JP2003293060A - Aluminum alloy composite material for brazing - Google Patents

Aluminum alloy composite material for brazing

Info

Publication number
JP2003293060A
JP2003293060A JP2002097965A JP2002097965A JP2003293060A JP 2003293060 A JP2003293060 A JP 2003293060A JP 2002097965 A JP2002097965 A JP 2002097965A JP 2002097965 A JP2002097965 A JP 2002097965A JP 2003293060 A JP2003293060 A JP 2003293060A
Authority
JP
Japan
Prior art keywords
mass
brazing
skin material
core material
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002097965A
Other languages
Japanese (ja)
Other versions
JP3827601B2 (en
Inventor
Toshiki Ueda
利樹 植田
Fumihiro Koshigoe
史浩 腰越
Fumihiro Sato
文博 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002097965A priority Critical patent/JP3827601B2/en
Publication of JP2003293060A publication Critical patent/JP2003293060A/en
Application granted granted Critical
Publication of JP3827601B2 publication Critical patent/JP3827601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy composite material which has high strength, improves the corrosion resistance of a coolant side when being used as a radiator tube, and is made thin in thickness. <P>SOLUTION: An Al-Si based brazing filler metal 3 is formed on one side of a core material 1. A surface material 2 is formed on the other side at a clad ratio of 6 to 30% of the whole sheet thickness. The core material 1 contains, by mass, ≤0.2% Mg, ≤0.3% Cr, ≤0.2% Fe, 0.2 to 1.0% Cu, 0.05 to 1.3% Si, 0.3 to 1.8% Mn and 0.02 to 0.3% Ti, and satisfying ≤2.0% Cu+Si. A surface material 2 has a composition containing 2 to 9% Zn, and further containing at least one kind of metal selected from the group consisting of 0.3 to 1.8% Mn and 0.04 to 1.2% Si, and also, precipitated products or crystallized products with a means particle diameter of <0.1 μm are contained in ≥5.0×10<SP>8</SP>pieces/mm<SP>3</SP>. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、自動車のラジエー
タのチューブ及びプレート等に使用されるブレージング
シートとして好適のアルミニウム合金複合材に関し、特
に、高強度であると共に、ラジエータのチューブ・プレ
ートとして使用された場合の内面側(クーラント側)の
耐食性が優れており、薄肉化が可能なろう付用アルミニ
ウム合金複合材に関する。 【0002】 【従来の技術】心材の片面にろう材をクラッドし、心材
の他面に皮材をクラッドしたろう付け用アルミニウム合
金複合材において、心材にMgを添加することにより心
材の強度を向上させている。しかし、心材のMg含有量
が0.2質量%を超えると、ろう付性が極めて低下す
る。このため、心材にMgを添加することは好ましくな
い。 【0003】また、耐食性及びろう付性等を阻害するこ
となく、薄肉化を図ったアルミニウム合金複合材が提案
されている。特開平8−283891号公報に記載され
たアルミニウム合金複合材は、皮材がMgを0.3乃至
3質量%、Znを2.2乃至5質量%含有しており、M
gの添加により皮材の強度の向上を図っている。 【0004】更に、特開平11−61306号公報に
は、皮材にMgを添加する代わりに、皮材にMn及びS
iを添加して強度を向上させたアルミニウム合金複合材
も提案されている。 【0005】 【発明が解決しようとする課題】しかしながら、上述の
各従来技術は、以下に示す欠点を有する。先ず、特開平
8−283891号公報に記載のアルミニウム合金複合
材は、皮材にMgを添加することにより強度の向上を図
っているが、肉厚が薄くなると、ろう付け時の熱拡散に
よりMgが心材を経由してろう材表面に到達し、ろう付
け性を阻害してしまう。このため、所定のろう付け性を
保つためには心材の厚さを厚くせざるを得ず、薄肉化に
限界がある。また、この従来のアルミニウム合金複合材
は、皮材側のろう付性が劣るため、皮材側がろう付され
る構造となるチューブ材としては使用できないという問
題点がある。 【0006】一方、特開平11−61306号公報に記
載のアルミニウム合金は、皮材にMn及びSiを添加し
て強度の向上を図っているが、皮材へのMn及びSi成
分の添加のみで耐食性等を維持しつつ薄肉化を図るのに
は限界がある。 【0007】本発明はかかる問題点に鑑みてなされたも
のであって、高強度であると共に、ラジエータチューブ
として使用された場合の内面側(クーラント側)の耐食
性が優れており、薄肉化が可能なろう付用アルミニウム
合金複合材を提供することを目的とする。 【0008】 【課題を解決するための手段】本発明に係るろう付け用
アルミニウム合金複合材は、心材の片面にAl−Si系
のアルミニウム合金からなるろう材が形成され、前記心
材の他面に皮材が全板厚の6乃至30%のクラッド率で
形成されたアルミニウム合金複合材において、前記心材
は、Mg:0.2質量%以下、Cr:0.3質量%以
下、Fe:0.2質量%以下、Cu:0.2乃至1.0
質量%、Si:0.05乃至1.3質量%、Mn:0.
3乃至1.8質量%、Ti:0.02乃至0.3質量%
を含有し、残部がAl及び不可避不純物からなる組成を
有し、前記皮材は、Zn:2乃至9質量%であり、更に
Mn:0.3乃至1.8質量%及びSi:0.04乃至
1.2質量%からなる群から選択された少なくとも1種
を含有する組成を有し、かつ平均粒径が0.1μm未満
の析出物又は晶出物が5.0×108個/mm3以上含有
されていることを特徴とする。 【0009】 【発明の実施の形態】本発明者等が前記課題を解決すべ
く種々実験研究した結果、皮材にMn及びSiを所定の
範囲で含有させ、更に皮材の厚さを所定の割合にし、更
に、皮材に析出物又は晶出物の分布を限定することによ
り、ろう付性、耐食性及び強度を維持したまま、アルミ
ニウム合金複合材の大幅な薄肉化を図ることができるこ
とを見いだした。 【0010】以下、本発明のろう付用アルミニウム合金
複合材の心材、皮材及びろう材における成分添加理由及
び組成限定理由について説明する。先ず、心材の組成に
ついて説明する。 【0011】Mg(マグネシウム):0.2質量%以下 Mgは心材の強度を向上させる元素であるが、0.2質
量%を超えて添加されると、ろう付性を低下させてしま
う。特に、ノコロック法によるろう付けではその低下が
極めて大きい。従って、Mgの含有量は0.2質量%以
下に制限する。なお、より一層ろう付性の低下を抑制す
るためには、Mgの含有量を0.1質量%以下とするこ
とが好ましい。 【0012】Cu(銅):0.2乃至1.0質量% Cuは心材の強度を向上させる元素であり、また、ろう
材側の耐食性も向上させる。しかし、心材にCuを添加
すると、粒界腐食感受性を増大させるため、皮材面側の
耐食性を低下させてしまう。そこで、皮材にZnを2質
量%以上添加することにより、皮材の電位を粒界に対し
て卑に設定することができると共に、粒界腐食を防止す
ることができる。つまり、皮材におけるZnの添加量を
多くすることにより、心材に対する皮材の電位を心材の
マトリックスのみならず、粒界に対しても低く設定する
ことができるため、粒界腐食を防止することができる。
Cuの添加量が0.2質量%未満では心材の強度を向上
させるには不十分である。一方、Cuが1.0質量%を
超えて添加されると、心材の融点を低下させるため、ろ
う付時に心材の溶融が生じてしまう。従って、Cuの含
有量は0.2乃至1.0質量%とする。 【0013】Si(シリコン):0.05乃至1.3質
量% Siは心材の強度を向上させる元素であり、特にMn−
Si系析出物により心材の強度が向上する。しかし、S
iの添加量が0.05質量%未満では、心材の強度を向
上させるには不十分である。一方、Siが1.3質量%
を超えて添加されると、心材の融点を低下させると共
に、低融点相の増加に起因してろう付け時に心材の溶融
が生じてしまう。従って、Siの含有量は0.05乃至
1.3質量%とする。 【0014】Mn(マンガン):0.3乃至1.8質量
Mnは心材の耐食性、ろう付性及び強度を向上させる元
素である。Mnの添加量が0.3質量%未満の場合は、
強度を向上させることができない。しかし、Mnの添加
量が1.8質量%を超えると、結晶粒が粗大化した化合
物を生成するため、加工性が低下してしまう。従って、
Mnの含有量は0.3乃至1.8質量%とする。 【0015】Ti(チタン):0.02乃至0.3質量
Tiは心材の耐食性をより一層向上させる元素である。
Tiの添加量が0.02質量%未満であると、心材の耐
食性を十分に向上させることができない。一方、Tiが
0.3質量%を超えて添加されても、それ以上は心材の
耐食性を向上させることができず、却って結晶粒が粗大
化した化合物を生成するため、加工性が低下してしま
う。従って、Tiの含有量は0.02乃至0.3質量%
とする。このように、Tiは心材の耐食性を向上させる
ためには不可欠の元素であり、Tiを添加すると、心材
において層状に析出して、孔食が深さ方向へ進行するこ
とを抑制すると共に、Tiの添加により心材電位を貴に
移行させることができる。また、Tiはアルミニウム合
金において拡散速度が小さく、ろう付時の移動も少ない
ため、Tiを添加することは、心材とろう材、又は心材
と皮材の電位差を維持して、電気化学的に心材を防食す
ることに有効である。 【0016】Cr(クロム):0.3質量%以下 Crは心材の耐食性、強度及びろう付性を向上させる元
素である。Crが0.3質量%を超えて添加されても、
それ以上は心材の耐食性、強度及びろう付性を向上させ
ることができず、却って化合物の結晶の粗大化により加
工性を低下させてしまう。従って、Crの含有量は0.
3質量%以下とする。なお、より好ましいCrの添加量
は0.02乃至0.3質量%である。 【0017】Fe(鉄):0.2質量%以下 Feは心材における結晶粒を微細化させると共に、心材
の強度及び溶接性を向上させる元素である。Feの添加
量が0.2質量%を超えると、心材の耐食性が低下して
しまう。従って、Feの含有量は0.2質量%以下とす
る。なお、より好ましいFeの添加量は、0.02乃至
0.2質量%である。 【0018】次に、皮材の組成について説明する。 【0019】Mn(マンガン):0.3乃至1.8質量
Mnは皮材の強度を向上させる元素である。即ち、Mn
が皮材中に固溶することにより材料強度が向上する。M
nの添加量が0.3質量%よりも少ないと十分なMn固
溶量が得られず、強度が確保されない。一方、Mnの添
加量が1.8質量%よりも多いと化合物が増加すること
により、皮材の加工性を低下させ、クラックの起点とな
るため、クラッド材全体の加工性を低下させる。従っ
て、皮材にMnを添加する場合は、皮材のMn量は0.
3乃至1.8質量%とする。 【0020】Si(シリコン):0.04乃至1.2質
量% Siは、Mnと同様に皮材に添加することにより強度が
向上する。Siの添加量が0.04質量%より少ない
と、強度の向上効果が十分でない。Siの添加量が1.
2質量%より多いと、粒界腐食感受性が高まり、耐食性
が低下する。従って、皮材にSiを添加する場合は、S
i含有量の範囲は0.04乃至1.2質量%とする。な
お、Mn及びSiは同様の効果を有し、少なくともいず
れか1方を添加すればよい。 【0021】Zn(亜鉛):2乃至9質量% 皮材の電位を卑とするために、皮材にZnを添加する。
この場合、心材におけるCuの添加量が0.2質量%以
下であると、皮材におけるZnの添加量が2質量%未満
で十分な犠牲陽極効果を得ることができると共に、耐食
性を維持することができる。しかし、上述したように、
心材におけるCuの添加量が0.2質量%を超えて、
1.0質量%以下である場合には、皮材におけるZnの
添加量を2乃至9質量%とすることが必要である。これ
は、皮材におけるZnの添加量が2質量%未満である
と、皮材の電位は粒界に対して十分な電位差をとること
ができず、粒界腐食が発生して、皮材側の耐食性が低下
してしまうからであり、一方、Znを皮材に9質量%を
超えて添加すると、皮材自身の自己腐食速度が上昇する
ため、皮材が早期に消耗し、犠牲陽極効果を示す期間が
短くなり、耐食性が劣化する。なお、Si量を上げた状
態で強度及び耐食性のバランスを得るために、Zn量は
3質量%以上とするのが好ましい。 【0022】上記Mn及びSiからなる群から選択され
た少なくとも1種を添加することと合わせて、Fe,C
r,Mg及びCuからなる群から選択された少なくとも
1種を合わせて添加することにより、皮材の強度を更に
一層向上させることができ、板厚全体の強度向上に有効
であるため、添加することが好ましい。 【0023】Fe:0.02乃至0.25質量% Feは皮材の結晶粒を微細化させるため、及び、Feが
固溶することにより、皮材の強度を向上させる元素であ
る。Feの含有量が0.02質量%未満であると、結晶
粒微細化及び強度向上の効果が不十分である。Feの添
加量が0.25質量%を超えると、皮材中のFeを含有
する析出物又は晶出物の量が増大するため、カソードサ
イトが増大する。このため、皮材自体の腐食速度が増大
し、耐食性が低下する。従って、Feを添加する場合
は、Feの含有量は0.25質量%以下とする。なお、
より好ましいFeの添加量は、0.02乃至0.2質量
%である。 【0024】Cr:0.01乃至0.30質量% Crは皮材中で耐食性及び強度を向上させる元素であ
る。Crが0.3質量%を超えて添加されても、それ以
上は皮材の耐食性及び強度を向上させることができず、
また、Crを含有する晶出物量が増大することによりカ
ソードサイトが増大するため、皮材自体の腐食速度が増
大し、耐食性が低下する。従って、Crの含有量は0.
3質量%以下とする。一方、Crが0.01以下の場
合、強度及び耐食性の向上効果が得られない。このた
め、Crを添加する場合は、そのCrの含有量は0.0
1乃至0.30質量%とする。 【0025】Mg:0.005乃至0.15質量% Mgは皮材中に固溶することにより、皮材の強度を向上
させる。更に、Siが共存する場合には、MgSiの
析出物が分散することによる効果により、更に一層強度
を向上させることができる。Mgが0.15質量%を超
える場合は、皮材側が接合される部位でのろう付性を劣
化させるため、Mgの含有量は0.15%以下とする。
また、Mg含有量が0.005%未満では強度向上の効
果が小さい。よって、Mgを添加する場合は、その添加
量は、0.005乃至0.15質量%とする。 【0026】Cu:0.001乃至0.15質量% Cuは皮材中に固溶することにより、皮材の強度を向上
させる。皮材中のCuが0.15質量%を超える場合
は、皮材の電位が貴となるため、心材のCuが0.2〜
1質量%で皮材のZnを2〜7%に制御した場合でも、
心材に対する犠牲陽極効果が低下するため、皮材側の耐
食性が劣化する。また、Cu量が0.001質量%未満
の場合は、強度の上昇効果が小さく、皮材側の十分な強
度増大効果が得られない。 【0027】皮材のクラッド率:アルミニウム合金複合
材の全板厚の6乃至30% 本発明の組成からなる皮材のクラッド率を6%以上とす
ることにより、大幅な薄肉化を行なっても、耐食性を維
持したままで十分な強度が得られる。クラッド率が6%
より小さいと、皮材の犠牲陽極効果が不十分となるた
め、耐食性が低下する。従って、本発明の組成を有する
皮材のクラッド率は全板厚の6%以上とする。 【0028】また、皮材をクラッド率30%以上に厚く
した場合、相対的に心材の厚さが減少し、外面側の耐食
性が劣化するため、クラッド率の上限は30%とする。
よって、皮材のクラッド率は6乃至30%とする。 【0029】平均粒径が0.1μm未満の析出物又は晶
出物が5.0×108個/mm3以上 皮材中のAl−Mnを主とした金属間化合物は、本発明
にて規定したサイズの析出物又は晶出物を一定以上分布
させることによって、ろう付け後の皮材の結晶粒が粗大
なものとなり、耐食性を向上させる。皮材は心材等とク
ラッド圧延された後、所定の板厚にまで冷間加工される
が、皮材中に本発明にて規定したサイズの析出物又は晶
出物が存在すると、加工の際に導入される転位の移動を
抑制する所謂ピン止め効果が働く。ろう付加熱によって
転位はこのピン止めから開放されるが、皮材中の析出物
または晶出物が粗大なもののみしか存在しない場合は、
ピン止め効果による転位移動の抑制が生じず、粗大な晶
析出物を核とした再結晶が優先するため、ろう付後の皮
材の結晶粒径がむしろ細かくなってしまい、粒界腐食が
起こりやすくなる。本発明のように、析出物又は晶出物
を微小なものに制御すると、ろう付加熱時に転位がピン
止めされた後に開放されることにより、再結晶の発生を
遅延させた後に、再結晶が促される結果として、皮材の
結晶粒は粗大なものとなる。従って、粒界腐食が起こり
にくく、高い耐食性が得られるのである。 【0030】また、プレス加工により変形が加えられる
場合には、結晶粒が粗大であることによって析出物又は
晶出物が脱落しにくくなり、その結果、耐食性が劣化し
ないという効果もある。 【0031】なお、析出物又は晶出物サイズは、0.0
1μmより小さいとピン止め効果が十分に働かないた
め、実質的には0.01μm以上0.1μm以下の析出
物が本発明にて規定した範囲の個数以上あればよい。 【0032】皮材中の析出物又は晶出物の大きさは、皮
材中の成分、圧延前の均熱処理及びクラッド圧延の際の
加熱温度によって、適宜調整可能である。 【0033】次に、ろう材について説明する。ろう材に
は、従来使用されているろう材と同様のAl−Si系合
金、例えばA4045合金等を使用することができる。
また、ろう材にZnを添加することにより、ろう材を積
極的に犠牲陽極として作用させることもできる。この場
合には、Znの添加量を皮材におけるZnの添加量と同
量、即ち2乃至5質量%とすることが好ましい。また、
ろう材面の耐食性を確保するために、フィン材と外面と
の電位差を確保することも必要であるため、ろう材にC
u等の電位を上昇させる金属元素を微量添加しても良
い。 【0034】なお、上記心材、皮材及びろう材の組成
は、これらをクラッドする前に、各部材の組成として個
別に調整しておいても良いし、また、ろう付け時等の加
熱及び冷却条件の制御により、一方の部材から他方の部
材に拡散させることにより、成分調整することも可能で
ある。 【0035】 【実施例】以下、本発明の実施例の効果について、本発
明の範囲から外れる比較例と比較して具体的に説明す
る。 【0036】下記表1は心材の組成、表2は皮材の組成
を示す。表1に示す心材No.1乃至7は本発明の実施
例、心材No.8乃至17は本発明の比較例である。ま
た、表2に示す皮材No.1乃至7は本発明の実施例で
あり、皮材No.8乃至13は本発明の特許請求の範囲
から外れる比較例である。 【0037】 【表1】 【0038】 【表2】【0039】上記表1及び2に示す各心材及び皮材と、
ろう材(JIS4045合金;Si:10.5質量%、
Fe:0.05質量%、Cu:0.05質量%、Ti:
0.02質量%を含有し、残部がAl及び不可避的不純
物)とを使用して、図1に示すようなろう付用アルミニ
ウム合金複合材を製造した。図1は本発明の実施例に係
るろう付用アルミニウム合金複合材を示す断面図であ
る。図1に示すように、このアルミニウム合金複合材4
は心材1の両面に夫々皮材2及びろう材3を積層するこ
とにより構成されている。また、下記表3及び表4はこ
の複合材における心材と皮材との組み合わせ並びにそれ
らの厚さ、ろう材の厚さ及び複合材の厚さを示す。 【0040】 【表3】 【0041】 【表4】 【0042】この表3及び表4の各複合材について、ろ
う付け性試験、引張り強度測定及び耐食性試験を行っ
た。試験方法は以下のとおりである。即ち、ろう付性試
験においては、ろう付用アルミニウム合金複合材のろう
材側の面において、ノコロック用フラックスを5g/m
塗布し、乾燥させた後、露点が−40℃の温度である
窒素雰囲気中において、到達温度600℃、600℃での保持
時間2分の条件にて加熱した。 【0043】図2はラジエータのチューブの一部を示す
断面図である。この図2に示すように、実際のラジエー
タの製造においては、心材31、皮材32及びろう材3
3からなるチューブ34と、熱を放出するためのフィン
35と、チューブ34を連結するヘッダ36とを組み合
わせた状態においてろう付けを行うが、ろう付け評価の
簡易化及び定量化を考慮して、ドロップ試験による流動
係数(アルミニウムブレージングハンドブック (平成
4年1月発行)、軽金属構造溶接協会 P126記載の
「ドロップ型流動性試験」の方法)によりろう付性を評
価した。 【0044】このろう付け性の評価結果を下記表5及び
表6に示す。表5及び表6のろう付け性の欄において、
流動性が65%以上の場合が○、65%未満の場合が×
である。 【0045】また、皮材中の析出物又は晶出物は、透過
電子顕微鏡観察を行い、等厚干渉縞により板厚を測定
し、単位体積中の個数を測定した。 【0046】 【表5】【0047】 【表6】 【0048】ろう付後強度を求めるために、上述のろう
付性試験と同様の加熱処理を施したしたろう付用アルミ
ニウム合金複合材について引張試験(JISZ224
1)を行った。その結果を上記表4に併せて示す。この
ろう付け後強度は、引張強さが158MPaを超えるも
のが○、引張強さが158MPa以下のものが×であ
る。 【0049】ろう材側腐食試験は、ろう付性試験と同様
に、加熱したろう付用アルミニウム合金複合材につい
て、CASS試験(JISH8681の5項)を連続2
50時間試験した。その結果を上記表4に示す。表4の
ろう材側腐食深さ欄において、ろう材側侵食深さが70
μm以下の場合が○、ろう材側侵食深さが70μmを超
えるものが×である。 【0050】皮材側耐食性を求めるために、皮材側腐食
試験を行った。この皮材側腐食試験は、ろう付性試験と
同様に、加熱したろう付用アルミニウム合金複合材につ
いて、人工水(Cl:300質量ppm、SO:10
0質量ppm及びCu:5質量ppm)を使用して腐食
試験を行った。人工水にアルミニウム合金複合材を浸漬
し、88℃で8時間(室温から88℃への加熱時間を含
む)、室温保持16時間(88℃から室温への冷却時間
を含む)のサイクル試験30日実施した。その結果を上
記表4に示す。表4の皮材腐食深さ欄において、皮材側
深さが30μm以下の場合が○、皮材側深さが30μm
を超える場合が×である。 【0051】この表4に示すように、本発明の実施例1
乃至10は、ろう付け性、引張り強さ、ろう材側腐食深
さ及び皮材側腐食深さの全てにおいて優れたものであっ
た。比較例11は心材のCr量が下限値未満であるの
で、強度が若干劣るものであった。比較例12は心材の
Cr量が上限値を超えるので、加工性が若干低下した。
これに対し、比較例13は心材のSi量が下限値未満で
あるので、ろう付け後の強度が不十分であった。比較例
14は心材のCu量が下限値未満であるので、ろう付け
後の強度が不十分であった。比較例15は心材のMn量
が下限値未満であるので、ろう付け後の強度が不十分で
あった。比較例16は心材のMg量が上限値を超えるの
で、ろう付け性が劣るものであった。比較例17は心材
のTi量が下限値未満であるので、心材の耐食性が劣化
した。比較例18は心材のSi量が上限値を超えるもの
であるので、心材の溶融が生じた。比較例19は心材の
Fe量が上限値を超えるので、心材の耐食性が劣化し
た。比較例20は心材のCu量が上限値を超えるので、
心材の溶融が生じた。比較例21は心材のMnが上限値
を超えるので、加工性が劣化した。比較例22は心材の
Ti量が上限値を超えるので、加工性が劣化した。 【0052】また、比較例23は皮材のSiが下限値未
満であるので、ろう付け後強度が不十分であった。比較
例24は皮材のSiが上限値を超えるので、皮材側の耐
食性が劣化した。比較例25は皮材のMnが下限値未満
であるので、ろう付け後強度が不十分であった。比較例
26は皮材のMnが上限値を超えるので、加工性が低下
した。比較例27は皮材のZnが下限値未満であるの
で、皮材側の耐食性が劣化した。比較例28は皮材のZ
nが上限値を超えるので、皮材側の耐食性が劣化した。
比較例29は皮材のクラッド率が下限値未満であるの
で、皮材側の耐食性が劣化した。比較例30は皮材のク
ラッド率が上限値を超えるので、ろう材側の耐食性が劣
化した。比較例31は皮材中の所定の大きさの析出物又
は晶出物が下限値以下であるので、皮材側の耐食性が劣
化した。 【0053】 【発明の効果】以上説明したように、本発明によれば、
高強度及び高耐食性を有し、薄肉化が可能なろう付け用
アルミニウム合金複合材を得ることができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy composite material suitable as a brazing sheet used for tubes and plates of a radiator of an automobile, and in particular, has high strength. Also, the present invention relates to a brazing aluminum alloy composite material having excellent corrosion resistance on the inner surface side (coolant side) when used as a tube plate of a radiator and capable of being thinned. [0002] In a brazing aluminum alloy composite material in which a brazing material is clad on one surface of a core material and a cladding material is clad on the other surface of the core material, the strength of the core material is improved by adding Mg to the core material. Let me. However, when the Mg content of the core material exceeds 0.2% by mass, the brazing property is extremely reduced. For this reason, it is not preferable to add Mg to the core material. [0003] Further, there has been proposed an aluminum alloy composite material which is reduced in thickness without impairing corrosion resistance and brazing properties. In the aluminum alloy composite material described in JP-A-8-283891, the skin material contains 0.3 to 3% by mass of Mg and 2.2 to 5% by mass of Zn.
By adding g, the strength of the skin material is improved. Further, Japanese Patent Application Laid-Open No. 11-61306 discloses that instead of adding Mg to a skin material, Mn and S are added to the skin material.
An aluminum alloy composite material having improved strength by adding i has also been proposed. [0005] However, each of the above-mentioned prior arts has the following disadvantages. First, the aluminum alloy composite material described in Japanese Patent Application Laid-Open No. 8-283891 attempts to improve the strength by adding Mg to the skin material. However, when the thickness is reduced, Mg is diffused by heat diffusion during brazing. Reaches the brazing material surface via the core material and impairs the brazing property. For this reason, in order to maintain a predetermined brazing property, the thickness of the core material must be increased, and there is a limit to thinning. In addition, the conventional aluminum alloy composite material has a problem that it cannot be used as a tube material having a structure in which the skin material is brazed because the brazing property of the skin material is inferior. On the other hand, the aluminum alloy described in Japanese Patent Application Laid-Open No. 11-61306 attempts to improve the strength by adding Mn and Si to the skin material, but only by adding the Mn and Si components to the skin material. There is a limit to thinning while maintaining corrosion resistance. The present invention has been made in view of the above problems, and has high strength, excellent corrosion resistance on the inner surface side (coolant side) when used as a radiator tube, and can be made thinner. It is an object of the present invention to provide a brazing aluminum alloy composite material. In the aluminum alloy composite for brazing according to the present invention, a brazing material made of an Al-Si based aluminum alloy is formed on one surface of a core material, and the other surface of the core material is formed on the other surface of the core material. In an aluminum alloy composite material in which a cladding material is formed with a cladding ratio of 6 to 30% of the total thickness, the core material includes Mg: 0.2% by mass or less, Cr: 0.3% by mass or less, and Fe: 0. 2% by mass or less, Cu: 0.2 to 1.0
% By mass, Si: 0.05 to 1.3% by mass, Mn: 0.1% by mass.
3 to 1.8% by mass, Ti: 0.02 to 0.3% by mass
And the balance is composed of Al and unavoidable impurities. The skin material is Zn: 2 to 9% by mass, Mn: 0.3 to 1.8% by mass, and Si: 0.04%. Having a composition containing at least one member selected from the group consisting of -1.2 mass% and having an average particle size of less than 0.1 µm of 5.0 x 10 8 precipitates / crystals / mm It is characterized by containing 3 or more. DETAILED DESCRIPTION OF THE INVENTION As a result of various experiments and studies conducted by the present inventors to solve the above problems, Mn and Si are contained in a skin material in a predetermined range, and the thickness of the skin material is further reduced to a predetermined value. By limiting the distribution of precipitates or crystallized substances to the skin material, it is possible to significantly reduce the thickness of the aluminum alloy composite material while maintaining brazing properties, corrosion resistance and strength. Was. The reasons for adding components and limiting the composition of the core material, skin material and brazing material of the aluminum alloy composite material for brazing of the present invention will be described below. First, the composition of the core material will be described. Mg (magnesium): 0.2% by mass or less Mg is an element that improves the strength of the core material. However, if added in excess of 0.2% by mass, the brazing property is reduced. In particular, in the brazing by the Nocolok method, the decrease is extremely large. Therefore, the content of Mg is limited to 0.2% by mass or less. In order to further suppress the decrease in brazing properties, the content of Mg is preferably set to 0.1% by mass or less. Cu (copper): 0.2 to 1.0% by mass Cu is an element that improves the strength of the core material, and also improves the corrosion resistance on the brazing material side. However, when Cu is added to the core material, the intergranular corrosion susceptibility is increased, so that the corrosion resistance on the skin material surface side is reduced. Therefore, by adding Zn in an amount of 2% by mass or more to the skin material, the potential of the skin material can be set to be lower than the grain boundary, and grain boundary corrosion can be prevented. In other words, by increasing the amount of Zn added to the skin material, the potential of the skin material with respect to the core material can be set not only to the matrix of the core material, but also to the grain boundaries, thereby preventing grain boundary corrosion. Can be.
If the added amount of Cu is less than 0.2% by mass, it is insufficient to improve the strength of the core material. On the other hand, when Cu is added in excess of 1.0% by mass, the melting point of the core material is reduced, so that the core material is melted during brazing. Therefore, the content of Cu is set to 0.2 to 1.0% by mass. Si (silicon): 0.05 to 1.3 quality
% Si is an element that improves the strength of the core material.
The strength of the core material is improved by the Si-based precipitate. But S
If the amount of i is less than 0.05% by mass, it is insufficient to improve the strength of the core material. On the other hand, Si is 1.3% by mass.
If added in excess of the above, the melting point of the core material is lowered, and the core material is melted during brazing due to the increase in the low melting point phase. Therefore, the content of Si is set to 0.05 to 1.3% by mass. Mn (manganese): 0.3 to 1.8 mass
% Mn is an element that improves the corrosion resistance, brazeability and strength of the core material. When the added amount of Mn is less than 0.3% by mass,
The strength cannot be improved. However, when the added amount of Mn exceeds 1.8% by mass, a compound in which the crystal grains are coarsened is generated, so that the workability is reduced. Therefore,
The content of Mn is set to 0.3 to 1.8% by mass. [0015] Ti (titanium): 0.02 to 0.3 mass
% Ti is an element that further improves the corrosion resistance of the core material.
If the added amount of Ti is less than 0.02% by mass, the corrosion resistance of the core material cannot be sufficiently improved. On the other hand, even if Ti is added in an amount exceeding 0.3% by mass, the corrosion resistance of the core material cannot be improved any more, and instead, a compound in which the crystal grains are coarsened is generated, so that the workability is reduced. I will. Therefore, the content of Ti is 0.02 to 0.3% by mass.
And As described above, Ti is an indispensable element for improving the corrosion resistance of the core material, and when Ti is added, it precipitates in a layer form in the core material, thereby suppressing the progress of pitting corrosion in the depth direction, and Can be used to shift the core material potential noble. In addition, since Ti has a low diffusion rate in an aluminum alloy and moves little during brazing, the addition of Ti maintains the potential difference between the core material and the brazing material or the core material and the skin material, and electrochemically reduces the core material. It is effective in preventing corrosion. Cr (chromium): 0.3% by mass or less Cr is an element that improves the corrosion resistance, strength and brazing properties of the core material. Even if Cr is added in excess of 0.3% by mass,
Above that, the corrosion resistance, strength and brazing properties of the core material cannot be improved, but rather the workability is reduced due to the coarsening of the crystal of the compound. Therefore, the content of Cr is 0.1.
3% by mass or less. In addition, a more preferable addition amount of Cr is 0.02 to 0.3% by mass. Fe (iron): 0.2% by mass or less Fe is an element that refines crystal grains in the core material and improves the strength and weldability of the core material. If the added amount of Fe exceeds 0.2% by mass, the corrosion resistance of the core material is reduced. Therefore, the content of Fe is set to 0.2% by mass or less. In addition, a more preferable addition amount of Fe is 0.02 to 0.2% by mass. Next, the composition of the skin material will be described. Mn (manganese): 0.3 to 1.8 mass
% Mn is an element that improves the strength of the skin material. That is, Mn
Is dissolved in the skin material, thereby improving the material strength. M
If the addition amount of n is less than 0.3% by mass, a sufficient Mn solid solution amount cannot be obtained, and the strength cannot be secured. On the other hand, if the added amount of Mn is more than 1.8% by mass, the amount of the compound increases, thereby reducing the workability of the skin material and serving as a starting point of cracks, thereby reducing the workability of the entire clad material. Therefore, when Mn is added to the skin material, the Mn content of the skin material is 0.1.
3 to 1.8% by mass. Si (silicon): 0.04 to 1.2 quality
By adding the amount% Si to the skin material as in the case of Mn, the strength is improved. If the amount of Si is less than 0.04% by mass, the effect of improving the strength is not sufficient. When the amount of Si added is 1.
If it is more than 2% by mass, the intergranular corrosion susceptibility increases, and the corrosion resistance decreases. Therefore, when Si is added to the skin material, S
The range of the i content is 0.04 to 1.2% by mass. Note that Mn and Si have the same effect, and at least one of them may be added. Zn (zinc): 2 to 9% by mass Zn is added to the skin material in order to make the potential of the skin material low.
In this case, when the addition amount of Cu in the core material is 0.2% by mass or less, a sufficient sacrificial anode effect can be obtained when the addition amount of Zn in the skin material is less than 2% by mass, and corrosion resistance is maintained. Can be. However, as mentioned above,
When the addition amount of Cu in the core material exceeds 0.2% by mass,
When the content is 1.0% by mass or less, the amount of Zn added to the skin material needs to be 2 to 9% by mass. This is because if the amount of Zn added to the skin material is less than 2% by mass, the potential of the skin material cannot take a sufficient potential difference with respect to the grain boundary, and grain boundary corrosion occurs, and the skin material side On the other hand, if Zn is added to the skin material in an amount exceeding 9% by mass, the self-corrosion rate of the skin material itself increases, so that the skin material is quickly consumed and the sacrificial anode effect is reduced. Is shortened, and the corrosion resistance deteriorates. Note that, in order to obtain a balance between strength and corrosion resistance in a state where the amount of Si is increased, the amount of Zn is preferably set to 3% by mass or more. In addition to adding at least one selected from the group consisting of Mn and Si, Fe, C
By adding at least one selected from the group consisting of r, Mg, and Cu together, the strength of the skin material can be further improved, and it is effective in improving the strength of the entire plate thickness. Is preferred. Fe: 0.02 to 0.25% by mass Fe is an element for improving the strength of the skin material by making crystal grains of the skin material fine and by dissolving Fe in solid solution. If the Fe content is less than 0.02% by mass, the effects of refining crystal grains and improving strength are insufficient. If the amount of Fe exceeds 0.25% by mass, the amount of Fe-containing precipitates or crystallization in the skin material increases, so that the number of cathode sites increases. For this reason, the corrosion rate of the skin material itself increases, and the corrosion resistance decreases. Therefore, when adding Fe, the content of Fe is set to 0.25% by mass or less. In addition,
A more preferable addition amount of Fe is 0.02 to 0.2% by mass. Cr: 0.01 to 0.30% by mass Cr is an element that improves corrosion resistance and strength in a skin material. Even if Cr is added in excess of 0.3% by mass, the corrosion resistance and strength of the skin material cannot be improved beyond that,
In addition, the increase in the amount of crystallization containing Cr increases the number of cathode sites, so that the corrosion rate of the skin material itself increases, and the corrosion resistance decreases. Therefore, the content of Cr is 0.1.
3% by mass or less. On the other hand, when Cr is 0.01 or less, the effect of improving strength and corrosion resistance cannot be obtained. Therefore, when Cr is added, the content of Cr is 0.0
1 to 0.30% by mass. Mg: 0.005 to 0.15% by mass Mg improves the strength of the skin material by forming a solid solution in the skin material. Furthermore, when Si coexists, the strength can be further improved by the effect of the dispersion of the precipitate of Mg 2 Si. If the Mg content exceeds 0.15% by mass, the brazing property at the portion where the skin material side is joined is deteriorated, so the content of Mg is set to 0.15% or less.
If the Mg content is less than 0.005%, the effect of improving the strength is small. Therefore, when adding Mg, the addition amount is set to 0.005 to 0.15% by mass. Cu: 0.001 to 0.15% by mass Cu improves the strength of the skin material by forming a solid solution in the skin material. When Cu in the skin material exceeds 0.15% by mass, since the potential of the skin material is noble, the Cu of the core material is 0.2 to
Even when Zn of the skin material is controlled to 2 to 7% at 1% by mass,
Since the sacrificial anode effect on the core material is reduced, the corrosion resistance on the skin material side is deteriorated. If the Cu content is less than 0.001% by mass, the effect of increasing the strength is small, and a sufficient effect of increasing the strength on the skin material side cannot be obtained. Clad rate of skin material: aluminum alloy composite
6 to 30% of the total thickness of the material By setting the cladding rate of the skin material having the composition of the present invention to 6% or more, sufficient strength can be obtained while maintaining corrosion resistance even when the thickness is significantly reduced. Can be Cladding rate is 6%
If it is smaller, the sacrificial anode effect of the skin material will be insufficient, and the corrosion resistance will decrease. Therefore, the cladding rate of the skin material having the composition of the present invention is set to 6% or more of the total thickness. When the cladding rate is increased to 30% or more, the thickness of the core material is relatively decreased, and the corrosion resistance on the outer surface side is deteriorated. Therefore, the upper limit of the cladding rate is set to 30%.
Therefore, the cladding ratio of the skin material is set to 6 to 30%. Precipitates or crystals having an average particle size of less than 0.1 μm
The intermetallic compound mainly composed of Al-Mn in the skin material having a particle size of 5.0 × 10 8 particles / mm 3 or more is required to distribute a precipitate or a crystallized material having a size specified in the present invention by a certain amount or more. Thereby, the crystal grains of the skin material after brazing become coarse, and the corrosion resistance is improved. The cladding material is cold-worked to a predetermined thickness after being clad-rolled with the core material or the like, but when a precipitate or a crystal having a size specified in the present invention is present in the cladding material, it is difficult to be processed. A so-called pinning effect that suppresses the movement of dislocations introduced into the semiconductor device. Dislocations are released from this pinning by the heat of brazing, but if only coarse precipitates or crystals are present in the cladding,
The dislocation movement is not suppressed by the pinning effect, and recrystallization with coarse crystal precipitates as the nucleus takes precedence. It will be easier. As in the present invention, when the precipitates or crystallized substances are controlled to be minute, dislocations are released after being pinned at the time of heating by brazing, thereby delaying the occurrence of recrystallization. As a result, the grain of the skin material is coarse. Therefore, intergranular corrosion hardly occurs and high corrosion resistance can be obtained. Further, when deformation is applied by press working, precipitates or crystallized substances are less likely to fall off due to coarse crystal grains, and as a result, there is also an effect that corrosion resistance does not deteriorate. The size of the precipitate or crystallization is 0.0
If the diameter is smaller than 1 μm, the pinning effect does not work sufficiently. Therefore, the number of precipitates having a size of 0.01 μm or more and 0.1 μm or less should be substantially equal to or more than the number specified in the present invention. The size of the precipitates or crystallized substances in the skin material can be appropriately adjusted by the components in the skin material, the soaking treatment before rolling, and the heating temperature during clad rolling. Next, the brazing material will be described. As the brazing material, an Al-Si based alloy similar to a conventionally used brazing material, for example, an A4045 alloy or the like can be used.
Further, by adding Zn to the brazing material, the brazing material can be positively operated as a sacrificial anode. In this case, the amount of Zn added is preferably the same as the amount of Zn added to the skin material, that is, 2 to 5% by mass. Also,
In order to ensure the corrosion resistance of the brazing material surface, it is necessary to secure a potential difference between the fin material and the outer surface.
A trace amount of a metal element such as u for raising the potential may be added. The composition of the above-mentioned core material, skin material and brazing material may be individually adjusted as the composition of each member before clad, or heating and cooling during brazing and the like. By controlling the conditions, it is also possible to adjust the components by diffusing from one member to the other. EXAMPLES The effects of the examples of the present invention will be specifically described below in comparison with comparative examples that fall outside the scope of the present invention. Table 1 below shows the composition of the core material, and Table 2 shows the composition of the skin material. The core material No. shown in Table 1 was used. Nos. 1 to 7 are examples of the present invention. 8 to 17 are comparative examples of the present invention. Moreover, the skin material No. shown in Table 2 was used. Nos. 1 to 7 are examples of the present invention. Nos. 8 to 13 are comparative examples out of the claims of the present invention. [Table 1] [Table 2] Each core material and skin material shown in Tables 1 and 2 above,
Brazing material (JIS 4045 alloy; Si: 10.5 mass%,
Fe: 0.05% by mass, Cu: 0.05% by mass, Ti:
Aluminum alloy composite material for brazing as shown in FIG. 1 was produced using 0.02% by mass and the balance being Al and inevitable impurities. FIG. 1 is a sectional view showing an aluminum alloy composite for brazing according to an embodiment of the present invention. As shown in FIG. 1, this aluminum alloy composite material 4
Is formed by laminating a skin material 2 and a brazing material 3 on both surfaces of a core material 1 respectively. Tables 3 and 4 below show combinations of the core material and the skin material in this composite material, their thickness, the thickness of the brazing material, and the thickness of the composite material. [Table 3] [Table 4] Each of the composite materials shown in Tables 3 and 4 was subjected to a brazing property test, a tensile strength measurement, and a corrosion resistance test. The test method is as follows. That is, in the brazing property test, the flux for Nokoloc was 5 g / m2 on the brazing material side of the aluminum alloy composite material for brazing.
After applying 2 and drying, it was heated in a nitrogen atmosphere having a dew point of −40 ° C. under conditions of an ultimate temperature of 600 ° C. and a holding time of 2 minutes at 600 ° C. FIG. 2 is a sectional view showing a part of the tube of the radiator. As shown in FIG. 2, in the actual manufacture of the radiator, the core material 31, the skin material 32 and the brazing material 3
The brazing is performed in a state in which the tube 34 made of No. 3, the fin 35 for releasing heat, and the header 36 connecting the tube 34 are combined. In consideration of simplification and quantification of brazing evaluation, The brazing property was evaluated by the flow coefficient by drop test (aluminum brazing handbook (issued in January 1992), the method of “drop type fluidity test” described on P126 of Japan Institute of Light Metal Structure Welding). The evaluation results of the brazing properties are shown in Tables 5 and 6 below. In the columns of brazing properties in Tables 5 and 6,
流動 when the fluidity is 65% or more, × when the fluidity is less than 65%
It is. The precipitate or crystallized substance in the skin material was observed with a transmission electron microscope, the thickness was measured by equal thickness interference fringes, and the number in a unit volume was measured. [Table 5] [Table 6] In order to determine the strength after brazing, a tensile test (JIS Z224) was performed on the aluminum alloy composite for brazing that had been subjected to the same heat treatment as the above-mentioned brazeability test.
1) was performed. The results are shown in Table 4 above. The strength after brazing is ○ when the tensile strength exceeds 158 MPa, and x when the tensile strength is 158 MPa or less. In the brazing material side corrosion test, as in the brazing property test, the CASS test (5 of JIS H8681) was continuously performed on the heated aluminum alloy composite material for brazing.
Tested for 50 hours. The results are shown in Table 4 above. In the brazing material side corrosion depth column of Table 4, the brazing material side erosion depth is 70.
場合 indicates the case of not more than μm, and × indicates that the erosion depth on the brazing material side exceeds 70 μm. In order to determine the corrosion resistance on the skin material side, a corrosion test on the skin material side was performed. In the skin material side corrosion test, as in the brazeability test, artificial water (Cl: 300 mass ppm, SO 4 : 10) was used for the heated aluminum alloy composite for brazing.
0 ppm by mass and Cu: 5 ppm by mass). The aluminum alloy composite material is immersed in artificial water for 8 hours at 88 ° C (including the heating time from room temperature to 88 ° C), and at room temperature for 16 hours (including the cooling time from 88 ° C to room temperature), a cycle test of 30 days Carried out. The results are shown in Table 4 above. In the skin material corrosion depth column of Table 4, the case where the skin material side depth is 30 μm or less is ○, and the skin material side depth is 30 μm.
Is greater than x. As shown in Table 4, Example 1 of the present invention
No. 10 to 10 were all excellent in brazing properties, tensile strength, corrosion depth on the brazing material side and corrosion depth on the skin material side. In Comparative Example 11, since the amount of Cr in the core material was less than the lower limit, the strength was slightly inferior. In Comparative Example 12, since the Cr content of the core material exceeded the upper limit, the workability was slightly reduced.
On the other hand, in Comparative Example 13, the strength after brazing was insufficient because the amount of Si in the core material was less than the lower limit. In Comparative Example 14, since the Cu content of the core material was less than the lower limit, the strength after brazing was insufficient. In Comparative Example 15, since the Mn content of the core material was less than the lower limit, the strength after brazing was insufficient. In Comparative Example 16, the amount of Mg in the core material exceeded the upper limit, so that the brazing property was poor. In Comparative Example 17, since the Ti content of the core was less than the lower limit, the corrosion resistance of the core deteriorated. In Comparative Example 18, since the amount of Si in the core exceeded the upper limit, the core was melted. In Comparative Example 19, since the Fe content of the core exceeded the upper limit, the corrosion resistance of the core deteriorated. In Comparative Example 20, since the Cu content of the core material exceeded the upper limit,
Melting of the core material occurred. In Comparative Example 21, since the Mn of the core material exceeded the upper limit, the workability was deteriorated. In Comparative Example 22, the workability was deteriorated because the amount of Ti in the core material exceeded the upper limit. In Comparative Example 23, the strength after brazing was insufficient because Si in the skin material was less than the lower limit. In Comparative Example 24, since the Si of the skin material exceeded the upper limit, the corrosion resistance on the skin material side was deteriorated. In Comparative Example 25, since the Mn of the skin material was less than the lower limit, the strength after brazing was insufficient. In Comparative Example 26, since the Mn of the skin material exceeded the upper limit, the workability was reduced. In Comparative Example 27, since the Zn of the skin material was less than the lower limit, the corrosion resistance on the skin material side was deteriorated. Comparative Example 28 shows the Z of the skin material.
Since n exceeded the upper limit, the corrosion resistance on the skin material side deteriorated.
In Comparative Example 29, since the cladding ratio of the skin material was less than the lower limit, the corrosion resistance on the skin material side was deteriorated. In Comparative Example 30, since the cladding ratio of the skin material exceeded the upper limit, the corrosion resistance on the brazing material side deteriorated. In Comparative Example 31, the corrosion resistance on the skin material side was deteriorated because the precipitate or crystallized substance of a predetermined size in the skin material was below the lower limit. As described above, according to the present invention,
An aluminum alloy composite material for brazing having high strength and high corrosion resistance and capable of thinning can be obtained.

【図面の簡単な説明】 【図1】本発明の実施例に係るろう付け用アルミニウム
合金複合材を示す断面図である。 【図2】ラジエータのチューブの一部を示す斜視図であ
る。 【図3】チューブを構成するアルミニウム合金複合材の
積層構造を示す断面図である。 【符号の説明】 1、31:心材 2、32:皮材 3、33:ろう材 4:アルミニウム合金複合材 34:チューブ 35:フィン 36:ヘッダ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing an aluminum alloy composite for brazing according to an embodiment of the present invention. FIG. 2 is a perspective view showing a part of a tube of a radiator. FIG. 3 is a sectional view showing a laminated structure of an aluminum alloy composite material constituting a tube. [Description of Signs] 1, 31: core material 2, 32: skin material 3, 33: brazing material 4: aluminum alloy composite material 34: tube 35: fin 36: header

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 文博 栃木県真岡市鬼怒ヶ丘15番地 株式会社神 戸製鋼所真岡製造所内   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Fumihiro Sato             15 Kinuigaoka, Moka-shi, Tochigi             Toka Steel Works Moka Works

Claims (1)

【特許請求の範囲】 【請求項1】 心材の片面にAl−Si系のアルミニウ
ム合金からなるろう材が形成され、前記心材の他面に皮
材が全板厚の6乃至30%のクラッド率で形成されたア
ルミニウム合金複合材において、前記心材は、Mg:
0.2質量%以下、Cr:0.3質量%以下、Fe:
0.2質量%以下、Cu:0.2乃至1.0質量%、S
i:0.05乃至1.3質量%、Mn:0.3乃至1.
8質量%、Ti:0.02乃至0.3質量%を含有し、
残部がAl及び不可避不純物からなる組成を有し、前記
皮材は、Zn:2乃至9質量%であり、更にMn:0.
3乃至1.8質量%及びSi:0.04乃至1.2質量
%からなる群から選択された少なくとも1種を含有する
組成を有し、かつ平均粒径が0.1μm未満の析出物又
は晶出物が5.0×108個/mm3以上含有されている
ことを特徴とするろう付け用アルミニウム合金複合材。
Claims 1. A brazing material made of an Al-Si based aluminum alloy is formed on one surface of a core material, and a cladding material having a cladding ratio of 6 to 30% of the total thickness on the other surface of the core material. In the aluminum alloy composite material formed by the above, the core material is Mg:
0.2 mass% or less, Cr: 0.3 mass% or less, Fe:
0.2 mass% or less, Cu: 0.2 to 1.0 mass%, S
i: 0.05 to 1.3% by mass, Mn: 0.3 to 1.
8% by mass, Ti: 0.02 to 0.3% by mass,
The remainder has a composition consisting of Al and unavoidable impurities, and the skin material has a Zn content of 2 to 9% by mass and a Mn content of 0.2 to 9% by mass.
A precipitate having a composition containing at least one selected from the group consisting of 3 to 1.8% by mass and Si: 0.04 to 1.2% by mass, and having an average particle size of less than 0.1 μm or An aluminum alloy composite material for brazing, comprising at least 5.0 × 10 8 crystallites / mm 3 .
JP2002097965A 2002-03-29 2002-03-29 Aluminum alloy composite for brazing Expired - Fee Related JP3827601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002097965A JP3827601B2 (en) 2002-03-29 2002-03-29 Aluminum alloy composite for brazing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002097965A JP3827601B2 (en) 2002-03-29 2002-03-29 Aluminum alloy composite for brazing

Publications (2)

Publication Number Publication Date
JP2003293060A true JP2003293060A (en) 2003-10-15
JP3827601B2 JP3827601B2 (en) 2006-09-27

Family

ID=29240204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002097965A Expired - Fee Related JP3827601B2 (en) 2002-03-29 2002-03-29 Aluminum alloy composite for brazing

Country Status (1)

Country Link
JP (1) JP3827601B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028153A1 (en) * 2003-09-18 2005-03-31 Kobe Alcoa Transportation Products Ltd. Aluminum alloy composite for brazing and heat exchanger including the same
JP2009228010A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd Brazing sheet made from aluminum alloy and method for manufacturing heat exchanger
JP2010168622A (en) * 2009-01-22 2010-08-05 Kobe Steel Ltd Aluminum alloy clad sheet for heat exchanger
JP2010255015A (en) * 2009-04-21 2010-11-11 Sumitomo Light Metal Ind Ltd Clad material for welded tube of heat exchanger made from aluminum alloy, and method for manufacturing the same
JP2014015665A (en) * 2012-07-09 2014-01-30 Uacj Corp Aluminum alloy composite material and heat exchanger
JP2014031588A (en) * 2013-10-30 2014-02-20 Kobe Steel Ltd Aluminum alloy clad material for a heat exchanger
WO2016061074A3 (en) * 2014-10-13 2016-06-09 Alcoa Inc. Brazing sheet
US10293428B2 (en) 2013-06-26 2019-05-21 Arconic Inc. Resistance welding fastener, apparatus and methods
US10384296B2 (en) 2014-12-15 2019-08-20 Arconic Inc. Resistance welding fastener, apparatus and methods for joining similar and dissimilar materials
US10507514B2 (en) 2015-09-16 2019-12-17 Arconic Inc. Rivet feeding apparatus
US10593034B2 (en) 2016-03-25 2020-03-17 Arconic Inc. Resistance welding fasteners, apparatus and methods for joining dissimilar materials and assessing joints made thereby
US10903587B2 (en) 2014-02-03 2021-01-26 Howmet Aerospace Inc. Resistance welding fastener, apparatus and methods
DE102008034031B4 (en) 2007-07-19 2023-06-01 Denso Corporation High strength aluminum alloy brazing sheet and manufacturing method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7387844B2 (en) 2003-09-18 2008-06-17 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy composite for brazing and heat exchanger including the same
WO2005028153A1 (en) * 2003-09-18 2005-03-31 Kobe Alcoa Transportation Products Ltd. Aluminum alloy composite for brazing and heat exchanger including the same
DE102008034031B4 (en) 2007-07-19 2023-06-01 Denso Corporation High strength aluminum alloy brazing sheet and manufacturing method thereof
JP2009228010A (en) * 2008-03-19 2009-10-08 Kobe Steel Ltd Brazing sheet made from aluminum alloy and method for manufacturing heat exchanger
JP2010168622A (en) * 2009-01-22 2010-08-05 Kobe Steel Ltd Aluminum alloy clad sheet for heat exchanger
JP2010255015A (en) * 2009-04-21 2010-11-11 Sumitomo Light Metal Ind Ltd Clad material for welded tube of heat exchanger made from aluminum alloy, and method for manufacturing the same
JP2014015665A (en) * 2012-07-09 2014-01-30 Uacj Corp Aluminum alloy composite material and heat exchanger
US10293428B2 (en) 2013-06-26 2019-05-21 Arconic Inc. Resistance welding fastener, apparatus and methods
JP2014031588A (en) * 2013-10-30 2014-02-20 Kobe Steel Ltd Aluminum alloy clad material for a heat exchanger
US10903587B2 (en) 2014-02-03 2021-01-26 Howmet Aerospace Inc. Resistance welding fastener, apparatus and methods
CN107000128A (en) * 2014-10-13 2017-08-01 奥科宁克公司 Soldering sheet material
US10532434B2 (en) 2014-10-13 2020-01-14 Arconic Inc. Brazing sheet
JP2017538869A (en) * 2014-10-13 2017-12-28 アーコニック インコーポレイテッドArconic Inc. Brazing sheet
WO2016061074A3 (en) * 2014-10-13 2016-06-09 Alcoa Inc. Brazing sheet
US10384296B2 (en) 2014-12-15 2019-08-20 Arconic Inc. Resistance welding fastener, apparatus and methods for joining similar and dissimilar materials
US10507514B2 (en) 2015-09-16 2019-12-17 Arconic Inc. Rivet feeding apparatus
US10593034B2 (en) 2016-03-25 2020-03-17 Arconic Inc. Resistance welding fasteners, apparatus and methods for joining dissimilar materials and assessing joints made thereby

Also Published As

Publication number Publication date
JP3827601B2 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
JP2656104B2 (en) Manufacturing method of brazing sheet with excellent corrosion resistance
EP1666190A1 (en) Aluminum alloy composite for brazing and heat exchanger including the same
CN110691857B (en) Aluminum alloy for brazing and aluminum brazing sheet
JP6726370B1 (en) Aluminum brazing sheet for flux-free brazing
CN108884522B (en) Aluminum alloy clad material and method for producing aluminum alloy clad material
JP4220410B2 (en) Aluminum alloy clad material for heat exchanger
JP3827601B2 (en) Aluminum alloy composite for brazing
JP2004076057A (en) Aluminum alloy clad plate and method for producing the same
JP2012067385A (en) Brazing sheet and method for producing the same
JP4220411B2 (en) Aluminum alloy clad material for heat exchanger
JP2004035966A (en) Aluminum alloy clad material and its manufacturing process
JP7498591B2 (en) Aluminum alloy clad material
JP7252079B2 (en) Aluminum alloy clad material
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP3875135B2 (en) Aluminum alloy composite for brazing
JP2002294377A (en) Aluminum alloy composite material for brazing
JP2006176852A (en) High-strength aluminum alloy cladding material for heat exchanger having excellent erosion resistance, heat exchanger and method for producing high-strength aluminum alloy cladding material
JP2005297016A (en) Method for producing brazing sheet and brazing sheet
JP3753669B2 (en) Aluminum alloy composite for brazing
JP4352454B2 (en) Method for producing brazing sheet for heat exchanger excellent in strength and wax erosion resistance
JP5576662B2 (en) Aluminum alloy brazing sheet and method for producing aluminum alloy brazing sheet
JP7429153B2 (en) Aluminum alloy clad material
JP7498592B2 (en) Aluminum alloy clad material
JP2005177828A (en) Method of producing brazing sheet excellent in strength and solder erosion resistance
JP6526434B2 (en) Aluminum alloy fin material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3827601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees