JP2003294710A - Inspection device for inner surface of work - Google Patents

Inspection device for inner surface of work

Info

Publication number
JP2003294710A
JP2003294710A JP2002094589A JP2002094589A JP2003294710A JP 2003294710 A JP2003294710 A JP 2003294710A JP 2002094589 A JP2002094589 A JP 2002094589A JP 2002094589 A JP2002094589 A JP 2002094589A JP 2003294710 A JP2003294710 A JP 2003294710A
Authority
JP
Japan
Prior art keywords
work
bore
coating layer
rotating body
magnetic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002094589A
Other languages
Japanese (ja)
Other versions
JP3893074B2 (en
Inventor
Nobuteru Shimizu
信輝 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2002094589A priority Critical patent/JP3893074B2/en
Publication of JP2003294710A publication Critical patent/JP2003294710A/en
Application granted granted Critical
Publication of JP3893074B2 publication Critical patent/JP3893074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection device for the inner surface of a work, which automatically detect in-line a blowhole and a scratch of a bore of the work, or a hole of a covering layer. <P>SOLUTION: Rotators 3 and 4 which rotate at a fine interval with respect to the inner surface of a bore 21 of a work 20 is provided at a lower and of a rotating shaft 2. A magnetic probe 5 and an adjacent sensor 6 are provided on outer peripheral surfaces of these rotators 3 and 4. The rotating shaft 2 is rotated by a drive motor 7 used as a driving means to detect the rotation angle by a rotary encoder 8, and the rotating shaft 2 is moved to a shaft center direction by a vertical moving means 10 used as a moving means to observe, using a monitor 12 of a personal computer 11, the change in output power obtained at the magnetic probe 5. Based on the change in output power, the inspection is made for a blowhole and a scratch on the inner surface of the bore 21 of the work 20 or a hole of a covering layer 33 by flame spray coating of an inner surface of a bore 31 of a work 30. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ワーク内面の検査
装置に関し、例えば、鋳造により形成した自動車のエン
ジンシリンダブロックなどのワーク内面に存在する鋳巣
や傷、あるいはボア内面に溶射により形成した被覆層の
孔などをインラインで検査する場合に好適するワーク内
面の検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for inspecting the inner surface of a work, for example, a cavity or scratch existing on the inner surface of the work such as an automobile engine cylinder block formed by casting, or a coating formed by thermal spraying on the inner surface of the bore. The present invention relates to a device for inspecting an inner surface of a work suitable for in-line inspection of holes in layers.

【0002】[0002]

【従来の技術】自動車のエンジンシリンダブロックは、
全体を鉄の鋳造によって製作する方法、大部分をアルミ
ニウムの鋳造で製作しそのボア内面に鉄製のライナを装
着する方法などがある。前者の全体を鉄の鋳造によって
製作する方法では、鋳造時の充填不足による鋳巣や鋳型
除去時に傷などが入り易いという問題点がある。また、
後者の大部分をアルミニウムの鋳造で製作しそのボア内
面に鉄製のライナを装着する方法では、前記同様の問題
があるほか、アルミニウム鋳造部分へのライナの装着が
面倒であるのみならず、アルミニウム鋳造部品の内径寸
法とライナの外形寸法とに高精度の寸法公差が要求さ
れ、さらにはライナが鉄製なので重くなるという問題点
がある。
2. Description of the Related Art The engine cylinder block of an automobile is
There are a method of manufacturing the whole by casting iron, a method of manufacturing most of it by casting aluminum, and a method of mounting an iron liner on the inner surface of the bore. The former method in which the whole is manufactured by casting iron has a problem that cavities due to insufficient filling during casting and scratches during mold removal are likely to occur. Also,
The method of producing the majority of the latter by casting aluminum and mounting the iron liner on the inner surface of the bore has the same problems as described above, and not only is it troublesome to mount the liner on the aluminum casting part, but also aluminum casting There is a problem that a high precision dimensional tolerance is required between the inner diameter of the component and the outer dimension of the liner, and the liner is made of iron and becomes heavy.

【0003】そこで、エンジンシリンダブロックをアル
ミニウムで鋳造すると共に、そのボア内面に鉄を溶射し
て被覆層を形成する方法が考えられる。この方法は、ア
ルミニウムの鋳造で製作したエンジンシリンダブロック
のボア内面に鉄を溶射して被覆層を形成するので、従来
のライナのような別物を製作することや、このライナを
エンジンシリンダブロックのボア内面に装着するという
煩雑な工程がなく、しかも、エンジンシリンダブロック
内径寸法とライナ外径寸法との高精度の寸法公差も要求
されないため、著しく生産性を向上できるという利点が
ある。
Therefore, a method is conceivable in which the engine cylinder block is cast from aluminum and the inner surface of the bore is sprayed with iron to form a coating layer. This method sprays iron on the inner surface of the bore of an engine cylinder block manufactured by casting aluminum to form a coating layer, so that it is necessary to manufacture another object such as a conventional liner, or to use this liner for the bore of the engine cylinder block. There is an advantage that productivity can be remarkably improved because there is no complicated step of mounting on the inner surface and high precision dimensional tolerance between the engine cylinder block inner diameter dimension and the liner outer diameter dimension is not required.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、鋳造に
より形成したエンジンシリンダブロックの鋳巣や傷の発
生に対しては対策が困難なので、被覆層の形成前に鋳巣
や傷の検査が必要であるし、ボア内面に付着した油や汚
れに起因して被覆層に孔が形成されてしまうことがある
ため、ボア内面に被覆層を形成した後には、被覆層に孔
がないかどうか検査することが必要になる。
However, since it is difficult to take measures against the occurrence of cavities and scratches in the engine cylinder block formed by casting, it is necessary to inspect the cavities and scratches before forming the coating layer. However, since oil or dirt adhered to the inner surface of the bore may cause holes to be formed in the coating layer, after forming the coating layer on the inner surface of the bore, inspect the coating layer for holes. Will be required.

【0005】この鋳造品のボア内面の鋳巣や傷の検査、
あるいは被覆層の孔の検査方法には、例えば、特開平6
−18426号公報に記載されるように、ボア内面を回
転ミラーで円周方向に走査して受光部(CCD素子な
ど)に結像させ、この画像を直線状画像に展開して表示
させるようにする方法や、特開平6−241760号公
報に記載されるように、円錐形ミラーを介してテレビカ
メラのCCD素子に円形帯状画像を結像させ、この画像
に設定した円形の取込線上にある画素を一列に取り出し
て、直線状画像に展開して表示させるようにする方法が
ある。
Inspection of cavities and scratches on the inner surface of the bore of this cast product,
Alternatively, as a method for inspecting the holes in the coating layer, for example, Japanese Patent Laid-Open No.
As described in Japanese Patent No. 18426, the inner surface of the bore is circumferentially scanned by a rotating mirror to form an image on a light receiving portion (CCD element or the like), and this image is developed into a linear image and displayed. As described in JP-A-6-241760, a circular band-shaped image is formed on a CCD element of a television camera through a conical mirror, and a circular capturing line is set on the image. There is a method in which pixels are taken out in a line and developed into a linear image for display.

【0006】また、特開平11−23477号公報に記
載されているように、ボア内面全面に対して、撮像素子
を直線状に配列したラインセンサで走査撮影し、ライン
センサおよび回転角度検出手段から信号を取り込んで平
面画像に展開すると共に、この平面画像を表示手段に表
示するようにする方法がある。
Further, as described in Japanese Patent Application Laid-Open No. 11-23477, the entire inner surface of the bore is scanned and photographed by a line sensor in which image pickup elements are linearly arranged. There is a method in which a signal is captured and developed into a plane image, and the plane image is displayed on the display means.

【0007】しかしながら、以上のような光学的方法に
よってボア内面を検査する装置では、ボア内面や被覆層
表面に油や汚れが付着していると、それを鋳巣や傷、あ
るいは孔と誤検出することがあり、鋳巣や傷、あるいは
孔の有無を高信頼度で検出することができなかった。そ
のため、このような光学的な検査装置は、インラインで
採用することができなかった。
However, in the apparatus for inspecting the inner surface of the bore by the optical method as described above, if oil or dirt adheres to the inner surface of the bore or the surface of the coating layer, it is erroneously detected as a porosity, a flaw, or a hole. However, the presence or absence of cavities, scratches, or holes could not be detected with high reliability. Therefore, such an optical inspection device could not be adopted in-line.

【0008】そこで、X線を利用する方法も考えられる
が、このX線検査装置は自動検査が可能ではあるもの
の、X線は作業者の安全衛生上の見地から、インライン
に採用することができなかった。
Therefore, although a method using X-rays is also conceivable, although this X-ray inspection apparatus is capable of automatic inspection, X-rays can be adopted inline from the viewpoint of the operator's health and safety. There wasn't.

【0009】また、超音波を利用する装置もあるが、こ
の超音波による検査装置は、エンジンシリンダブロック
を水没させなければならず、水を使用する設備が必要で
あるため、製造ラインに水槽や給水管や排水管を敷設し
なければならず設備が複雑化するのみならず、鉄を溶射
して形成した被覆層が水によって酸化されるため、やは
りインラインで採用することができなかった。
There is also an apparatus that utilizes ultrasonic waves, but this ultrasonic inspection apparatus requires submersion of the engine cylinder block and equipment for using water. Since it is necessary to lay a water supply pipe and a drain pipe, the equipment becomes complicated, and the coating layer formed by spraying iron is oxidized by water, so that it cannot be used inline.

【0010】そこで、現在は、止むを得ず作業者が肉眼
で検査するようにしているが、このような検査方法で
は、検査作業に長時間を要し非能率的であるのみなら
ず、長時間連続作業すると眼精疲労のために作業者の視
力が低下して、検査の信頼度が低下するという問題点が
あった。
Therefore, at present, the operator is forced to inspect with the naked eye, but such an inspection method requires a long time for the inspection work and is inefficient. There is a problem in that the visual acuity of the worker is deteriorated due to eye strain and the reliability of the test is deteriorated when the work is continuously performed for a long time.

【0011】そこで、本発明は、上記の鉄鋳造製やアル
ミニウム鋳造製エンジンシリンダブロックなどのワーク
のボア内面や、そのボア内面に鉄を溶射して被覆層を形
成したようなワークの被覆層などの検査において、ワー
クの鋳巣や傷の有無、あるいは被覆層の孔の有無やその
大きさなどを、インラインで自動的に、かつ、高信頼度
で検査できるワーク内面の検査装置を提供することを目
的とする。
In view of the above, the present invention is directed to the inner surface of a bore of a work such as an engine cylinder block made of iron casting or aluminum casting described above, or a coating layer for a work in which a coating layer is formed by spraying iron on the inner surface of the bore. To provide an inspection device for the inner surface of a work that can inspect the work for the presence or absence of cavities or scratches, or the presence or absence of holes in the coating layer and their sizes automatically and with high reliability. With the goal.

【0012】[0012]

【課題を解決するための手段】本発明の請求項1に記載
されたワーク内面の検査装置は、ボアを有するワークの
ボア内面に近接して回転する回転体と、この回転体の周
面に設けられた磁気プローブと、前記回転体を回転させ
る回転手段と、前記回転体をワーク内で軸心方向に移動
させる移動手段とを具備することを特徴とするものであ
る。
According to a first aspect of the present invention, there is provided a device for inspecting an inner surface of a work, wherein a rotating body which rotates in proximity to an inner surface of the bore of the work and a peripheral surface of the rotating body. It is characterized by comprising a magnetic probe provided, a rotating means for rotating the rotating body, and a moving means for moving the rotating body in the axial direction in the work.

【0013】このようなワーク内面の検査装置によれ
ば、ボア内面や、このボア内面に形成された被覆層に近
接して回転する回転体に磁気プローブを設けてあるの
で、この回転体に設けられた磁気プローブがボア内面
や、このボア内面に形成された被覆層に近接して回転す
ることによって、ワークのボア内面や被覆層内で生じる
渦電流に基づいて、磁気プローブに得られる出力電圧の
変化により、ワークのボア内面の鋳巣や傷、あるいは被
覆層の孔の有無やその大きさを検出することができる。
According to such an apparatus for inspecting the inner surface of the work, since the magnetic probe is provided on the inner surface of the bore and the rotating body which rotates in proximity to the coating layer formed on the inner surface of the bore, the magnetic probe is provided on the rotating body. The output voltage obtained by the magnetic probe based on the eddy current generated in the inner surface of the bore of the workpiece and the coating layer by rotating the magnetic probe near the inner surface of the bore and the coating layer formed on the inner surface of the bore. It is possible to detect the presence or size of the porosity or scratches on the inner surface of the bore of the workpiece, or the presence or absence of holes in the coating layer.

【0014】すなわち、ワークのボア内面に鋳巣や傷が
ない場合や被覆層に孔がない場合は、回転体の回転によ
って磁気プローブに得られる出力は変化しないが、も
し、ワークのボア内面に鋳巣や傷がある場合や被覆層に
孔がある場合は、その孔部分で渦電流の流れが変化す
る。この渦電流の流れの変化に基づく磁気プローブの出
力電圧変化をモニタすることによって、ボア内面に鋳巣
や傷、あるいは被覆層の孔の有無やその大きさを検出す
ることができる。
That is, if there are no cavities or scratches on the inner surface of the bore of the work, or if there is no hole in the coating layer, the output obtained by the magnetic probe does not change due to the rotation of the rotating body, but if the inner surface of the bore of the work does not change. If there are cavities, scratches, or holes in the coating layer, the eddy current flow changes at the holes. By monitoring the output voltage change of the magnetic probe based on the change of the eddy current flow, it is possible to detect the presence or absence of a porosity or a scratch on the inner surface of the bore, or the size of the hole in the coating layer.

【0015】このような方法によれば、従来のカメラに
よる光学的な方法に比較して、渦電流を利用した電磁気
的な探傷方法であるため、油や汚れの付着に起因して誤
報することがない。また、X線検査装置に比較して作業
者の安全衛生上の問題がない。さらに、超音波を利用す
る検査装置に比較してワークを水没させる必要がないの
で、設備が簡素化されるのみならず、鉄の溶射による被
覆層の酸化の問題などがない。したがって、鋳造品のボ
ア内面の鋳巣や傷、あるいは溶射による被覆層の孔など
をインラインで検査可能になり、著しく生産性を向上す
ることができる。
According to such a method, as compared with the conventional optical method using a camera, since it is an electromagnetic flaw detection method using an eddy current, a false alarm is caused due to the adhesion of oil or dirt. There is no. In addition, there are no safety and health problems for workers as compared with the X-ray inspection apparatus. Furthermore, since it is not necessary to submerge the work as compared with an inspection device that uses ultrasonic waves, not only is the equipment simplified, but there is no problem of oxidation of the coating layer due to the thermal spraying of iron. Therefore, it becomes possible to in-line inspect for cavities and scratches on the inner surface of the bore of the cast product, or holes in the coating layer due to thermal spraying, thus significantly improving productivity.

【0016】本発明の請求項2に記載されたワーク内面
の検査装置は、前記回転体の周面に、近接センサを有す
ることを特徴とするものである。
According to a second aspect of the present invention, there is provided a device for inspecting the inner surface of a work, characterized in that a proximity sensor is provided on the peripheral surface of the rotating body.

【0017】上記のワーク内面の検査装置によれば、近
接センサによって、ワークや回転体の傾きを修正して、
近接センサとワークのボア内面や被覆層との間隔寸法を
一定にすることができるため、その傾きに起因する近接
センサの出力変化を、鋳巣や傷、あるいは被覆層の孔と
誤報することを防止ことができる。例えば、ワークと回
転体とのいずれか一方または両方に傾きが生じていれ
ば、回転体の回転によって、磁気プローブとボア内面や
その被覆層との間隔寸法が変化して、磁気プローブの出
力電圧が変化するので、その出力電圧変化を鋳巣や傷、
あるいは被覆層の孔と誤報することがあるが、近接セン
サとワークのボア内面や被覆層との間隔寸法を一定にす
ることによって、このような誤報を防止ことができる。
According to the above-mentioned inspection device for the inner surface of the work, the inclination of the work or the rotating body is corrected by the proximity sensor,
Since the distance between the proximity sensor and the inner surface of the bore of the work or the coating layer can be made constant, it is possible to mistakenly report the output change of the proximity sensor due to the inclination as a porosity, a scratch, or a hole in the coating layer. It can be prevented. For example, if one or both of the workpiece and the rotating body are tilted, the rotation of the rotating body changes the distance between the magnetic probe and the inner surface of the bore or its coating layer, and the output voltage of the magnetic probe is changed. Change, the output voltage change is
Alternatively, it may be falsely reported as a hole in the coating layer, but such false reporting can be prevented by making the distance dimension between the proximity sensor and the inner surface of the bore of the work or the coating layer constant.

【0018】本発明のワーク内面の検査装置において
は、前記ワークのボア内面と磁気プローブとの距離を、
0.5mm〜0.6mmの範囲内に設定することが望ま
しい。
In the inspection device for the inner surface of the work according to the present invention, the distance between the inner surface of the bore of the work and the magnetic probe is
It is desirable to set it within the range of 0.5 mm to 0.6 mm.

【0019】ここで、ワークのボア内面と磁気プローブ
との距離が、0.5mm未満では、磁気プローブの出力
電圧が大きくなり過ぎて、飽和してしまい、正しい鋳巣
や傷、孔の大きさが判らなくなる。また、ワークのボア
内面と磁気プローブとの距離が0.6mmを超えると、
磁気プローブの出力電圧が小さくなり過ぎて出力電圧の
変化が判別し難くなる。したがって、ワークのボア内面
と磁気プローブとの距離を、0.5mm〜0.6mmの
範囲内に設定することによって、ワークの鋳巣や傷、あ
るいは被覆層の孔やその大きさを容易、かつ確実に検出
することができる。
Here, if the distance between the inner surface of the bore of the work and the magnetic probe is less than 0.5 mm, the output voltage of the magnetic probe becomes too large and saturated, and the correct porosity, flaws, and hole size. Cannot be understood. When the distance between the inner surface of the bore of the work and the magnetic probe exceeds 0.6 mm,
The output voltage of the magnetic probe becomes too small, and it becomes difficult to determine the change in the output voltage. Therefore, by setting the distance between the inner surface of the bore of the work and the magnetic probe within the range of 0.5 mm to 0.6 mm, it is possible to easily form the cavities and scratches of the work, or the holes and the size of the coating layer, and It can be reliably detected.

【0020】本発明の請求項3に記載されたワーク内面
の検査装置は、前記駆動手段および移動手段が、X−Y
テーブルに取り付けられていることを特徴とするもので
ある。
In the inspection device for the inner surface of the work according to claim 3 of the present invention, the driving means and the moving means are XY.
It is characterized by being attached to a table.

【0021】上記のワーク内面の検査装置によれば、X
−Yテーブルを水平面内で移動させることによって、X
−Yテーブルに搭載された回転体の回転軸心をワークの
ボアの中心軸に一致させることができるので、ワークの
ボア内面と回転体の外周面との間隔寸法を一定にでき、
高精度でワークの鋳巣や傷、あるいは被覆層の孔の有無
やその大きさを検出することができる。
According to the above-mentioned inspection device for the inner surface of the work, X
-Y by moving the table in the horizontal plane, X
Since the rotation axis of the rotating body mounted on the Y table can be aligned with the central axis of the bore of the work, the distance between the inner surface of the bore of the work and the outer peripheral surface of the rotating body can be made constant,
It is possible to detect with high accuracy the presence or size of a porosity or a flaw in a work, or a hole in a coating layer.

【0022】本発明のワーク内面の検査装置では、前記
磁気プローブの出力電圧が与えられるパソコンを有する
ことが望ましい。
The inspection device for the inner surface of the work according to the present invention preferably has a personal computer to which the output voltage of the magnetic probe is applied.

【0023】上記のワーク内面の検査装置によれば、磁
気プローブの出力電圧が与えられるパソコンモニタに映
し出される出力電圧波形を解析して、ワークの鋳巣や
傷、あるいは被覆層の孔の有無やその大きさを検出する
ことができると共に、そのワークや被覆層の良否判定を
行なうことができる。さらに、例えば、回転体の回転角
度を横軸にとり、時間を縦軸にとって、回転角度−時間
の関係を2次元座標図で表示すると、ボア内面あるいは
被覆層のどの位置に、どの程度の大きさの鋳巣や傷、あ
るいは孔があるかが、一目で分かる。
According to the above-described inspection device for the inner surface of the work, the output voltage waveform displayed on the personal computer monitor to which the output voltage of the magnetic probe is applied is analyzed to determine whether there are cavities or scratches in the work, or whether there are holes in the coating layer. The size can be detected, and the quality of the work or the coating layer can be determined. Further, for example, when the rotation angle of the rotating body is taken as the horizontal axis and the time is taken as the vertical axis, and the relationship of the rotation angle-time is displayed in a two-dimensional coordinate diagram, at what position on the inner surface of the bore or the coating layer, and how much size. At a glance, you can see if there are cavities, scratches, or holes.

【0024】本発明の請求項4に記載されたワーク内面
の検査装置は、前記移動手段が、回転体の1回転当たり
の移動ピッチをP、検出しようとする鋳巣や傷、あるい
は孔の外径寸法をAとするとき、P≦A−0.05mm
の関係に設定されていることを特徴とするものである。
In the inspection device for the inner surface of the work according to claim 4 of the present invention, the moving means P is a moving pitch per one rotation of the rotating body, and a porosity, a flaw, or an outside of the hole to be detected. When the diameter dimension is A, P ≦ A-0.05 mm
It is characterized by being set in the relationship of.

【0025】上記のワーク内面の検査装置によれば、例
えば、検出しようとする鋳巣や傷、あるいは孔の外径寸
法をAとし、A=0.3mmとすると、回転体の1回転
当たりの移動ピッチをP≦0.25mmに設定する。そ
うすると、回転体の回転動作によって、ワークのボア内
面または被覆層のいずれの位置に存在している0.3m
m以上の鋳巣や傷、あるいは孔でも磁気プローブが必ず
走査することになるので、確実に検出することが可能で
ある。
According to the above-described inspection apparatus for the inner surface of the work, for example, if the outer diameter of the porosity, flaw, or hole to be detected is A, and A = 0.3 mm, then per revolution of the rotating body. The moving pitch is set to P ≦ 0.25 mm. Then, due to the rotating motion of the rotating body, 0.3 m existing on either the inner surface of the bore of the work or the coating layer.
Even if the porosity, scratches, or holes of m or more are to be scanned by the magnetic probe, it is possible to reliably detect them.

【0026】本発明のワーク内面の検査装置では、前記
ワークが、アルミニウム鋳造によるエンジンシリンダブ
ロックである場合に好適するものである。
The apparatus for inspecting the inner surface of the work according to the present invention is suitable when the work is an engine cylinder block made of aluminum casting.

【0027】上記のワーク内面の検査装置によれば、ア
ルミニウム鋳造によるエンジンシリンダブロックのボア
内面に存在する鋳巣や傷の有無やその大きさを自動的に
検出することができ、インラインでの検査が可能にな
る。
According to the above-mentioned inspection device for the inner surface of the work, it is possible to automatically detect the presence and size of the cavities and scratches existing on the inner surface of the bore of the engine cylinder block formed by aluminum casting, and perform the in-line inspection. Will be possible.

【0028】本発明のワーク内面の検査装置では、前記
ワークのボア内面に、鉄の溶射による被覆層が形成され
ている場合にも好適するものである。
The apparatus for inspecting the inner surface of a work according to the present invention is also suitable for the case where a coating layer formed by thermal spraying of iron is formed on the inner surface of the bore of the work.

【0029】上記のワーク内面の検査装置によれば、ワ
ークのボア内面に形成された鉄の溶射による被覆層にお
ける孔の有無やその大きさを自動的に検出することがで
き、インラインでの検査が可能になる
According to the above-mentioned inspection device for the inner surface of the work, it is possible to automatically detect the presence or absence and the size of the hole in the coating layer formed by the thermal spraying of the iron formed on the inner surface of the bore of the work. Will be possible

【0030】[0030]

【発明の実施の形態】以下、本発明の実施形態に係るワ
ーク内面の検査装置について、図面を参照して説明す
る。図1はワーク内面の検査装置の斜視図で、図2
(A)は検査対象であるワークの一例の縦断面図、図2
(B)はワークの異なる例の縦断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION An inspection apparatus for an inner surface of a work according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of the inspection device for the inner surface of the work, and FIG.
2A is a vertical cross-sectional view of an example of a work to be inspected, FIG.
(B) is a longitudinal sectional view of an example of a different work.

【0031】図2(A)に示すワーク20は、アルミニ
ウム鋳造によるエンジンシリンダブロック21に円筒状
のボア22を有する。図2(B)に示すワーク30は、
アルミニウム鋳造によるエンジンシリンダブロック31
が円筒状のボア32を有し、この円筒状のボア32の内
面に、鉄の溶射による被覆層33が形成されている。
The work 20 shown in FIG. 2A has a cylindrical bore 22 in an engine cylinder block 21 made by casting aluminum. The work 30 shown in FIG. 2B is
Engine cylinder block 31 made of aluminum casting
Has a cylindrical bore 32, and a coating layer 33 formed by thermal spraying of iron is formed on the inner surface of the cylindrical bore 32.

【0032】図1に示すワーク内面の検査装置1は、回
転軸2の下端部に、円盤状の回転体3,4を有し、これ
らの回転体3,4の外周面に、それぞれ磁気プローブ5
と、近接センサ6とを有する。磁気プローブ5は、図2
(A)のワーク20のボア22の内面、あるいは図2
(B)のワーク30のボア32の内面に形成された被覆
層33との間隔寸法に応じた出力が得られるものであれ
ばよい。近接センサ6は、ボア22内面あるいは被覆層
33との間隔寸法を検出するもので、例えば、磁気セン
サ,変位センサ,渦電流変位センサ,接触式変位センサ
などで構成され、回転体4の円周方向等間隔位置に、例
えば、120°毎に3個設けられている。
The inspection device 1 for the inner surface of a work shown in FIG. 1 has disk-shaped rotating bodies 3 and 4 at the lower end of a rotating shaft 2, and magnetic probes are provided on the outer peripheral surfaces of these rotating bodies 3 and 4, respectively. 5
And a proximity sensor 6. The magnetic probe 5 is shown in FIG.
The inner surface of the bore 22 of the work 20 in FIG.
It is sufficient that an output can be obtained in accordance with the distance dimension with the coating layer 33 formed on the inner surface of the bore 32 of the work 30 in (B). The proximity sensor 6 detects the distance dimension between the inner surface of the bore 22 or the coating layer 33, and is composed of, for example, a magnetic sensor, a displacement sensor, an eddy current displacement sensor, a contact displacement sensor, and the like, Three pieces are provided at equal intervals in the direction, for example, every 120 °.

【0033】前記回転軸2は、駆動手段である駆動用モ
ータ7によって回転駆動され、その回転角度はロータリ
ーエンコーダ8によって検出される。前記駆動用モータ
7およびロータリーエンコーダ8は、X−Yテーブル9
に吊下げ状に搭載されている。このX−Yテーブル9
は、例えば、固定部材9aの下にX方向スライド部材9
bとY方向スライド部材9cとを重ね合わせて構成され
ている。前記X−Yテーブル9の固定部材9aは、図示
しない移動手段により上下方向に移動可能な上下動作手
段10によって支持されて、上下動作が可能に構成され
ている。
The rotary shaft 2 is rotationally driven by a drive motor 7 which is a drive means, and its rotational angle is detected by a rotary encoder 8. The drive motor 7 and the rotary encoder 8 include an XY table 9
It is mounted in a hanging form. This XY table 9
Is, for example, the X-direction slide member 9 below the fixing member 9a.
b and the Y-direction slide member 9c are superposed on each other. The fixing member 9a of the XY table 9 is supported by a vertically moving means 10 which is vertically movable by a moving means (not shown), and is configured to be vertically movable.

【0034】また、前記磁気プローブ5および近接セン
サ6は、パソコン11のモニタ12に接続されている。
したがって、磁気プローブ5の出力電圧に基づいてモニ
タ12に移し出された電圧波形を解析したり、その解析
結果から良否を判定したりすることができる。以上の構
成によって、ワーク20,30であるエンジンシリンダ
ブロック21,31のボア22,32内面の鋳巣や傷、
あるいはボア32の内面に形成された被覆層33におけ
る孔の有無やその大きさを検査することができる。
The magnetic probe 5 and the proximity sensor 6 are connected to the monitor 12 of the personal computer 11.
Therefore, it is possible to analyze the voltage waveform transferred to the monitor 12 on the basis of the output voltage of the magnetic probe 5 and determine the quality from the analysis result. With the above-described configuration, cavities and scratches on the inner surfaces of the bores 22 and 32 of the engine cylinder blocks 21 and 31, which are the works 20 and 30,
Alternatively, it is possible to inspect the presence or the size of the hole in the coating layer 33 formed on the inner surface of the bore 32.

【0035】例えば、検出しようとする巣や傷、あるい
は孔の外径寸法Aの規格値が0.3mm以上の場合は、
前述のP≦A−0.05mmの関係式から、回転体3の
1回転による1ピッチ分のスパイラル上下動寸法Pは、
0.25mmに設定される。ここで、駆動用モータ7の
回転数NがN=2,400rpm(=40rps)とす
ると、上下動作手段10による軸方向の移動速度Sは、
S=0.25[mm/回転]×40[rps]=10m
m/sになる。したがって、ワーク20,30のボア2
1,22の長さ寸法Lが100mmの場合は、10秒で
ボア1個の検査が終了することになる。もちろん、駆動
用モータ7の回転数Nを大きくするか、回転数伝達手段
を設けその増速比を大きくすれば、検査所要時間を短縮
することができる。
For example, if the standard value of the outer diameter dimension A of the hole or flaw to be detected or the hole is 0.3 mm or more,
From the above relational expression of P ≦ A−0.05 mm, the spiral vertical movement dimension P for one pitch by one rotation of the rotating body 3 is
It is set to 0.25 mm. Here, if the rotation speed N of the drive motor 7 is N = 2,400 rpm (= 40 rps), the moving speed S in the axial direction by the vertical movement means 10 is
S = 0.25 [mm / rotation] × 40 [rps] = 10 m
m / s. Therefore, the bore 2 of the work 20, 30
When the length dimension L of 1 and 22 is 100 mm, the inspection of one bore is completed in 10 seconds. Of course, the required inspection time can be shortened by increasing the rotation speed N of the drive motor 7 or increasing the speed increasing ratio by providing the rotation speed transmission means.

【0036】図3(A)〜図3(D)は、ワーク20,
30のボア21,31内面に、φ0.3mm×深さ0.
3mmの大きさの人工鋳巣を形成し、磁気プローブ5と
ワーク20のボア21内面との間隔寸法を0.4mmか
ら0.7mmまで0.1mm刻みで変化させた場合の、
回転体3の略1回転によって磁気プローブ5に得られた
出力電圧波形図を示す。なお、図3(A)〜図3(D)
において、出力電圧Aの楕円A’で囲った部分が人工鋳
巣の検出信号であり、その出力電圧Aの下側の矩形波P
1,P2は、回転パルス信号である。
FIGS. 3A to 3D show the work 20,
Φ30 mm × depth of 0.
When an artificial porosity having a size of 3 mm is formed and the distance between the magnetic probe 5 and the inner surface of the bore 21 of the work 20 is changed from 0.4 mm to 0.7 mm in 0.1 mm steps,
The output voltage waveform diagram obtained by the magnetic probe 5 by substantially one rotation of the rotating body 3 is shown. Note that FIGS. 3A to 3D
, The portion enclosed by the ellipse A ′ of the output voltage A is the detection signal of the artificial porosity, and the rectangular wave P below the output voltage A is
1 and P2 are rotation pulse signals.

【0037】すなわち、図3(A)は磁気プローブ5と
ワーク20のボア21内面との間隔寸法が0.4mmの
場合で、出力電圧の振幅がOK/NGの上限しきい値U
CLおよび下限しきい値LCLを大きく超え、さらにこ
れ以上の波形が出力されても飽和してしまう上方飽和電
圧値USLおよび下方飽和電圧値LSLに対して飽和し
ている。図3(B)および図3(C)はそれぞれ間隔寸
法が0.5mm、0.6mmの場合で、出力電圧の振幅
がOK/NGの上下限しきい値UCLおよびLCLを超
えているが、上方飽和電圧値USLおよび下方飽和電圧
値LSLには達しておらず、適正な大きさになってい
る。図3(D)は間隔寸法が0.7mmの場合で、出力
電圧の振幅が小さ過ぎて、OK/NGの上下限しきい値
UCLおよびLCLとほぼ等しいため、OK/NGの判
定が困難である。以上の結果から、磁気プローブ5とワ
ーク20のボア21内面との間隔寸法は、0.5mm〜
0.6mmの範囲が適当である。
That is, FIG. 3A shows the case where the distance between the magnetic probe 5 and the inner surface of the bore 21 of the work 20 is 0.4 mm, and the amplitude of the output voltage is the upper limit threshold value U of OK / NG.
It is saturated with respect to the upper saturation voltage value USL and the lower saturation voltage value LSL, which greatly exceed CL and the lower limit threshold value LCL and are saturated even when a waveform of more than this value is output. 3 (B) and 3 (C) show the case where the interval dimension is 0.5 mm and 0.6 mm, respectively, and the amplitude of the output voltage exceeds the upper and lower limit thresholds UCL and LCL of OK / NG. It does not reach the upper saturation voltage value USL and the lower saturation voltage value LSL, and has an appropriate size. FIG. 3D shows the case where the interval dimension is 0.7 mm, the amplitude of the output voltage is too small, and it is almost equal to the upper and lower limit threshold values UCL and LCL of OK / NG, so that it is difficult to determine OK / NG. is there. From the above results, the distance between the magnetic probe 5 and the inner surface of the bore 21 of the work 20 is 0.5 mm to
A range of 0.6 mm is suitable.

【0038】図4(A)は、図2(A)のワーク20の
ボア21内面について、ロータリーエンコーダ8で回転
軸2の回転角度θを横軸にとり、検査経過時間から磁気
プローブ5の位置を縦軸にボア長で示した、回転角度θ
−ボア長の2次元座標図である。すなわち、磁気プロー
ブ5によって得られる電圧波形の変化を、横軸が回転角
度θ(°)で縦軸がボア2の長さ(mm)の2次元座標
データを得ることによって、その検出した磁気プローブ
5の出力電圧波形の変化位置座標aから、実ワーク20
のボア22面内の鋳巣や傷の位置やその大きさを検出す
ることができる。
In FIG. 4A, with respect to the inner surface of the bore 21 of the work 20 in FIG. 2A, the rotary encoder 8 sets the rotation angle θ of the rotary shaft 2 on the horizontal axis, and the position of the magnetic probe 5 is determined from the elapsed inspection time. Rotation angle θ shown by bore length on the vertical axis
-A two-dimensional coordinate diagram of the bore length. That is, the change in the voltage waveform obtained by the magnetic probe 5 is detected by obtaining two-dimensional coordinate data in which the horizontal axis is the rotation angle θ (°) and the vertical axis is the length (mm) of the bore 2.
From the change position coordinate a of the output voltage waveform 5
It is possible to detect the position and size of the porosity and scratches on the surface of the bore 22.

【0039】図4(B)は、図2(B)に示すワーク3
0について、被覆層33の一部を人工的に剥離して孔を
形成した場合における、前記図4(A)と同様の2次元
座標図である。この図4(B)でも、その検出した磁気
プローブ5の出力電圧波形の変化位置座標bから、実際
のワーク30のボア32内面に形成した被覆層33の孔
の位置やその大きさを検出することができる
FIG. 4 (B) shows the work 3 shown in FIG. 2 (B).
5 is a two-dimensional coordinate diagram similar to FIG. 4A in the case where a part of the coating layer 33 is artificially peeled to form a hole for 0. Also in this FIG. 4B, the position and size of the hole of the coating layer 33 formed on the inner surface of the bore 32 of the work 30 are detected from the detected change position coordinate b of the output voltage waveform of the magnetic probe 5. be able to

【0040】なお、上記実施形態では、特定の実施形態
のみを説明したが、本発明の精神を逸脱しない範囲で各
種の変形が可能であることはもちろんである。例えば、
上記実施形態では、回転体3,4の外周面には1個の磁
気プローブ5を設ける場合について説明したが、周方向
等間隔位置に複数個の磁気プローブ5を設けるようにし
てもよい。このようにすれば、例えば、n個の磁気プロ
ーブ5を設けた場合は、回転体3,4の1/nの回転動
作によって、ワーク20,30のボア21,31内面1
回転分(360°)の検査が可能になり、それだけ検査
に要する時間を短縮することができる。
In the above embodiment, only a specific embodiment has been described, but it goes without saying that various modifications can be made without departing from the spirit of the present invention. For example,
In the above embodiment, the case where one magnetic probe 5 is provided on the outer peripheral surfaces of the rotating bodies 3 and 4 has been described, but a plurality of magnetic probes 5 may be provided at equal intervals in the circumferential direction. With this configuration, for example, when n magnetic probes 5 are provided, the inner surfaces 1 of the bores 21, 31 of the workpieces 20, 30 are rotated by 1 / n of the rotating bodies 3, 4.
The rotation (360 °) can be inspected, and the time required for the inspection can be shortened accordingly.

【0041】また、アルミニウム鋳造によるボア21を
有するエンジンシリンダブロック21よりなるワーク2
0、あるいは、アルミニウム鋳造によるボア32を有
し、そのボア32内面に鉄の溶射による被覆層33を有
するエンジンシリンダブロックよりなるワーク30につ
いて説明したが、鉄の鋳造によるボアを有するエンジン
シリンダブロックにおける鋳巣や傷の検査にも適用でき
るし、その他のボアを有するワークの内面検査にも適用
することができる。
Further, the work 2 composed of the engine cylinder block 21 having the bore 21 made of aluminum casting.
0, or the work 30 composed of an engine cylinder block having a bore 32 formed by casting aluminum and having a coating layer 33 formed by thermal spraying of iron on the inner surface of the bore 32 has been described. In an engine cylinder block having a bore formed by casting iron, It can be applied to the inspection of cavities and scratches, and can also be applied to the inner surface inspection of works having other bores.

【0042】なお、上記の鉄の溶射による被覆層33を
有するワーク30や鉄の鋳造によるワークの場合は、残
留磁束の影響をなくすために脱磁処理を行なうか、ある
いは残留磁束を一定にするために磁気飽和処理を実施し
た上で、本発明の検査装置による検査を実施する方が、
残留磁束による影響を受けることなく、より正確な検査
が行なえる。
In the case of the work 30 having the coating layer 33 formed by thermal spraying of iron or the work formed by casting of iron, demagnetization is performed to eliminate the influence of residual magnetic flux, or the residual magnetic flux is made constant. In order to carry out the magnetic saturation treatment for this purpose, it is better to carry out the inspection by the inspection device of the present invention.
More accurate inspection can be performed without being affected by residual magnetic flux.

【0043】また、ロータリーエンコーダ8に代えて、
パルス数によって回転角度が分かるパルスモータを用い
てもよい。
Further, instead of the rotary encoder 8,
A pulse motor whose rotation angle is known by the number of pulses may be used.

【0044】[0044]

【発明の効果】本発明は、以上のように、ボアを有する
ワークのボア内面に近接して回転する回転体と、この回
転体の周面に設けられた磁気プローブと、前記回転体を
回転させる駆動手段と、前記回転体をワーク内で軸心方
向に移動させる移動手段とを具備し、渦電流を利用して
鋳巣や傷、あるいは被覆層の孔を検出するものであるか
ら、従来の光学的な検査装置に比較して、油や汚れによ
る虚報がなく、X線による検査装置に比較して、作業者
の安全衛生上の問題がなく、また超音波による検査装置
に比較して、ワークを水没させる必要がなく、短時間で
正確にボア内面の鋳巣や傷、あるいは被覆層の孔の検出
が可能であり、生産ラインに検査装置を組み込んでイン
ラインで検査することができ、生産性が著しく向上す
る。
As described above, according to the present invention, the rotating body that rotates in the vicinity of the inner surface of the bore of the work having the bore, the magnetic probe provided on the peripheral surface of the rotating body, and the rotating body are rotated. It is provided with a driving means for moving the rotating body and a moving means for moving the rotating body in the axial direction in the work, and detects cavities, scratches, or holes in the coating layer by utilizing eddy current. There is no false alarm due to oil and dirt compared to the optical inspection device of No. 1, there is no safety and health problem of the operator compared to the inspection device using X-ray, and compared to the inspection device using ultrasonic waves. , It is not necessary to submerge the work, it is possible to accurately detect the porosity and scratches on the inner surface of the bore, or the holes in the coating layer in a short time, and in-line inspection is possible by incorporating an inspection device in the production line. Productivity is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係るワーク内面の検査装置
の要部斜視図である。
FIG. 1 is a perspective view of an essential part of a work inner surface inspection apparatus according to an embodiment of the present invention.

【図2】(A)は検査対象であるワークの一例の断面
図、(B)は検査対象であるワークの異なる例の断面図
である。
2A is a cross-sectional view of an example of a work to be inspected, and FIG. 2B is a cross-sectional view of a different example of a work to be inspected.

【図3】(A)は磁気プローブの出力電圧が過大な場合
の波形図(プローブ〜ワーク間距離0.4mm)、
(B)は磁気プローブの出力電圧が適正な場合の波形図
(プローブ〜ワーク間距離0.5mm)、(C)は磁気
プローブの出力電圧が適正な場合の波形図(プローブ〜
ワーク間距離0.6mm)、(D)は磁気プローブの出
力電圧が過小な場合の波形図(プローブ〜ワーク間距離
0.7mm)である。
3A is a waveform diagram when the output voltage of the magnetic probe is excessive (probe-workpiece distance 0.4 mm), FIG.
(B) is a waveform diagram when the output voltage of the magnetic probe is proper (probe-workpiece distance 0.5 mm), and (C) is a waveform diagram when the output voltage of the magnetic probe is proper (probe-workpiece).
(Workpiece distance 0.6 mm), (D) is a waveform diagram when the output voltage of the magnetic probe is too small (probe-workpiece distance 0.7 mm).

【図4】(A)はワークのボア内面の鋳巣や傷による磁
気プローブの出力電圧変化を回転体の回転角度−ボア長
の2次元座標データで表した2次元座標図、(B)はワ
ークのボア内面に形成した被覆層の孔による磁気プロー
ブの出力電圧変化を回転体の回転角度−ボア長の2次元
データで表した2次元座標図である。
FIG. 4A is a two-dimensional coordinate diagram in which the output voltage change of the magnetic probe due to the porosity and scratches on the inner surface of the bore of the work is represented by the two-dimensional coordinate data of the rotation angle of the rotating body and the bore length. FIG. 4 is a two-dimensional coordinate diagram showing two-dimensional data of the rotation angle of the rotor and the bore length, which represents the change in the output voltage of the magnetic probe due to the holes of the coating layer formed on the inner surface of the bore of the workpiece.

【符号の説明】[Explanation of symbols]

1 ワーク内面の検査装置 2 回転軸 3,4 回転体 5 磁気プローブ 6 近接センサ 7 駆動手段(駆動用モータ) 8 ロータリーエンコーダ 9 X−Yテーブル 10 移動手段(上下動作手段) 11 パソコン 12 モニタ 20,30 ワーク(エンジンシリンダブロック) 21,31 ボア 33 鉄の溶射による被覆層 A 出力電力波形 A’ 鋳巣や傷の検出信号 P1,P2 回転パルス信号 a 鋳巣や傷の検出位置座標 b 被覆層の孔検出位置座標 1 Inspection device for inner surface of work 2 rotation axes 3,4 rotating body 5 Magnetic probe 6 Proximity sensor 7 Driving means (driving motor) 8 rotary encoder 9 XY table 10 Moving means (vertical moving means) 11 PC 12 monitors 20, 30 work (engine cylinder block) 21,31 bore 33 Coating layer by thermal spraying of iron A output power waveform A'Porosity and scratch detection signal P1, P2 rotation pulse signal Detected position coordinates of porosity and scratches b Coordinates of hole detection position of coating layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ボアを有するワークのボア内面に近接し
て回転する回転体と、この回転体の周面に設けられた磁
気プローブと、前記回転体を回転させる駆動手段と、前
記回転体をワーク内で軸心方向に移動させる移動手段と
を具備することを特徴とするワーク内面の検査装置。
1. A rotating body which rotates in the vicinity of an inner surface of a bore of a work having a bore, a magnetic probe provided on a peripheral surface of the rotating body, a driving means for rotating the rotating body, and the rotating body. An apparatus for inspecting an inner surface of a work, comprising: a moving unit that moves the work in an axial direction.
【請求項2】 前記回転体の周面に、近接センサを有す
ることを特徴とする請求項1に記載のワーク内面の検査
装置。
2. The inspection device for the inner surface of the work according to claim 1, wherein a proximity sensor is provided on the peripheral surface of the rotating body.
【請求項3】 前記駆動手段および移動手段が、X−Y
テーブルに取り付けられていることを特徴とする請求項
1または2に記載のワーク内面の検査装置。
3. The driving means and the moving means are XY
The work inner surface inspection apparatus according to claim 1 or 2, which is attached to a table.
【請求項4】 前記移動手段が、回転体の1回転当たり
の移動ピッチをP、検出しようとする孔径寸法をAとす
るとき、P≦A−0.05mmの関係に設定されている
ことを特徴とする請求項1から3のいずれかに記載のワ
ーク内面の検査装置。
4. The moving means is set to have a relationship of P ≦ A-0.05 mm, where P is a moving pitch per one rotation of the rotating body and A is a hole diameter size to be detected. The inspection device for an inner surface of a work according to any one of claims 1 to 3, which is characterized.
JP2002094589A 2002-03-29 2002-03-29 Inspection device for work inner surface Expired - Fee Related JP3893074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002094589A JP3893074B2 (en) 2002-03-29 2002-03-29 Inspection device for work inner surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002094589A JP3893074B2 (en) 2002-03-29 2002-03-29 Inspection device for work inner surface

Publications (2)

Publication Number Publication Date
JP2003294710A true JP2003294710A (en) 2003-10-15
JP3893074B2 JP3893074B2 (en) 2007-03-14

Family

ID=29238516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002094589A Expired - Fee Related JP3893074B2 (en) 2002-03-29 2002-03-29 Inspection device for work inner surface

Country Status (1)

Country Link
JP (1) JP3893074B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208061A (en) * 2004-01-21 2005-08-04 General Electric Co <Ge> Method for fabricating and testing thermal-spray coated substrate
JP2008111753A (en) * 2006-10-31 2008-05-15 Osaka Univ Rail inspection device
JP2009052891A (en) * 2007-08-23 2009-03-12 Ryoei Engineering Kk Inspection device for casting crude material with hole
JP2011007548A (en) * 2009-06-24 2011-01-13 Suzuki Motor Corp Measuring head of inner peripheral surface inspection device
JP2011095100A (en) * 2009-10-29 2011-05-12 Honda Motor Co Ltd Surface inspection device and surface inspection method
JP2011174864A (en) * 2010-02-25 2011-09-08 Hitachi-Ge Nuclear Energy Ltd Sensor pressing tool, and method of verifying adhesion of sensor and method of detecting flaw using the sensor pressing tool
KR101168527B1 (en) 2010-11-03 2012-07-27 창원대학교 산학협력단 A rigidity measurement of the main spindle
JP2012163338A (en) * 2011-02-03 2012-08-30 Suzuki Motor Corp Eddy current flaw detector and eddy current flaw detection method
CN108267505A (en) * 2016-12-30 2018-07-10 核动力运行研究所 A kind of eddy current array probe flexibility bonding structure
CN111796020A (en) * 2020-08-27 2020-10-20 厦门大学 Eddy current detection method and system for layering defects of carbon fiber composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091254A (en) * 1983-10-24 1985-05-22 Kubota Ltd Apparatus for inspecting metal surface
JPS60146148A (en) * 1984-01-09 1985-08-01 Kubota Ltd Eddy flaw detector
JPH0517560U (en) * 1991-08-20 1993-03-05 三菱重工業株式会社 High speed rotating probe
JPH0628731U (en) * 1992-09-18 1994-04-15 三菱重工業株式会社 In-pipe inspection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6091254A (en) * 1983-10-24 1985-05-22 Kubota Ltd Apparatus for inspecting metal surface
JPS60146148A (en) * 1984-01-09 1985-08-01 Kubota Ltd Eddy flaw detector
JPH0517560U (en) * 1991-08-20 1993-03-05 三菱重工業株式会社 High speed rotating probe
JPH0628731U (en) * 1992-09-18 1994-04-15 三菱重工業株式会社 In-pipe inspection device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005208061A (en) * 2004-01-21 2005-08-04 General Electric Co <Ge> Method for fabricating and testing thermal-spray coated substrate
JP4652065B2 (en) * 2004-01-21 2011-03-16 ゼネラル・エレクトリック・カンパニイ Method for making and inspecting a spray-coated substrate
JP2008111753A (en) * 2006-10-31 2008-05-15 Osaka Univ Rail inspection device
JP2009052891A (en) * 2007-08-23 2009-03-12 Ryoei Engineering Kk Inspection device for casting crude material with hole
JP2011007548A (en) * 2009-06-24 2011-01-13 Suzuki Motor Corp Measuring head of inner peripheral surface inspection device
JP2011095100A (en) * 2009-10-29 2011-05-12 Honda Motor Co Ltd Surface inspection device and surface inspection method
JP2011174864A (en) * 2010-02-25 2011-09-08 Hitachi-Ge Nuclear Energy Ltd Sensor pressing tool, and method of verifying adhesion of sensor and method of detecting flaw using the sensor pressing tool
KR101168527B1 (en) 2010-11-03 2012-07-27 창원대학교 산학협력단 A rigidity measurement of the main spindle
JP2012163338A (en) * 2011-02-03 2012-08-30 Suzuki Motor Corp Eddy current flaw detector and eddy current flaw detection method
CN108267505A (en) * 2016-12-30 2018-07-10 核动力运行研究所 A kind of eddy current array probe flexibility bonding structure
CN111796020A (en) * 2020-08-27 2020-10-20 厦门大学 Eddy current detection method and system for layering defects of carbon fiber composite material

Also Published As

Publication number Publication date
JP3893074B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
US7650790B2 (en) Method of inspecting a component and an apparatus for inspecting a component
JP2003294710A (en) Inspection device for inner surface of work
US10564134B2 (en) Pseudo defect sample, process for producing the same, method for adjusting ultrasonic flaw detection measurement condition, method for inspecting target material, and process for producing sputtering target
JP2006220608A (en) Automatic ultrasonic inspection device, inspection method and manufacturing method using its inspection method
JP2017506349A (en) Method and apparatus for determining brake disk deterioration
CN105973177B (en) A kind of lossless detection method and PCB lossless detection method of back drill stub
JP2017190985A (en) Tubular body inner surface inspection apparatus, tubular body inner surface inspection method, drift gage, and drift inspection method
JP2001121279A (en) Laser working apparatus with shape inspecting function
CN111380955A (en) Method for detecting defects of additive manufacturing part based on ultrasonic phased array
JP2007198822A (en) Method of measuring rolling surface hardening depth of wheel bearing outer race
CN110196285B (en) Large-scale ring piece multi-face array ultrasonic automatic detection device and method
CN112763501A (en) Rotating shaft fault detection system and method based on visual measurement
JP6524884B2 (en) Inner surface inspection method of tubular body
JP2015197326A (en) Flaw detection method
JP2005300363A (en) Ultrasonic flaw detecting system and ultrasonic flaw detecting test method
JP6796658B2 (en) Inspection equipment, inspection unit and inspection method
JPH10104208A (en) Nondestructive inspection method for internal structure
JP2003322512A (en) Size measuring device for sample
JPH10206397A (en) Ultrasonic flaw detecting device
JP5570890B2 (en) Tire appearance inspection method and appearance inspection apparatus
JP2003220480A (en) Laser beam welding machine and laser beam welding method
JPH11248638A (en) Automatic detection method for surface of press-molded product
CN109839438A (en) The bubble detection device of organic LED panel
KR20140129881A (en) Ultrasonic detecting device
JP2012194172A (en) Method for evaluating strength of aluminum die casting component and aluminum die casting component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees