+T3)/T1、且つ(T2
+T3)≦250μmの関係を満たすことを特徴とする
非水電解質二次電池用正極とした。
[0009] Namely, a first aspect of the invention, on both sides of a cathode current collector, Li X Mn 2-Y M Y O 4 (0.95 ≦ x ≦ 1.
25, 0.01 ≦ y ≦ 0.20, M is Ti, Cr, F
e, Co, Ni, Zn, at least one metal selected from Al) and Li X Co 1-Y M Y O 2 (0.95
≦ x ≦ 1.25, 0.01 ≦ y ≦ 0.50, M is T
i, Cr, Fe, Ni, Mn, Zn, Al, Mo, W) and a positive electrode active material layer containing a positive electrode active material layer. Of the thickness T1 and the thickness of the positive electrode active material layer (T2 + T
3) and 2.5 ≦ (T2 + T3) / T1 and (T2
The positive electrode for a non-aqueous electrolyte secondary battery is characterized by satisfying the relationship of + T3) ≦ 250 μm.

【0010】請求項2の発明は、正極集電体の両側に、
LiX Mn2-Y Y 4 (0.95≦x≦1.25、
0.01≦y≦0.20、Mは、Ti,Cr,Fe,C
o,Ni,Zn,Alの中から選んだ少なくとも1種以
上の金属)とLiX Co1-YY 2 (0.95 ≦x≦
1.25、0.01≦y≦0.50、Mは、Ti,C
r,Fe,Ni,Mn,Zn,Al,Mo,Wの中から
選んだ少なくとも1種以上の金属)とを含有する正極活
物質層を配した正極と、負極集電体に負極活物質層を備
えた負極と、非水電解質とを備える非水電解質二次電池
において、前記正極集電体の厚さT1と、前記正極活物
質層の厚さの合計(T2+T3)が、2.5≦(T2+
T3)/T1、且つ(T2+T3)≦250μmの関係
を満たすことを特徴とする非水電解質二次電池とした。
According to a second aspect of the present invention, on both sides of the positive electrode current collector,
Li X Mn 2-Y M Y O 4 (0.95 ≦ x ≦ 1.25,
0.01 ≦ y ≦ 0.20, M is Ti, Cr, Fe, C
o, Ni, Zn, at least one metal selected from Al) and Li X Co 1-Y M Y O 2 (0.95 ≤ x ≤
1.25, 0.01 ≦ y ≦ 0.50, M is Ti, C
r, Fe, Ni, Mn, Zn, Al, Mo, W) and a negative electrode active material layer containing a positive electrode active material layer containing at least one metal selected from the group consisting of a negative electrode current collector and a negative electrode active material layer. In a non-aqueous electrolyte secondary battery including a negative electrode including a negative electrode and a non-aqueous electrolyte, the total thickness T1 of the positive electrode current collector and the positive electrode active material layer (T2 + T3) is 2.5 ≦. (T2 +
The non-aqueous electrolyte secondary battery is characterized by satisfying the relationship of T3) / T1 and (T2 + T3) ≦ 250 μm.

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施形態につい
て、図面を参照しつつ説明する。図1は、本発明の一実
施形態にかかる角形非水電解質二次電池1の概略断面図
である。この角形非水電解質二次電池1は、正極3と、
負極4とがセパレータ5を介して巻回された扁平巻状電
極群2と、電解質塩を含有した図示しない非水電解液と
を電池ケース6に収納してなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a prismatic non-aqueous electrolyte secondary battery 1 according to an embodiment of the present invention. The prismatic non-aqueous electrolyte secondary battery 1 includes a positive electrode 3 and
A flat wound electrode group 2 in which a negative electrode 4 is wound via a separator 5 and a non-aqueous electrolytic solution (not shown) containing an electrolyte salt are housed in a battery case 6.

【0012】そして、電池ケース6には、安全弁8を設
けた電池蓋7がレーザー溶接によって取り付けられ、正
極端子10は正極リード11を介して正極3と接続さ
れ、負極4は電池ケース6の内壁と接触により電気的に
接続されている。
A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, the positive electrode terminal 10 is connected to the positive electrode 3 via a positive electrode lead 11, and the negative electrode 4 is an inner wall of the battery case 6. Is electrically connected by contact with.

【0013】そして、正極3は、図2に示すように例え
ばアルミニウム、チタン、又はステンレス鋼製の正極集
電体13の両面にリチウムイオンを吸蔵・放出する物質
を構成要素とする正極合剤からなる正極活物質層15,
16を設けた構造となっている。この正極活物質層1
5,16は、正極活物質として、LiX Mn2-Y Y
4 (0.95 ≦x≦1.25、0.01≦y≦0.2
0、Mは、Ti,Cr,Fe,Co,Ni,Zn,Al
の中から選んだ少なくとも1種以上の金属)とLiX
1-Y Y 2 (0.95 ≦x≦1.25、0.01
≦y≦0.50、Mは、Ti,Cr,Fe,Ni,M
n,Zn,Al,Mo,Wの中から選んだ少なくとも1
種以上の金属)とを含有する。
The positive electrode 3 is, for example, as shown in FIG.
For example, aluminum, titanium, or stainless steel positive electrode collection
A substance that absorbs and releases lithium ions on both sides of the electric body 13
A positive electrode active material layer 15 composed of a positive electrode mixture containing
16 is provided. This positive electrode active material layer 1
5 and 16 are Li as a positive electrode active material.XMn2-YMYO
Four(0.95 ≤ x ≤ 1.25, 0.01 ≤ y ≤ 0.2
0, M are Ti, Cr, Fe, Co, Ni, Zn, Al
At least one metal selected from the above) and LiXC
o1-YMYO2(0.95 ≤ x ≤ 1.25, 0.01
≦ y ≦ 0.50, M is Ti, Cr, Fe, Ni, M
At least 1 selected from n, Zn, Al, Mo and W
And more than one kind of metal).

【0014】正極活物質の一方であるリチウムマンガン
複合酸化物は、スピネル構造をとっており、理想的には
リチウムイオンが4配位8a位置、マンガンイオンが6
配位16d位置に存在する。リチウムイオンはマンガン
酸素八面体で構成された拡散経路を通じて移動すること
が可能であり、この特徴からスピネル構造型リチウムマ
ンガン複合酸化物は非水電解質電池の正極活物質として
利用でき、特に、非水電解質リチウム二次電池の正極活
物質として適している。また、Mは、特にCo,Niと
することが望ましい。Co,Niを使用すると、電池容
量が向上するためである。
Lithium-manganese composite oxide, which is one of the positive electrode active materials, has a spinel structure, and ideally, lithium ions are in 4-coordinate 8a position and manganese ions are in 6-position.
It exists at the coordination 16d position. Lithium ions can move through a diffusion path composed of manganese oxygen octahedra, and from this feature, spinel structure type lithium manganese composite oxide can be used as a positive electrode active material of a non-aqueous electrolyte battery, and in particular, a non-aqueous electrolyte. It is suitable as a positive electrode active material for an electrolyte lithium secondary battery. Further, M is preferably Co or Ni. This is because the battery capacity is improved by using Co and Ni.

【0015】また、他方のリチウムコバルト複合酸化物
は、層状構造をとっている。リチウムイオンはリチウム
単独の二次元拡散層を通じて移動可能であり、スピネル
構造のものに比べ、高い拡散係数を有する。この特徴か
ら層状構造型リチウムコバルト複合酸化物は非水電解質
電池の正極活物質として利用でき、特に、非水電解質リ
チウム二次電池の正極活物質として適している。また、
Mは、特にAl,Mo,W,Niとすることが望まし
い。Al,Niを使用すると、結晶構造が安定化されサ
イクル寿命が向上し、Mo,Wを使用すると、熱安定性
が向上するためである。これらは、一方だけを使用して
も、複数種使用してもよい。
The other lithium cobalt composite oxide has a layered structure. Lithium ions can move through a two-dimensional diffusion layer of lithium alone and have a higher diffusion coefficient than that of a spinel structure. From this feature, the layered structure type lithium cobalt composite oxide can be used as a positive electrode active material of a non-aqueous electrolyte battery, and is particularly suitable as a positive electrode active material of a non-aqueous electrolyte lithium secondary battery. Also,
M is preferably Al, Mo, W, or Ni. This is because when Al or Ni is used, the crystal structure is stabilized and the cycle life is improved, and when Mo or W is used, the thermal stability is improved. These may be used alone or in combination of two or more.

【0016】なお、リチウムマンガン複合酸化物は、公
知の方法、例えば、リチウムの炭酸塩、リチウムの硝酸
塩、リチウムの酸化物、リチウムの水酸化物と、マンガ
ンの炭酸塩、マンガンの硝酸塩、マンガンの酸化物、マ
ンガンの水酸化物とを所定割合で粉砕混合して、酸素含
有の雰囲気中で例えば600〜1000℃で焼成して得
ることができる。
The lithium-manganese composite oxide can be prepared by a known method, for example, lithium carbonate, lithium nitrate, lithium oxide, lithium hydroxide, manganese carbonate, manganese nitrate or manganese nitrate. It can be obtained by pulverizing and mixing an oxide and a hydroxide of manganese at a predetermined ratio and firing at 600 to 1000 ° C. in an oxygen-containing atmosphere.

【0017】また、リチウムコバルト複合酸化物は、公
知の方法、例えば、リチウムの炭酸塩、リチウムの硝酸
塩、リチウムの酸化物、リチウムの水酸化物と、コバル
トの炭酸塩、コバルトの硝酸塩、コバルトの酸化物、コ
バルトの水酸化物とを所定の割合で粉砕混合して、酸素
含有の雰囲気中で例えば600〜900℃で焼成して得
ることができる。
The lithium-cobalt composite oxide can be prepared by a known method, for example, lithium carbonate, lithium nitrate, lithium oxide, lithium hydroxide, cobalt carbonate, cobalt nitrate, or cobalt oxide. It can be obtained by pulverizing and mixing an oxide and a hydroxide of cobalt at a predetermined ratio and firing at 600 to 900 ° C. in an oxygen-containing atmosphere.

【0018】そして、正極3は例えば以下のようにして
製造される。正極活物質をグラファイトやカーボンブラ
ック等の導電剤とポリフッ化ビニリデン等の結着剤と共
に混合して、正極合剤とする。そして、この正極合剤を
N−メチルピロリドン等の溶媒に分散させてスラリーと
する。これを正極集電体13の両面に塗布、乾燥後、ロ
ールプレス等により圧縮平滑化して正極3が製造され
る。
The positive electrode 3 is manufactured as follows, for example. A positive electrode active material is mixed with a conductive agent such as graphite or carbon black and a binder such as polyvinylidene fluoride to prepare a positive electrode mixture. Then, this positive electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to obtain a slurry. This is applied to both surfaces of the positive electrode current collector 13, dried, and then compressed and smoothed by a roll press or the like to manufacture the positive electrode 3.

【0019】ここで、正極3の正極集電体13の厚みを
T1とし、正極活物質層15,16の厚みをそれぞれ、
T2、T3とする。本実施形態では、正極集電体13の
厚さT1と、正極活物質層の厚さの合計(T2+T3)
とが、2.5≦(T2+T3)/T1、且つ(T2+T
3)≦250μmの関係を満たしている。
Here, the thickness of the positive electrode current collector 13 of the positive electrode 3 is T1, and the thicknesses of the positive electrode active material layers 15 and 16 are respectively
Let T2 and T3. In this embodiment, the total thickness T1 of the positive electrode current collector 13 and the thickness of the positive electrode active material layer (T2 + T3).
And 2.5 ≦ (T2 + T3) / T1, and (T2 + T
3) The relationship of ≦ 250 μm is satisfied.

【0020】(T2+T3)/T1の値は、2.5≦
(T2+T3)/T1であることを要し、好ましくは、
4.0≦(T2+T3)/T1、特に5.0≦(T2+
T3)/T1であることが好ましい。(T2+T3)/
T1の値が2.5未満の場合には、正極3に占める正極
集電体13の割合が大きくなってしまいエネルギー密度
が低下するからである。
The value of (T2 + T3) / T1 is 2.5 ≦
(T2 + T3) / T1 is required, and preferably
4.0 ≦ (T2 + T3) / T1, especially 5.0 ≦ (T2 +
It is preferably T3) / T1. (T2 + T3) /
This is because when the value of T1 is less than 2.5, the proportion of the positive electrode current collector 13 in the positive electrode 3 increases and the energy density decreases.

【0021】さらに(T2+T3)≦250μmである
ことを要し、好ましくは(T2+T3)≦200μm、
特に(T2+T3)≦150μmであることが好まし
い。このように、250μm以下である場合には、以下
の理由から重負荷時における放電容量の向上が図られる
と考えられる。
Further, it is necessary that (T2 + T3) ≦ 250 μm, preferably (T2 + T3) ≦ 200 μm,
It is particularly preferable that (T2 + T3) ≦ 150 μm. As described above, when the thickness is 250 μm or less, it is considered that the discharge capacity at the time of heavy load can be improved for the following reason.

【0022】非水電解質二次電池では、放電時において
リチウムイオンが、負極4から正極3に電解質を介して
移動する。そして、正極3に移動してきたリチウムは、
正極3表面から内部に向かって、拡散していく。
In the non-aqueous electrolyte secondary battery, lithium ions move from the negative electrode 4 to the positive electrode 3 via the electrolyte during discharging. Then, the lithium that has moved to the positive electrode 3 is
It diffuses from the surface of the positive electrode 3 toward the inside.

【0023】正極表面に到達したリチウムイオンは、リ
チウムコバルト複合酸化物中では、酸素層間に存在する
リチウム単独の二次元層を通じて速やかに拡散する。
In the lithium-cobalt composite oxide, the lithium ions reaching the surface of the positive electrode rapidly diffuse through the two-dimensional layer of lithium alone existing between the oxygen layers.

【0024】ところが、リチウムマンガン複合酸化物中
では、リチウムイオンの拡散速度が遅いため、活物質層
15,16が250μmよりも厚いと、リチウムイオン
が正極3表面の正極活物質層15,16から正極3内部
の正極活物質層15,16、すなわち正極集電体13近
傍の正極活物質層15,16に到達するまで非常に時間
がかかってしまう。
However, in the lithium-manganese composite oxide, the diffusion rate of lithium ions is slow. Therefore, if the active material layers 15 and 16 are thicker than 250 μm, lithium ions will come out of the positive electrode active material layers 15 and 16 on the surface of the positive electrode 3. It takes a very long time to reach the positive electrode active material layers 15 and 16 inside the positive electrode 3, that is, the positive electrode active material layers 15 and 16 near the positive electrode current collector 13.

【0025】この結果、正極集電体13近傍の正極活物
質層15,16が有効に利用できずに重負荷時における
放電容量が低下してしまうのである。
As a result, the positive electrode active material layers 15 and 16 in the vicinity of the positive electrode current collector 13 cannot be effectively used, and the discharge capacity under heavy load is reduced.

【0026】そこで、本実施形態では、(T2+T3)
≦250μmであることとし、リチウムイオンが、正極
集電体13近傍の正極活物質層15,16にも速やかに
移動して、正極集電体13近傍の正極活物質層15,1
6を有効に利用することにより、重負荷時における放電
容量の向上を図っているのである。
Therefore, in this embodiment, (T2 + T3)
It is assumed that ≦ 250 μm, and the lithium ions rapidly move to the positive electrode active material layers 15 and 16 near the positive electrode current collector 13, and the positive electrode active material layers 15 and 1 near the positive electrode current collector 13.
By effectively using No. 6, the discharge capacity under heavy load is improved.

【0027】なお、(T2+T3)≦250μmとすれ
ば、リチウムイオンのリチウムマンガン複合酸化物中で
の拡散速度がさらに遅い低温時においても、放電容量を
確保することができる。
If (T2 + T3) ≦ 250 μm, the discharge capacity can be secured even at low temperature where the diffusion rate of lithium ions in the lithium manganese composite oxide is slower.

【0028】このように正極集電体13の厚さT1と、
正極活物質層15,16の厚さの合計(T2+T3)
が、2.5≦(T2+T3)/T1、且つ(T2+T
3)≦250μmの関係を満たす必要がある。
Thus, the thickness T1 of the positive electrode current collector 13
Total thickness of positive electrode active material layers 15 and 16 (T2 + T3)
2.5 ≦ (T2 + T3) / T1, and (T2 + T
3) It is necessary to satisfy the relationship of ≦ 250 μm.

【0029】負極4は、例えば銅、ニッケル、チタン、
ステンレス鋼製の負極集電体の両面にリチウムイオンを
吸蔵・放出する物質を構成要素とする負極合剤からなる
負極活物質層を設けた構造となっている。なお、両面の
みならず、片面のみ負極活物質層を設けた構造となって
いても構わない。
The negative electrode 4 is made of, for example, copper, nickel, titanium,
It has a structure in which a negative electrode active material layer made of a negative electrode mixture containing a substance that absorbs and releases lithium ions is provided on both surfaces of a negative electrode current collector made of stainless steel. Note that the negative electrode active material layer may be provided not only on both surfaces but also on one surface.

【0030】この負極4は例えば以下のようにして製造
される。負極活物質をポリフッ化ビニリデン等の結着剤
と共に混合して、負極合剤とする。そして、この負極合
剤をN−メチルピロリドン等の溶媒に分散させてスラリ
ーとする。これを負極集電体の両面に塗布、乾燥後、ロ
ールプレス等により圧縮平滑化して負極4が製造され
る。
The negative electrode 4 is manufactured, for example, as follows. The negative electrode active material is mixed with a binder such as polyvinylidene fluoride to prepare a negative electrode mixture. Then, this negative electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to form a slurry. This is applied on both surfaces of the negative electrode current collector, dried, and then compressed and smoothed by a roll press or the like to manufacture the negative electrode 4.

【0031】負極活物質としては、特に限定されず、例
えば公知のコークス類、ガラス状炭素類、グラファイト
類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などの
炭素質材料、あるいは金属リチウム、リチウム合金、ポ
リアセン、あるいは、酸化スズ系ガラス、リチウム/チ
タン複合酸化物、酸化鉄、酸化ルテニウム、酸化モリブ
デン、酸化タングステン、酸化チタン、酸化スズ、酸化
硅素等の金属酸化物等を単独でまたは二種以上を混合し
て使用することができるが、特に、安全性の高さから炭
素質材料を用いるのが望ましい。
The negative electrode active material is not particularly limited, and examples thereof include known cokes, glassy carbons, graphites, non-graphitizable carbons, pyrolytic carbons, carbonaceous materials such as carbon fibers, and metals. Lithium, lithium alloy, polyacene, or tin oxide glass, lithium / titanium composite oxide, iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, tin oxide, metal oxide such as tin oxide, etc. Alternatively, two or more kinds may be mixed and used, but it is particularly preferable to use a carbonaceous material because of its high safety.

【0032】セパレータ5としては、特に限定されず、
例えば公知の織布、不織布、合成樹脂微多孔膜等を用い
ることができ、特に合成樹脂微多孔膜が好適に用いるこ
とができる。中でもポリエチレン及びポリプロピレン製
微多孔膜、又はこれらを複合した微多孔膜等のポリオレ
フィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好
適に用いられる。
The separator 5 is not particularly limited,
For example, a known woven fabric, non-woven fabric, synthetic resin microporous film, or the like can be used, and a synthetic resin microporous film can be preferably used. Among them, a polyolefin-based microporous film such as a polyethylene and polypropylene microporous film or a composite microporous film thereof is preferably used in terms of thickness, film strength, film resistance and the like.

【0033】さらに高分子固体電解質等の固体電解質を
用いることで、セパレータを兼ねさせることもできる。
この場合、高分子固体電解質として多孔性高分子固体電
解質膜を使用する等して高分子固体電解質にさらに電解
液を含有させても良い。
Further, by using a solid electrolyte such as a polymer solid electrolyte, it can also serve as a separator.
In this case, the solid polymer electrolyte may further contain an electrolytic solution, for example, by using a porous solid polymer electrolyte membrane as the solid polymer electrolyte.

【0034】本発明の非水電解質としては、非水電解液
又は固体電解質のいずれも使用することができる。非水
電解液を用いる場合には特に限定されず、例えばエチレ
ンカーボネートとエチルメチルカーボネートとの混合溶
媒あるいはエチレンカーボネートとジメチルカーボネー
トとの混合溶媒を用いる。前記混合溶媒に、プロピレン
カーボネート、ブチレンカーボネート、ビニレンカーボ
ネート、トリフルオロプロピレンカーボネート、γ−ブ
チロラクトン、2−メチル−γ−ブチルラクトン、アセ
チル−γ−ブチロラクトン、γ−バレロラクトン、スル
ホラン、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、テトラヒドロフラン、2−メチルテトラヒド
ロフラン、3−メチル−1,3−ジオキソラン、酢酸メ
チル、酢酸エチル、プロピオン酸メチル、プロピオン酸
エチル、ジメチルカーボネート、ジエチルカーボネー
ト、メチルエチルカーボネート、ジプロピルカーボネー
ト、メチルプロピルカーボネート、エチルイソプロピル
カーボネート、ジブチルカーボネート等を単独でまたは
二種以上用いてこれを混合して使用しても良い。
As the non-aqueous electrolyte of the present invention, either a non-aqueous electrolytic solution or a solid electrolyte can be used. When the non-aqueous electrolyte is used, it is not particularly limited, and for example, a mixed solvent of ethylene carbonate and ethyl methyl carbonate or a mixed solvent of ethylene carbonate and dimethyl carbonate is used. In the mixed solvent, propylene carbonate, butylene carbonate, vinylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, 2-methyl-γ-butyl lactone, acetyl-γ-butyrolactone, γ-valerolactone, sulfolane, 1,2-dimethoxy. Ethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate , Dipropyl carbonate, methyl propyl carbonate, ethyl isopropyl carbonate, dibutyl carbonate, etc. may be used alone or in admixture of two or more.

【0035】非水電解液の溶質としての電解質塩は、特
に限定されず例えばLiClO、LiAsF、Li
PF、LiBF、LiCFSO、LiCF
SO、LiCFCFCFSO、LiN
(CFSO、LiN(CSO等を
単独でまたは二種以上を混合して使用することができ
る。電解質塩としては中でもLiPFを用いるのが好
ましい。
The electrolyte salt as a solute of the non-aqueous electrolyte is not particularly limited, and may be, for example, LiClO 4 , LiAsF 6 , Li.
PF 6 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 C
F 2 SO 3 , LiCF 3 CF 2 CF 2 SO 3 , LiN
(CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2 and the like may be used alone or as a mixture of two or more. Among them, LiPF 6 is preferably used as the electrolyte salt.

【0036】固体電解質としては、公知の固体電解質を
用いることができ、例えば無機固体電解質、ポリマー固
体電解質を用いることができる。
As the solid electrolyte, a known solid electrolyte can be used, for example, an inorganic solid electrolyte or a polymer solid electrolyte can be used.

【0037】[0037]

【実施例】以下、本発明の実施例を示すが、本発明はこ
れに限定されるものではない。実施例1〜7、比較例1
〜4では、図1に示す角型非水電解質二次電池1を作製
した。まず、正極活物質として、炭酸リチウム1.0モ
ルと二酸化マンガン4.0モルを混合し、この混合物
を、空気中、温度800℃で15時間焼成した。生成物
についてX線回折測定を行ったところ、JCPDSファ
イルに登録されたLiMn2 4 のピークとよく一致し
ていた。このため生成物がLiMn2 4と確認され
た。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto. Examples 1 to 7 and Comparative Example 1
4 to 4, the rectangular non-aqueous electrolyte secondary battery 1 shown in FIG. 1 was produced. First, as a positive electrode active material, 1.0 mol of lithium carbonate and 4.0 mol of manganese dioxide were mixed, and the mixture was baked in air at a temperature of 800 ° C. for 15 hours. When X-ray diffraction measurement was performed on the product, it was in good agreement with the peak of LiMn 2 O 4 registered in the JCPDS file. Therefore, the product was confirmed to be LiMn 2 O 4 .

【0038】次に、水酸化リチウム1.0モルと水酸化
コバルト1.0モルとを混合し、この混合物を、空気
中、温度700℃で15時間焼成した。生成物について
X線回折測定を行ったところ、JCPDSファイルに登
録されたLiCoO2 のピークとよく一致していた。こ
のため生成物がLiCoO2と確認された。
Next, 1.0 mol of lithium hydroxide and 1.0 mol of cobalt hydroxide were mixed, and the mixture was calcined in air at a temperature of 700 ° C. for 15 hours. When X-ray diffraction measurement was performed on the product, it was in good agreement with the peak of LiCoO 2 registered in the JCPDS file. Therefore, the product was confirmed to be LiCoO 2 .

【0039】上記LiMn2 4粉末を50重量部と、
LiCoO2粉末を41重量部と、導電剤のアセチレン
ブラックを3重量部と、結着剤のポリフッ化ビニリデン
を5重量部とを混合し、N−メチル−2−ピロリドンを
適宜加えて分散させ、スラリーを調製した。このスラリ
ーを表1に示すように、厚さ(T1)が、10〜100
μmのアルミ製の正極集電体13の両面に均一に塗布、
乾燥させた後、ロールプレスで圧縮成形することによ
り、(T2+T3)/T1(T2,T3は正極活物質層
15,16の厚さ)の値が異なる正極3を用意した(表
1参照)。なお、実施例1〜7、比較例1〜4では、こ
の正極3のみそれぞれ異なり後述する他の構成要素は同
一とした。
50 parts by weight of the above LiMn 2 O 4 powder,
41 parts by weight of LiCoO 2 powder, 3 parts by weight of acetylene black as a conductive agent, and 5 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methyl-2-pyrrolidone was appropriately added and dispersed. A slurry was prepared. As shown in Table 1, this slurry has a thickness (T1) of 10 to 100.
Evenly coated on both sides of the positive electrode current collector 13 made of aluminum of μm,
After drying, compression molding was performed by a roll press to prepare positive electrodes 3 having different values of (T2 + T3) / T1 (T2 and T3 are the thicknesses of the positive electrode active material layers 15 and 16) (see Table 1). In addition, in Examples 1 to 7 and Comparative Examples 1 to 4, only the positive electrode 3 is different, and the other constituent elements described later are the same.

【0040】負極合剤は、鱗片状黒鉛90重量部と、ポ
リフッ化ビニリデン10重量部とを混合し、N−メチル
−2−ピロリドンを適宜加えて分散させ、スラリーを調
製した。このスラリーを厚さ10μmの銅製の負極集電
体に均一に塗布、乾燥させた後、ロールプレスで圧縮成
形することにより負極4を作製した。
The negative electrode mixture was prepared by mixing 90 parts by weight of scaly graphite and 10 parts by weight of polyvinylidene fluoride and adding N-methyl-2-pyrrolidone as appropriate to disperse the slurry. The slurry was uniformly applied to a copper negative electrode current collector having a thickness of 10 μm, dried, and compression-molded with a roll press to prepare a negative electrode 4.

【0041】セパレータ5には、厚さ25μmの微多孔
性ポリエチレンフィルムを用いた。
For the separator 5, a microporous polyethylene film having a thickness of 25 μm was used.

【0042】上述の構成要素を用いて、幅48mm、高
さ90mm、厚み4.15mmの角形非水電解質二次電
池1を作製した。
A prismatic non-aqueous electrolyte secondary battery 1 having a width of 48 mm, a height of 90 mm and a thickness of 4.15 mm was produced using the above-mentioned components.

【0043】非水電解質としては、エチレンカーボネー
ト(EC)とジエチルカーボネート(DEC)とを容積
比30:70で混合し、この溶液にLiPFを1.2
モル/リットル溶解したものを用いた。
As the non-aqueous electrolyte, ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 30:70, and LiPF 6 was added to the solution in an amount of 1.2.
Mol / liter dissolved therein was used.

【0044】次に、実施例8〜13、比較例5〜6とし
て、上記実施例1〜7と同様の方法で、正極活物質Li
Mn2 4とLiCoO2との混合比が異なる(表4参
照)角形非水電解質二次電池を作製した。(T2+T
3)/T1=4とし、LiMn24とLiCoO2との
混合比以外の構成要素は、上記実施例1〜7および比較
例1〜4と同様とした。
Next, as Examples 8 to 13 and Comparative Examples 5 to 6, the positive electrode active material Li was prepared in the same manner as in Examples 1 to 7 above.
A prismatic non-aqueous electrolyte secondary battery having different mixing ratios of Mn 2 O 4 and LiCoO 2 (see Table 4) was produced. (T2 + T
3) / T1 = 4, and the components other than the mixing ratio of LiMn 2 O 4 and LiCoO 2 were the same as in Examples 1 to 7 and Comparative Examples 1 to 4 above.

【0045】(常温低負荷電池容量試験)上述の実施例
1〜13と比較例1〜6の角形非水電解質二次電池1を
23℃の環境下、0.5Aの定電流で最大電圧4.2V
の定電流定電圧充電(初期充電)を6時間行った後に、
23℃の環境下0.5Aの電流で終止電圧2.75Vま
で定電流放電を行う常温低負荷電池容量試験を行った。
なお、この常温低負荷電池容量試験の容量をC1で表
す。
(Normal temperature low load battery capacity test) The prismatic nonaqueous electrolyte secondary batteries 1 of Examples 1 to 13 and Comparative Examples 1 to 6 described above were subjected to a maximum voltage of 4 at a constant current of 0.5 A under an environment of 23 ° C. .2V
After carrying out constant current constant voltage charging (initial charging) for 6 hours,
A room temperature low load battery capacity test was conducted in which constant current discharge was performed at a current of 0.5 A in a 23 ° C. environment to a final voltage of 2.75 V.
The capacity of this room temperature low load battery capacity test is represented by C1.

【0046】(常温重負荷電池容量試験)上述の実施例
1〜7と比較例1〜4の角形非水電解質二次電池1を2
3℃の環境下、0.5Aの定電流で最大電圧4.2Vの
定電流定電圧充電(初期充電)を6時間行った後に、2
3℃の環境下3Aの電流で終止電圧2.75Vまで定電
流放電を行う常温重負荷電池容量試験を行った。ここ
で、常温重負荷電池容量試験の放電容量をC2とし、上
述の常温低負荷電池容量試験の容量をC1とした場合
に、重負荷特性は、C2/C1で表される。
(Normal Temperature Heavy Load Battery Capacity Test) Two prismatic non-aqueous electrolyte secondary batteries 1 of Examples 1 to 7 and Comparative Examples 1 to 4 described above were used.
In a 3 ° C. environment, a constant current constant voltage of 0.5 A and a constant current constant voltage charge (initial charge) with a maximum voltage of 4.2 V were performed for 6 hours, and then 2
A room temperature heavy load battery capacity test was performed in which constant current discharge was performed at a current of 3 A in a 3 ° C. environment to a final voltage of 2.75 V. Here, when the discharge capacity in the room temperature heavy load battery capacity test is C2 and the capacity in the room temperature low load battery capacity test is C1, the heavy load characteristic is represented by C2 / C1.

【0047】(低温低負荷電池容量試験)上述の実施例
1〜7と比較例1〜4の角形非水電解質二次電池1を2
3℃の環境下、0.5Aの定電流で最大電圧4.2Vの
定電流定電圧充電(初期充電)を6時間行った後に、0
℃の環境下に1時間放置後、0.5Aの電流で終止電圧
2.75Vまで定電流放電を行う低温低負荷電池容量試
験を行った。ここで、低温低負荷電池容量試験の放電容
量をC3とし、上述の常温低負荷電池容量試験の容量を
C1とした場合に、低温負荷特性は、C3/C1で表さ
れる。
(Low-temperature low-load battery capacity test) The rectangular non-aqueous electrolyte secondary batteries 1 of Examples 1 to 7 and Comparative Examples 1 to 4 described above were used.
After performing constant-current constant-voltage charging (initial charging) with a maximum voltage of 4.2 V at a constant current of 0.5 A in an environment of 3 ° C. for 6 hours,
After being left in an environment of ° C for 1 hour, a low temperature low load battery capacity test was conducted in which constant current discharge was performed at a current of 0.5 A to a final voltage of 2.75V. Here, when the discharge capacity of the low temperature low load battery capacity test is C3 and the capacity of the above room temperature low load battery capacity test is C1, the low temperature load characteristic is represented by C3 / C1.

【0048】(安全性試験)上述の実施例1および8〜
13と比較例5,6の角形非水電解質二次電池1を23
℃の環境下、0.5Aの定電流で最大電圧4.2Vの定
電流定電圧充電(初期充電)を6時間行った後に、電池
に3mmφの鉄製の釘を突き刺し、発熱や発煙の有無を
調べた。
(Safety Test) The above-mentioned Examples 1 and 8 to
13 and the rectangular non-aqueous electrolyte secondary batteries 1 of Comparative Examples 5 and 23
After performing constant-current constant-voltage charging (initial charging) with a maximum voltage of 4.2 V at a constant current of 0.5 A in an environment of ℃ for 6 hours, pierce the battery with a 3 mmφ iron nail to check for heat generation and smoke generation. Examined.

【0049】(試験結果)常温低負荷電池容量試験、常
温重負荷電池容量試験、低温低負荷電池容量試験、およ
び安全性試験の試験結果を表1〜表5、および図3〜図
6に示す。
(Test Results) Table 1 to Table 5 and FIGS. 3 to 6 show the test results of the room temperature low load battery capacity test, the room temperature heavy load battery capacity test, the low temperature low load battery capacity test, and the safety test. .

【0050】[0050]

【表1】 [Table 1]

【0051】まず、(T2+T3)/T1の値が、常温
低負荷電池容量試験の容量C1に与える影響について検
討する。表1および図3において、2.5≦(T2+T
3)/T1である実施例1〜7は、2.5>(T2+T
3)/T1の比較例1〜2と比べて、エネルギー密度が
増加したため放電容量C1が大きいことが分かった。ま
た、実施例5のC1が、実施例6,7のC1よりも大き
いことから、4.0≦(T2+T3)/T1であること
が好ましいことが分かった。さらに、実施例3のC1
が、実施例5のC1よりも大きいことから、特に5.0
≦(T2+T3)/T1であることが好ましいことが分
かった。
First, the influence of the value of (T2 + T3) / T1 on the capacity C1 in the room temperature low load battery capacity test will be examined. In Table 1 and FIG. 3, 2.5 ≦ (T2 + T
3) / T1 in Examples 1 to 7, 2.5> (T2 + T
It was found that the discharge capacity C1 was large because the energy density was increased as compared with Comparative Examples 1 and 2 of 3) / T1. Further, since C1 of Example 5 is larger than C1 of Examples 6 and 7, it was found that 4.0 ≦ (T2 + T3) / T1 is preferable. Furthermore, C1 of Example 3
However, since it is larger than C1 of Example 5, especially 5.0
It has been found that it is preferable that ≦ (T2 + T3) / T1.

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】次に、(T2+T3)の値が、重負荷特性
C2/C1、低温負荷特性C3/C1に与える影響につ
いて検討する。表2および図4において、(T2+T
3)≦250μmである実施例1〜7のC2/C1は、
(T2+T3)>250μmである比較例3〜4のC2
/C1と比べて大きいことが分かった。また、実施例2
のC2/C1が、実施例1のC2/C1よりも大きいこ
とから、(T2+T3)≦200μmであることが好ま
しいことが分かった。さらに、実施例3,4のC2/C
1が、実施例2のC2/C1よりも大きいことから、特
に(T2+T3)≦150μmであることが好ましいこ
とが分かった。
Next, the influence of the value of (T2 + T3) on the heavy load characteristic C2 / C1 and the low temperature load characteristic C3 / C1 will be examined. In Table 2 and FIG. 4, (T2 + T
3) C2 / C1 of Examples 1 to 7 in which ≦ 250 μm is:
(T2 + T3)> 250 μm C2 of Comparative Examples 3 to 4
It was found to be larger than / C1. Example 2
C2 / C1 in Example 2 was larger than C2 / C1 in Example 1, it was found that (T2 + T3) ≦ 200 μm was preferable. Furthermore, C2 / C of Examples 3 and 4
Since 1 is larger than C2 / C1 in Example 2, it was found that (T2 + T3) ≦ 150 μm is particularly preferable.

【0055】また表3および図5に示す低温負荷特性C
3/C1については、(T2+T3)≦250μmであ
る実施例1〜7のC3/C1は、(T2+T3)>25
0μmである比較例3〜4のC3/C1と比べて大きい
ことが分かった。
The low temperature load characteristic C shown in Table 3 and FIG.
For 3 / C1, (T2 + T3) ≦ 250 μm, C3 / C1 of Examples 1 to 7 is (T2 + T3)> 25.
It was found to be larger than C3 / C1 of Comparative Examples 3 to 4 which is 0 μm.

【0056】このような結果が得られたのは、活物質層
15,16が250μmよりも厚いと、リチウムイオン
が正極3表面の正極活物質層15,16から正極3内部
の正極活物質層15,16、すなわち正極集電体13近
傍の正極活物質層15,16に到達するまで非常に時間
がかかってしまう。この結果、正極集電体13近傍の正
極活物質層15,16が有効に利用できずに、重負荷特
性および低温負荷特性が低下したものと考えられる。
The above results were obtained because, when the active material layers 15 and 16 were thicker than 250 μm, lithium ions were transferred from the positive electrode active material layers 15 and 16 on the surface of the positive electrode 3 to the positive electrode active material layer inside the positive electrode 3. It takes a very long time to reach the positive electrode active material layers 15 and 16 in the vicinity of the positive electrode current collectors 15 and 16, that is, the positive electrode current collector 13. As a result, it is considered that the positive electrode active material layers 15 and 16 in the vicinity of the positive electrode current collector 13 could not be effectively used and the heavy load characteristics and the low temperature load characteristics were deteriorated.

【0057】以上の結果から、正極集電体の厚さT1
と、正極活物質層の厚さの合計(T2+T3)とが、
2.5≦(T2+T3)/T1、且つ(T2+T3)≦
250μmの関係を満たすこととすることによって、高
いエネルギー密度、優れた重負荷特性、優れた低温特性
を持つ非水電解質二次電池を得ることができる。
From the above results, the thickness T1 of the positive electrode current collector is
And the total thickness (T2 + T3) of the positive electrode active material layer,
2.5 ≦ (T2 + T3) / T1, and (T2 + T3) ≦
By satisfying the relationship of 250 μm, a non-aqueous electrolyte secondary battery having high energy density, excellent heavy load characteristics, and excellent low temperature characteristics can be obtained.

【0058】[0058]

【表4】 [Table 4]

【0059】[0059]

【表5】 [Table 5]

【0060】次に、正極活物質であるLiMn2 4
LiCoO2との混合比が常温低負荷電池容量試験の容
量C1に与える影響について検討する。表4および図6
において、LiMn2 4の含有率が低い実施例8,9
は、LiMn2 4の含有率が高い実施例12,13と
比べて、エネルギー密度が増加したため放電容量C1が
大きいことが分かった。一方、安全性試験においては、
表5に示すように、LiMn2 4を全く含まない比較
例5において電池の異常発熱と発煙が見られた。
Next, the influence of the mixing ratio of LiMn 2 O 4 and LiCoO 2 as the positive electrode active material on the capacity C1 in the room temperature low load battery capacity test will be examined. Table 4 and FIG.
In Examples 8 and 9 in which the content of LiMn 2 O 4 is low
It was found that, as compared with Examples 12 and 13 in which the content of LiMn 2 O 4 was high, the discharge capacity C1 was large because the energy density was increased. On the other hand, in the safety test,
As shown in Table 5, in Comparative Example 5 containing no LiMn 2 O 4 , abnormal heat generation and smoking of the battery were observed.

【0061】以上の結果から、電池の容量を高くするた
めにはLiMn2 4の含有率を低くする方が好ましい
が、高い安全性を維持させるためには熱安定性の高いL
iMn2 4を添加することが好ましい。エネルギー密
度と安全性とを高いレベルで両立させるには、LiMn
2 4の含有率を40〜90%とすることが好ましい。
From the above results, it is preferable to lower the content of LiMn 2 O 4 in order to increase the capacity of the battery, but in order to maintain high safety, L having high thermal stability is used.
It is preferable to add iMn 2 O 4 . To achieve a high level of energy density and safety, LiMn
It is preferable that the content of 2 O 4 is 40 to 90%.

【0062】なお、本実施例においては、正極活物質と
してLiMn2 4 とLiCoO2との混合物(質量比5
0:41)を用いたが、LiMn24はスピネル構造をも
つものであれば、LiX Mn2-Y Y 4 (0.95
≦x≦1.25、0.01≦y≦0.20、Mは、T
i,Cr,Fe,Co,Ni,Zn,Alの中から選ん
だ少なくとも1種以上の金属)で表される活物質を用い
ても同様の効果が得られることは明らかである。LiC
oO2も同様で、一般式LixCo1-yy 2 (0.9
5 ≦x≦1.25、0.01≦y≦0.50、Mは、T
i,Cr,Fe,Co,Mn,Zn,Al, Mo,Wの
中から選んだ少なくとも1種以上の金属)で表される活
物質を用いても同様の効果が見られる。活物質の混合比
については、Lix Mn2-yy 4に対してLixCo
1-yy2が10%〜90%の範囲含まれていれば同
様の効果がみられるが、エネルギー密度と安全性を高い
レベルで両立するには、Lix Mn2-yy 4の含有
量を40%〜80%の範囲とするのがより好ましい。
In this example, a mixture of LiMn 2 O 4 and LiCoO 2 (mass ratio 5
0:41), but if LiMn 2 O 4 has a spinel structure, Li X Mn 2 -Y M Y O 4 (0.95
≦ x ≦ 1.25, 0.01 ≦ y ≦ 0.20, M is T
It is clear that the same effect can be obtained by using an active material represented by at least one kind of metal selected from i, Cr, Fe, Co, Ni, Zn and Al). LiC
The same applies to oO 2 , and the general formula Li x Co 1- y My O 2 (0.9
5 ≤ x ≤ 1.25, 0.01 ≤ y ≤ 0.50, M is T
The same effect can be obtained by using an active material represented by at least one kind of metal selected from i, Cr, Fe, Co, Mn, Zn, Al, Mo, and W). Regarding the mixing ratio of the active material, Li x Co is based on Li x Mn 2- y My O 4 .
1-y M y O 2 is seen a similar effect if it contains a range of 10% to 90%, to achieve both the energy density and safety at a high level, Li x Mn 2-y M y The O 4 content is more preferably in the range of 40% to 80%.

【0063】<他の実施形態>本発明は上記記述及び図
面によって説明した実施形態に限定されるものではな
く、例えば次のような実施形態も本発明の技術的範囲に
含まれ、さらに、下記以外にも要旨を逸脱しない範囲内
で種々変更して実施することができる。
<Other Embodiments> The present invention is not limited to the embodiments described above and illustrated in the drawings. For example, the following embodiments are also included in the technical scope of the present invention. In addition to the above, various modifications can be made without departing from the scope of the invention.

【0064】上記した実施形態では、角形非水電解質二
次電池1として説明したが、電池構造は特に限定され
ず、円筒形、リチウムポリマー電池、短冊状の電極をセ
パレータを介して積層してなる角形電池等としてもよい
ことは勿論である。
In the above-described embodiment, the prismatic non-aqueous electrolyte secondary battery 1 has been described, but the battery structure is not particularly limited, and a cylindrical, lithium polymer battery, and strip-shaped electrodes are laminated via a separator. Of course, a prismatic battery or the like may be used.

【0065】[0065]

【発明の効果】本発明による非水電解質二次電池用正極
及びそれを用いた非水電解質二次電池によれば、高いエ
ネルギー密度、優れた重負荷特性、優れた低温特性、お
よび高い安全性を得ることができる。
According to the positive electrode for a non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery using the same according to the present invention, high energy density, excellent heavy load characteristics, excellent low temperature characteristics, and high safety are provided. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態の角形非水電解質二次電池
の縦断面図
FIG. 1 is a vertical cross-sectional view of a prismatic nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】本発明の一実施形態の正極の縦断面図FIG. 2 is a vertical sectional view of a positive electrode according to an embodiment of the present invention.

【図3】本発明の正極集電体の厚さT1と活物質層の厚
さ(T2+T3)の比(T2+T3)/T1と常温低負
荷放電容量C1との関係を示す特性図
FIG. 3 is a characteristic diagram showing the relationship between the ratio (T2 + T3) / T1 of the thickness T1 of the positive electrode current collector of the present invention and the thickness (T2 + T3) of the active material layer, and the room temperature low load discharge capacity C1.

【図4】本発明の正極活物質層の厚さ(T2+T3)と
常温低負荷放電容量C1と常温重負荷放電容量C2との
比C2/C1との関係を示す特性図
FIG. 4 is a characteristic diagram showing the relationship between the thickness (T2 + T3) of the positive electrode active material layer of the present invention and the ratio C2 / C1 of the room temperature low load discharge capacity C1 and the room temperature heavy load discharge capacity C2.

【図5】本発明の正極活物質層の厚さ(T2+T3)と
常温低負荷放電容量C1と低温低負荷放電容量C3との
比C3/C1との関係を示す特性図
FIG. 5 is a characteristic diagram showing the relationship between the thickness (T2 + T3) of the positive electrode active material layer of the present invention and the ratio C3 / C1 of the room temperature low load discharge capacity C1 and the low temperature low load discharge capacity C3.

【図6】本発明の正極活物質LiMn2 4のLiCo
2に対する含有率と常温低負荷放電容量C1との関係
を示す特性図
[Fig. 6] LiCo of positive electrode active material LiMn 2 O 4 of the present invention
Characteristic diagram showing the relationship between the content rate with respect to O 2 and the room temperature low load discharge capacity C1

【符号の説明】[Explanation of symbols]

3…正極 13…正極集電体 15…正極活物質層 16…正極活物質層 3 ... Positive electrode 13 ... Positive electrode current collector 15 ... Positive electrode active material layer 16 ... Positive electrode active material layer

フロントページの続き Fターム(参考) 5H029 AJ02 AJ03 AJ12 AK03 AL02 AL06 AL07 AL12 AL18 AM03 AM04 AM05 BJ02 BJ14 DJ07 EJ04 EJ12 HJ02 HJ04 5H050 AA02 AA06 AA08 AA15 BA16 BA17 CA08 CA09 CB02 CB07 CB08 CB12 DA04 EA10 EA24 HA02 HA04 Continued front page    F term (reference) 5H029 AJ02 AJ03 AJ12 AK03 AL02                       AL06 AL07 AL12 AL18 AM03                       AM04 AM05 BJ02 BJ14 DJ07                       EJ04 EJ12 HJ02 HJ04                 5H050 AA02 AA06 AA08 AA15 BA16                       BA17 CA08 CA09 CB02 CB07                       CB08 CB12 DA04 EA10 EA24                       HA02 HA04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極集電体の両側に、LiX Mn2-Y
Y 4 (0.95≦x≦1.25、0.01≦y≦0.
20、Mは、Ti,Cr,Fe,Co,Ni,Zn,A
lの中から選んだ少なくとも1種以上の金属)とLiX
Co1-Y Y 2 (0.95 ≦x≦1.25、0.0
1≦y≦0.50、Mは、Ti,Cr,Fe,Ni,M
n,Zn,Al,Mo,Wの中から選んだ少なくとも1
種以上の金属)とを含有する正極活物質層を配した正極
において、 前記正極集電体の厚さT1と、前記正極活物質層の厚さ
の合計(T2+T3)とが、2.5≦(T2+T3)/
T1、且つ(T2+T3)≦250μmの関係を満たす
ことを特徴とする非水電解質二次電池用正極。
1. Li on both sides of the positive electrode current collectorXMn2-YM
YOFour(0.95 ≦ x ≦ 1.25, 0.01 ≦ y ≦ 0.
20, M is Ti, Cr, Fe, Co, Ni, Zn, A
at least one metal selected from the above) and LiX
Co1-YM YO2(0.95 ≤ x ≤ 1.25, 0.0
1 ≦ y ≦ 0.50, M is Ti, Cr, Fe, Ni, M
At least 1 selected from n, Zn, Al, Mo and W
Positive electrode having a positive electrode active material layer containing at least one metal)
At Thickness T1 of the positive electrode current collector and thickness of the positive electrode active material layer
(T2 + T3) is 2.5 ≦ (T2 + T3) /
Satisfies the relationship of T1 and (T2 + T3) ≦ 250 μm
A positive electrode for a non-aqueous electrolyte secondary battery, which is characterized in that:
【請求項2】 正極集電体の両側に、LiX Mn2-Y
Y 4 (0.95≦x≦1.25、0.01≦y≦0.
20、Mは、Ti,Cr,Fe,Co,Ni,Zn,A
lの中から選んだ少なくとも1種以上の金属)とLiX
Co1-Y Y 2 (0.95 ≦x≦1.25、0.0
1≦y≦0.50、Mは、Ti,Cr,Fe,Ni,M
n,Zn,Al,Mo,Wの中から選んだ少なくとも1
種以上の金属)とを含有する正極活物質層を配した正極
と、 負極集電体に負極活物質層を備えた負極と、非水電解質
とを備える非水電解質二次電池において、 前記正極集電体の厚さT1と、前記正極活物質層の厚さ
の合計(T2+T3)が、2.5≦(T2+T3)/T
1、且つ(T2+T3)≦250μmの関係を満たすこ
とを特徴とする非水電解質二次電池。
2. A positive electrode current collector is provided with Li on both sides thereof.XMn2-YM
YOFour(0.95 ≦ x ≦ 1.25, 0.01 ≦ y ≦ 0.
20, M is Ti, Cr, Fe, Co, Ni, Zn, A
at least one metal selected from the above) and LiX
Co1-YM YO2(0.95 ≤ x ≤ 1.25, 0.0
1 ≦ y ≦ 0.50, M is Ti, Cr, Fe, Ni, M
At least 1 selected from n, Zn, Al, Mo and W
Positive electrode having a positive electrode active material layer containing at least one metal)
When, A negative electrode having a negative electrode active material layer on a negative electrode current collector, and a non-aqueous electrolyte
In a non-aqueous electrolyte secondary battery comprising and, Thickness T1 of the positive electrode current collector and thickness of the positive electrode active material layer
The sum of (T2 + T3) is 2.5 ≦ (T2 + T3) / T
1 and (T2 + T3) ≦ 250 μm.
And a non-aqueous electrolyte secondary battery.
JP2002093972A 2002-03-29 2002-03-29 Positive electrode for non-aqueous electrolyte secondary battery and secondary battery using such positive electrode Pending JP2003297339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093972A JP2003297339A (en) 2002-03-29 2002-03-29 Positive electrode for non-aqueous electrolyte secondary battery and secondary battery using such positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093972A JP2003297339A (en) 2002-03-29 2002-03-29 Positive electrode for non-aqueous electrolyte secondary battery and secondary battery using such positive electrode

Publications (1)

Publication Number Publication Date
JP2003297339A true JP2003297339A (en) 2003-10-17

Family

ID=29386875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093972A Pending JP2003297339A (en) 2002-03-29 2002-03-29 Positive electrode for non-aqueous electrolyte secondary battery and secondary battery using such positive electrode

Country Status (1)

Country Link
JP (1) JP2003297339A (en)

Similar Documents

Publication Publication Date Title
JP5095098B2 (en) Nonaqueous electrolyte secondary battery
EP1936718B1 (en) Cathode active material for a lithium battery
EP1655793B1 (en) Nonaqueous electrolyte secondary battery and charge/discharge system thereof
US20080118833A1 (en) Non-Aqueous Electrolyte Secondary Battery
WO2012001840A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery
JP2006286599A (en) Anode for nonaqueous secondary battery
JP5477472B2 (en) Electrode active material and non-aqueous electrolyte secondary battery equipped with the same
JP2002042889A (en) Nonaqueous electrolyte secondary battery
EP2367229A1 (en) Non-aqueous electrolyte secondary battery
JP2002175808A (en) Lithium/transition metal compound oxide for cathode active material of lithium secondary battery, and its manufacturing method
CN111640975A (en) Electrolyte composition for lithium-ion electrochemical cells
JP5030559B2 (en) Nonaqueous electrolyte secondary battery
JP2015195195A (en) Nonaqueous electrolyte secondary battery
JP2003203631A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP5241766B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP5017010B2 (en) Lithium secondary battery
JP2003297354A (en) Lithium secondary battery
JP4746846B2 (en) Negative electrode active material for lithium ion battery, method for producing the same, and lithium ion battery
JP2007317539A (en) Positive electrode material and battery
KR20120066489A (en) Positive electrode active material for lithium battery and lithium battery using the same
JP6503768B2 (en) Lithium ion secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
JP4530844B2 (en) Nonaqueous electrolyte secondary battery and charging method thereof
JP2002050358A (en) Lithium secondary battery positive electrode
JP2010135115A (en) Nonaqueous electrolyte secondary battery