JP2003292304A - Method for manufacturing pure chlorine gas - Google Patents

Method for manufacturing pure chlorine gas

Info

Publication number
JP2003292304A
JP2003292304A JP2002094481A JP2002094481A JP2003292304A JP 2003292304 A JP2003292304 A JP 2003292304A JP 2002094481 A JP2002094481 A JP 2002094481A JP 2002094481 A JP2002094481 A JP 2002094481A JP 2003292304 A JP2003292304 A JP 2003292304A
Authority
JP
Japan
Prior art keywords
chlorine
pressure
crude
chlorine gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002094481A
Other languages
Japanese (ja)
Inventor
Tetsuya Suzuta
哲也 鈴田
Yasuhiko Mori
康彦 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002094481A priority Critical patent/JP2003292304A/en
Publication of JP2003292304A publication Critical patent/JP2003292304A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a large quantity of pure chlorine gas from hydrogen chloride and oxygen using less energy. <P>SOLUTION: Hydrogen chloride and oxygen are reacted in a reactor (10) at a pressure of ≥0.6 MPa to obtain a high-pressure crude chlorine gas containing unreacted oxygen. The high-pressure crude chlorine gas is cooled by a cooling means (20) without elevating the pressure to liquefy chlorine in the gas, giving high-pressure liquefied crude chlorine. The unreacted oxygen is separated from the high-pressure liquefied chlorine by a chlorine purifying means (30), giving high-pressure liquefied pure chlorine. The unreacted oxygen is recovered by a recovering means (40) and used for the reaction with hydrogen chloride in the reactor (10). The high-pressure liquefied pure chlorine is decompressed in a decompressing means (50) to obtain liquefied pure chlorine, which is then vaporized to give a pure chlorine gas. The cooling means (20) is a heat exchanger, where a latent heat generated by liquefying chlorine is used for vaporizing the liquefied pure chlorine. The chlorine concentration of the high-pressure crude chlorine gas is ≥45% as mole fraction and the high- pressure liquefied pure chlorine is decompressed to ≤0.3 MPa. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は純塩素ガスの製造方
法に関する。
TECHNICAL FIELD The present invention relates to a method for producing pure chlorine gas.

【0002】[0002]

【従来の技術】酸素(O2)を含まないガス状の塩素
(Cl2)である純塩素ガスは工業薬品として有用であ
り、その製造方法としては、塩化水素(HCl)と酸素
とを反応させる方法が知られている。かかる方法は、式
(1)
2. Description of the Related Art Pure chlorine gas, which is gaseous chlorine (Cl 2 ) containing no oxygen (O 2 ), is useful as an industrial chemical. As a method for producing it, hydrogen chloride (HCl) is reacted with oxygen. It is known how to do this. Such a method is represented by the formula (1)

【化1】 に従って反応が進行するので、収率よく塩素を得るため
に、通常は加圧下に反応が行われ、また塩化水素に対し
て0.25モル倍を超える過剰量の酸素が用いられる。
このため、反応系内と同じ圧力で高圧の、未反応酸素を
含むガス状塩素である高圧粗塩素ガスが生成する。かか
る高圧粗塩素ガスから目的の純塩素ガスを得るには、例
えば図2に示すように、反応器(10)で塩化水素と酸素と
を反応させて得た高圧粗塩素ガスから未反応塩化水素、
副生する水(H2O)などを吸収塔(60)、乾燥塔(70)な
どで除去した後、冷却手段(20)で冷却し高圧粗塩素ガス
中の塩素を液化させて高圧液状粗塩素を得、塩素精製手
段(30)でこの高圧液状粗塩素から未反応酸素を分離して
高圧液状純塩素を得、この高圧液状純塩素は減圧手段(5
0)で減圧して液状純塩素としたのち、熱交換器(20)など
で加熱して気化させればよい。塩素精製手段(30)で高圧
液状粗塩素から分離された未反応酸素は回収して塩化水
素との反応に用いることができ、分離された未反応酸素
は昇圧することなくそのまま反応器(10)に送られて、塩
化水素との反応に用いることができる。
[Chemical 1] In order to obtain chlorine in good yield, the reaction is usually carried out under pressure, and an excess amount of oxygen of more than 0.25 mol times hydrogen chloride is used.
Therefore, high-pressure crude chlorine gas, which is gaseous chlorine containing unreacted oxygen, is generated at the same pressure as in the reaction system and at high pressure. To obtain the target pure chlorine gas from the high-pressure crude chlorine gas, for example, as shown in FIG. 2, unreacted hydrogen chloride is obtained from the high-pressure crude chlorine gas obtained by reacting hydrogen chloride with oxygen in the reactor (10). ,
After removing water (H 2 O) and the like produced as a by-product in the absorption tower (60) and the drying tower (70), it is cooled by the cooling means (20) to liquefy the chlorine in the high-pressure crude chlorine gas to liquefy the high-pressure liquid crude. Chlorine is obtained, and unreacted oxygen is separated from this high-pressure liquid crude chlorine by the chlorine refining means (30) to obtain high-pressure liquid pure chlorine.
After decompressing at 0) to form liquid pure chlorine, it may be vaporized by heating at a heat exchanger (20) or the like. The unreacted oxygen separated from the high-pressure liquid crude chlorine by the chlorine refining means (30) can be recovered and used for the reaction with hydrogen chloride, and the separated unreacted oxygen is directly used in the reactor (10) without pressurization. And can be used for reaction with hydrogen chloride.

【0003】かかる方法において、より多くの純塩素ガ
スを得るには、より高い圧力の下で高圧粗塩素ガスを冷
却して多くの塩素を液化させることが好ましく、このた
め、例えば特開昭62−275001号公報では、例え
ば絶対圧で0.5MPaの高圧粗塩素ガスを圧縮機(80)
で更に2.6MPaに昇圧してから冷却して塩素を液化
させている。
In order to obtain a larger amount of pure chlorine gas in such a method, it is preferable to cool the high-pressure crude chlorine gas under a higher pressure to liquefy a large amount of chlorine. In JP-A-275001, for example, a high pressure crude chlorine gas of 0.5 MPa in absolute pressure is used for a compressor (80).
Then, the pressure is further increased to 2.6 MPa and then cooled to liquefy chlorine.

【0004】しかし、かかる従来の製造方法では、高圧
粗塩素ガスを更に圧縮する際には、このガスに含まれる
未反応酸素も圧縮するためのエネルギーをも必要とする
という問題があった。
However, such a conventional manufacturing method has a problem that when the high-pressure crude chlorine gas is further compressed, the unreacted oxygen contained in this gas also needs energy for compressing it.

【0005】[0005]

【発明が解決しようとする課題】そこで本発明者は、塩
化水素と酸素とから、より少ないエネルギーで多くの純
塩素ガスを製造し得る方法を開発するべく鋭意検討した
結果、0.6MPa以上の圧力下で塩化水素と酸素とを
反応させると、塩素の反応収率が向上してより多くの純
塩素ガスが得られるばかりか、かかる反応圧力で反応さ
せたときには、反応により得られた高圧粗塩素ガスを更
に昇圧することなく冷却しても、十分な量の塩素を液化
させることができるので、高圧粗塩素ガスを昇圧するた
めのエネルギーが不要となることを見出し、本発明に至
った。
Therefore, the present inventor has diligently studied in order to develop a method capable of producing a large amount of pure chlorine gas from hydrogen chloride and oxygen with less energy, and as a result, 0.6 MPa or more has been obtained. When hydrogen chloride and oxygen are reacted under pressure, not only the reaction yield of chlorine improves and more pure chlorine gas is obtained, but when the reaction is carried out at such a reaction pressure, the high-pressure crude gas obtained by the reaction is obtained. The inventors have found that energy for pressurizing the high-pressure crude chlorine gas is unnecessary because even if the chlorine gas is cooled without further pressurization, a sufficient amount of chlorine can be liquefied, and the present invention has been completed.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、塩化
水素と酸素とを0.6MPa以上の圧力下に反応させて
未反応酸素を含む高圧粗塩素ガスを得、得られた高圧粗
塩素ガスを昇圧することなく冷却し、高圧粗塩素ガス中
の塩素を液化させて高圧液状粗塩素を得、得られた高圧
液状粗塩素から未反応酸素を分離して高圧液状純塩素を
得、分離された未反応酸素は回収して塩化水素との反応
に用い、得られた高圧液状純塩素は減圧して液状純塩素
としたのち気化させて純塩素ガスとすることを特徴とす
る純塩素ガスの製造方法を提供するものである。
Means for Solving the Problems That is, according to the present invention, hydrogen chloride and oxygen are reacted under a pressure of 0.6 MPa or more to obtain a high-pressure crude chlorine gas containing unreacted oxygen, and the obtained high-pressure crude chlorine gas is obtained. Is cooled without pressurizing, chlorine in the high-pressure crude chlorine gas is liquefied to obtain high-pressure liquid crude chlorine, and unreacted oxygen is separated from the obtained high-pressure liquid crude chlorine to obtain high-pressure liquid pure chlorine, which is then separated. The unreacted oxygen is recovered and used in the reaction with hydrogen chloride.The obtained high-pressure liquid pure chlorine is decompressed into liquid pure chlorine, which is then vaporized into pure chlorine gas. A manufacturing method is provided.

【0007】図1には、本発明の製造方法で純塩素ガス
を製造するための純塩素ガス製造装置(1)の一例を模式
的に示す。この製造装置(1)は、塩化水素と酸素とを
0.6MPa以上の圧力下に反応させて未反応酸素を含
む高圧粗塩素ガスを得る反応器(10)と、反応器で得られ
た高圧粗塩素ガスを冷却して高圧粗塩素ガス中の塩素を
液化させて高圧液状粗塩素を得る冷却手段(20)と、冷却
手段で得られた高圧液状粗塩素から未反応酸素を分離し
て高圧液状純塩素を得る塩素精製手段(30)と、塩素精製
手段で分離された酸素を回収して反応器に供給する回収
手段(40)と、塩素精製手段で得られた高圧液状純塩素を
減圧して液状純塩素とする減圧手段(50)とを備えてお
り、反応器(10)で得られた高圧粗塩素ガスは昇圧される
ことなく冷却手段(20)で冷却されるように構成されてい
る。
FIG. 1 schematically shows an example of a pure chlorine gas production apparatus (1) for producing pure chlorine gas by the production method of the present invention. This production apparatus (1) comprises a reactor (10) for reacting hydrogen chloride and oxygen under a pressure of 0.6 MPa or more to obtain high-pressure crude chlorine gas containing unreacted oxygen, and a high pressure obtained in the reactor. Cooling the crude chlorine gas to liquefy the chlorine in the high-pressure crude chlorine gas to obtain high-pressure liquid crude chlorine, and cooling means (20) to separate the unreacted oxygen from the high-pressure liquid crude chlorine obtained by the cooling means. Chlorine refining means (30) for obtaining liquid pure chlorine, recovery means (40) for recovering oxygen separated by the chlorine refining means and supplying it to the reactor, and depressurizing high-pressure liquid pure chlorine obtained by the chlorine refining means It is provided with a decompression means (50) for making liquid pure chlorine, and the high pressure crude chlorine gas obtained in the reactor (10) is configured to be cooled by the cooling means (20) without being pressurized. ing.

【0008】[0008]

【発明の実施の形態】本発明の製造方法では、塩化水素
と酸素とを反応させる。図1に示す装置(1)では、反応
器で塩化水素と酸素とを反応させる。酸素の使用量は、
塩化水素に対して通常0.25モル倍を超え、好ましく
は0.4モル倍以上であり、通常は0.6モル倍以下で
ある。反応温度は通常300℃以上500℃以下であ
る。反応は通常触媒の存在下に行なわれる。反応は0.
6MPa以上、好ましくは0.8MPa以上2.0MP
a以下の圧力(P0)の下に行なわれるので、反応収率
よく塩素が生成する。かかる圧力で反応させるには、例
えば塩化水素および酸素をそれぞれ上記範囲の圧力とし
てから反応器に供給すればよい。かかる反応によって、
水(H2O)が副生する。反応によって、理想的には塩
化水素の全量(100%)が酸素と反応するが、通常は
80%以上が酸素と反応して塩素となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the production method of the present invention, hydrogen chloride and oxygen are reacted. In the device (1) shown in FIG. 1, hydrogen chloride and oxygen are reacted in a reactor. The amount of oxygen used is
It is usually more than 0.25 mol times, preferably 0.4 mol times or more, and usually 0.6 mol times or less with respect to hydrogen chloride. The reaction temperature is usually 300 ° C or higher and 500 ° C or lower. The reaction is usually performed in the presence of a catalyst. The reaction is 0.
6 MPa or more, preferably 0.8 MPa or more 2.0 MP
Since it is carried out under a pressure (P0) of a or less, chlorine is produced in a good reaction yield. In order to carry out the reaction at such a pressure, for example, hydrogen chloride and oxygen may be supplied to the reactor after adjusting the pressure within the above range. By such a reaction,
Water (H 2 O) is produced as a by-product. By the reaction, ideally all the amount of hydrogen chloride (100%) reacts with oxygen, but usually 80% or more reacts with oxygen to become chlorine.

【0009】過剰分の酸素は未反応のまま未反応酸素と
なって残るので、未反応酸素を含む高圧粗塩素ガスが得
られる。かかる高圧粗塩素ガスは、通常は未反応の塩化
水素および副生した水を含んでいる。また、不純物とし
て窒素ガス、アルゴンガス、二酸化炭素ガスなどの不活
性ガスを含んでいてもよく、少量であれば原料として用
いた塩化水素や酸素から持ち込まれたガス状の不純物が
含まれていてもよい。反応器(10)から得られた高圧粗塩
素ガスの圧力は、反応器(10)における反応圧力(P0)
と実質的に等しい。
Since the excess oxygen remains unreacted as unreacted oxygen, high-pressure crude chlorine gas containing unreacted oxygen can be obtained. Such high-pressure crude chlorine gas usually contains unreacted hydrogen chloride and by-produced water. Further, as an impurity, an inert gas such as nitrogen gas, argon gas or carbon dioxide gas may be contained, and if a small amount, a gaseous impurity brought from hydrogen chloride or oxygen used as a raw material is contained. Good. The pressure of the high-pressure crude chlorine gas obtained from the reactor (10) is the reaction pressure (P0) in the reactor (10).
Is substantially equal to.

【0010】かくして得られた高圧粗塩素ガスは、未反
応塩化水素、副生した水などを含むが、これらを除去し
てから冷却することが好ましい。図1に示す装置(1)で
は、未反応塩化水素は吸収塔(60)で、水は乾燥塔(70)で
それぞれ除去される。
The high-pressure crude chlorine gas thus obtained contains unreacted hydrogen chloride, by-produced water and the like, but it is preferable to cool them after removing them. In the apparatus (1) shown in FIG. 1, unreacted hydrogen chloride is removed by the absorption tower (60) and water is removed by the drying tower (70).

【0011】反応器(10)で得られた高圧粗塩素ガスは吸
収塔(60)に連続的に導かれ、高圧粗塩素ガスに含まれる
未反応塩化水素はこの吸収塔(60)で水に吸収されて除去
される。かかる吸収塔(60)において、高圧粗塩素ガスは
通常、吸収塔の塔底(61)から供給され、冷却器(C1)で温
度調整されてから供給されてもよい。塔頂(62)からは水
が供給され、吸収塔内部に噴霧される。高圧粗塩素ガス
に含まれる塩化水素は吸収塔(60)で水と接触し、この水
に吸収されるので、塔頂(62)から連続的に抜出される高
圧粗塩素ガスには、塩化水素が含まれていない。また、
抜出された高圧粗塩素ガスの圧力は、吸収塔に供給され
るときの圧力と実質的に等しい。なお、反応器(10)で得
られた高圧粗塩素ガスは、この吸収塔(60)で水と接触す
ることで、吸収に用いた水の温度の程度にまで冷却もさ
れる。
The high-pressure crude chlorine gas obtained in the reactor (10) is continuously introduced into the absorption tower (60), and the unreacted hydrogen chloride contained in the high-pressure crude chlorine gas is converted into water in the absorption tower (60). It is absorbed and removed. In such an absorption tower (60), the high-pressure crude chlorine gas may be usually supplied from the tower bottom (61) of the absorption tower and adjusted in temperature by the cooler (C1) before being supplied. Water is supplied from the tower top (62) and sprayed inside the absorption tower. Hydrogen chloride contained in the high-pressure crude chlorine gas comes into contact with water in the absorption tower (60) and is absorbed by this water.Therefore, the high-pressure crude chlorine gas continuously extracted from the tower top (62) contains hydrogen chloride. Is not included. Also,
The pressure of the extracted high-pressure crude chlorine gas is substantially equal to the pressure when it is supplied to the absorption tower. The high-pressure crude chlorine gas obtained in the reactor (10) is cooled to the extent of the temperature of the water used for absorption by coming into contact with water in the absorption tower (60).

【0012】吸収塔(60)は上段と下段との2段以上を有
していて、塔頂(62)から供給され塔底(61)に向けて流下
する流下水の一部が、上段の途中から抜出されて塔頂(6
2)付近から吸収塔に供給されるように構成されていても
よい。上段の途中から抜出された水は、冷却器(C2)など
で温度調整されてから吸収塔に供給されてもよい。
The absorption tower (60) has two or more stages, an upper stage and a lower stage, and a part of the effluent water supplied from the tower top (62) and flowing down toward the tower bottom (61) is in the upper stage. It was pulled out from the middle and the tower top (6
2) It may be configured to be supplied to the absorption tower from the vicinity. Water extracted from the middle of the upper stage may be temperature-controlled by a cooler (C2) or the like and then supplied to the absorption tower.

【0013】水は、吸収塔(60)の内部で高圧粗塩素ガス
の塩化水素を吸収して塩酸(塩化水素水溶液)となり、
塔底(61)から抜出される。かくして抜出された塩酸か
ら、蒸留等により塩化水素を得ることができ、得られた
塩化水素は原料として反応器(10)に供給されてもよい。
また、塔底から抜出された塩酸は通常、更に塩化水素を
吸収することができるので、一部または全部が下段から
吸収塔(60)に供給されてもよく、冷却器(C3)などで温度
調整された後に供給されてもよい。
Water absorbs hydrogen chloride of high-pressure crude chlorine gas inside the absorption tower (60) to become hydrochloric acid (hydrogen chloride aqueous solution),
It is withdrawn from the bottom of the tower (61). From the thus extracted hydrochloric acid, hydrogen chloride can be obtained by distillation or the like, and the obtained hydrogen chloride may be supplied to the reactor (10) as a raw material.
Further, the hydrochloric acid extracted from the bottom of the tower is usually capable of further absorbing hydrogen chloride, so part or all of it may be supplied to the absorption tower (60) from the lower stage, with a cooler (C3) or the like. It may be supplied after the temperature is adjusted.

【0014】吸収塔の塔頂(62)から連続的に得られた高
圧粗塩素ガスには、副生した水の他、吸収塔(60)で水と
接触することで持ち込まれた水が含まれている。図1に
示す製造装置(1)では、かかる高圧粗塩素ガス含まれる
水は、乾燥塔(70)で濃硫酸(H2SO4)に吸収される。
高圧粗塩素ガスは、乾燥塔の塔底(71)から連続的に供給
される。塔頂(72)からは濃硫酸が供給され、乾燥塔内部
に噴霧される。高圧粗塩素ガスに含まれる水は乾燥塔(7
0)で濃硫酸と接触し、この濃硫酸に吸収されるので、塔
頂(71)から連続的に抜出される高圧粗塩素ガスには水が
含まれていない。また、この高圧粗塩素ガスの圧力は、
乾燥塔に供給されるときの圧力と実質的に等しい。
The high-pressure crude chlorine gas continuously obtained from the top (62) of the absorption tower includes water produced as a by-product and water brought into contact with water in the absorption tower (60). Has been. In the production apparatus (1) shown in FIG. 1, the water containing the high-pressure crude chlorine gas is absorbed by concentrated sulfuric acid (H 2 SO 4 ) in the drying tower (70).
The high-pressure crude chlorine gas is continuously supplied from the bottom (71) of the drying tower. Concentrated sulfuric acid is supplied from the tower top (72) and sprayed inside the drying tower. The water contained in the high-pressure crude chlorine gas is stored in the drying tower (7
Since it comes into contact with concentrated sulfuric acid at 0) and is absorbed by this concentrated sulfuric acid, the high pressure crude chlorine gas continuously withdrawn from the tower top (71) does not contain water. The pressure of this high-pressure crude chlorine gas is
It is substantially equal to the pressure when it is supplied to the drying tower.

【0015】濃硫酸は、乾燥塔(70)の内部で高圧混合ガ
スの水を吸収することで、水を含む硫酸となり、塔底(7
1)から抜出される。抜出された硫酸は更に水を吸収し得
るので、その一部が乾燥塔(70)に供給されてもよく、冷
却器(C4)などで温度調整されてから、乾燥塔に供給され
てもよい。
The concentrated sulfuric acid absorbs the water of the high pressure mixed gas inside the drying tower (70) to become sulfuric acid containing water, and the tower bottom (7
Extracted from 1). Since the extracted sulfuric acid can further absorb water, a part thereof may be supplied to the drying tower (70), or the temperature may be adjusted with a cooler (C4) or the like and then supplied to the drying tower. Good.

【0016】かかる高圧粗塩素ガスを昇圧することなく
冷却する。昇圧することなく冷却するには、例えば図1
に示すように乾燥塔(70)等から得られた高圧粗塩素ガス
をそのまま冷却手段(20)に供給すればよい。この製造装
置(1)では、冷却手段(20)として熱交換器を用いてい
る。高圧粗塩素ガスを冷却することで、高圧粗塩素ガス
中の塩素が液化される。液化は高圧粗塩素ガスの圧力を
殆んど維持したままで行なわれ、冷却前の高圧粗塩素ガ
スの圧力と実質的に等しい圧力の高圧液状粗塩素を得る
ことができる。高圧液状粗塩素は、高圧粗塩素ガス中の
塩素が液化されたものであり、通常は未反応酸素が未液
化のまま含まれている。得られる高圧液状粗塩素の温度
は通常−35℃〜−5℃程度、好ましくは−20℃〜−
10℃程度の範囲である。高圧粗塩素ガスの液化は通
常、連続的に行なわれる。
The high-pressure crude chlorine gas is cooled without increasing the pressure. To cool without boosting pressure, for example,
As shown in, the high pressure crude chlorine gas obtained from the drying tower (70) or the like may be directly supplied to the cooling means (20). In this manufacturing apparatus (1), a heat exchanger is used as the cooling means (20). By cooling the high-pressure crude chlorine gas, chlorine in the high-pressure crude chlorine gas is liquefied. Liquefaction is carried out while maintaining the pressure of the high-pressure crude chlorine gas almost at all, and high-pressure liquid crude chlorine having a pressure substantially equal to the pressure of the high-pressure crude chlorine gas before cooling can be obtained. High-pressure liquid crude chlorine is obtained by liquefying chlorine in high-pressure crude chlorine gas, and usually contains unreacted oxygen in an unliquefied state. The temperature of the obtained high-pressure liquid crude chlorine is usually about -35 ° C to -5 ° C, preferably -20 ° C to-.
It is in the range of about 10 ° C. Liquefaction of high-pressure crude chlorine gas is usually performed continuously.

【0017】得られた高圧液状粗塩素から未反応酸素を
分離する。未反応酸素を分離するには、図1に示すよう
に塩素精製手段(30)にとして蒸留塔を用い、この蒸留塔
に高圧液状粗塩素を導入すればよい。酸素の液化温度
は、塩素の液化温度に比べて遥かに低いので、高圧液状
粗塩素を気相と液相とに分離する蒸留を行なうことで、
気相として酸素をガス状で分離すると共に、液相として
液状の純塩素を得ることができる。この製造装置(1)で
は、塩素精製手段(30)として蒸留塔を用いており、かか
る蒸留塔(30)に液状粗塩素を導入することで、未反応酸
素はガス状のまま塔頂(32)から抜出され、塔底(31)から
は高圧液状純塩素を抜出して得ることができる。蒸留塔
(30)の内部は通常、高圧粗塩素ガスと概ね同じ圧力(P
0)である。分離された未反応酸素には、僅かに未液化
の塩素が含まれることもあるが、かかる未液化の塩素は
冷却器(C5)で未反応酸素を冷却することで、液化して蒸
留塔(30)に戻すことができる。
Unreacted oxygen is separated from the obtained high-pressure liquid crude chlorine. To separate unreacted oxygen, a distillation column may be used as the chlorine purification means (30) as shown in FIG. 1, and high-pressure liquid crude chlorine may be introduced into this distillation column. Since the liquefaction temperature of oxygen is much lower than the liquefaction temperature of chlorine, by performing distillation for separating high-pressure liquid crude chlorine into a gas phase and a liquid phase,
It is possible to separate oxygen in a gaseous state as a gas phase and to obtain liquid pure chlorine as a liquid phase. In this production apparatus (1), a distillation column is used as the chlorine refining means (30), and by introducing liquid crude chlorine into the distillation column (30), unreacted oxygen remains in the gaseous state at the top (32 It can be obtained by extracting high-pressure liquid pure chlorine from the column bottom (31). Distillation tower
The inside of (30) is usually about the same pressure (P
0). The separated unreacted oxygen may contain a slight amount of unliquefied chlorine, but such unliquefied chlorine is liquefied by cooling the unreacted oxygen with a cooler (C5), and a distillation column ( It can be returned to 30).

【0018】分離された未反応酸素は、回収して塩化水
素との反応に用いられる。回収される未反応酸素は通
常、分離された未反応酸素の一部である。回収は、蒸留
塔の塔頂(32)から抜出された未反応酸素を回収手段(40)
で回収すればよい。図1に示す製造装置(1)では、回収
手段(40)として蒸留塔の塔頂(32)から反応器(40)に未反
応酸素を導くポンプ(圧縮機)が用いられている。反応
器(10)の圧力(P0)は0.6MPa以上であるが、本
発明の製造方法では、かかる圧力と実質的に同じ圧力の
高圧液状粗塩素から未反応酸素を分離しているので、分
離された未反応酸素の圧力も反応器の圧力と実質的に等
しく、通常は途中の配管、吸収塔内、乾燥塔内、冷却手
段内などにおける僅かな圧力損失に相当するだけ低い圧
力であるので、かかる僅かな圧力損失に相当する圧力だ
けポンプ(圧縮機)で昇圧することで、未反応酸素を回
収して反応器(10)に導き、塩化水素との反応に再び用い
ることができる。
The separated unreacted oxygen is recovered and used for the reaction with hydrogen chloride. The unreacted oxygen recovered is usually part of the separated unreacted oxygen. Recovery is a means for collecting unreacted oxygen extracted from the top of the distillation column (32) (40)
You can collect it at. In the production apparatus (1) shown in FIG. 1, a pump (compressor) for introducing unreacted oxygen from the top (32) of the distillation column to the reactor (40) is used as the recovery means (40). Although the pressure (P0) of the reactor (10) is 0.6 MPa or more, in the production method of the present invention, since unreacted oxygen is separated from high-pressure liquid crude chlorine having a pressure substantially the same as the pressure, The pressure of the separated unreacted oxygen is also substantially equal to the pressure of the reactor, and is usually low enough to correspond to a slight pressure loss in the piping, absorption tower, drying tower, cooling means, etc. Therefore, by raising the pressure by a pump (compressor) by a pressure corresponding to such a slight pressure loss, unreacted oxygen can be recovered and led to the reactor (10), and can be used again for the reaction with hydrogen chloride.

【0019】一方、得られた高圧液状純塩素は、蒸留塔
の温度調節のために、その一部が加熱器(B1)などで温度
調整された後に蒸留塔の塔底(31)に供給されてもよい。
蒸留塔(30)への液状粗塩素の供給と、蒸留塔からの高圧
液状純塩素の抜出し、および酸素の取出しはそれぞれ通
常、連続的に行なわれる。
On the other hand, the high-pressure liquid pure chlorine obtained is supplied to the bottom (31) of the distillation column after a part of the temperature is adjusted by a heater (B1) or the like in order to adjust the temperature of the distillation column. May be.
Liquid crude chlorine is supplied to the distillation column (30), high-pressure liquid pure chlorine is extracted from the distillation column, and oxygen is usually extracted continuously.

【0020】得られた高圧液状粗塩素を減圧して液状純
塩素としたのち、気化させる。減圧するには、例えば図
1に示すように、減圧手段(50)を用いればよい。この製
造装置(1)では、減圧手段として、塔底(31)から高圧液
状純塩素を抜出すための配管に設けられた圧力調整弁を
用いており、塔底(31)から抜出された高圧液状純塩素
は、この圧力調整弁(50)を通過することにより減圧され
て液状純塩素となる。
The obtained high-pressure liquid crude chlorine is decompressed into liquid pure chlorine and then vaporized. To reduce the pressure, for example, as shown in FIG. 1, a pressure reducing means (50) may be used. In this production apparatus (1), as a pressure reducing means, a pressure adjusting valve provided in a pipe for extracting high-pressure liquid pure chlorine from the column bottom (31) is used, and the pressure was extracted from the column bottom (31). The high-pressure liquid pure chlorine is reduced in pressure by passing through the pressure control valve (50) to become liquid pure chlorine.

【0021】塔底(31)から抜出された直後の高圧液状純
塩素の圧力(P1)は反応圧力(P0)と実質的に同じ圧
力であるが、減圧調整弁(50)を通過することで減圧され
る。減圧後の圧力(P2)は絶対圧力で通常0.3MP
a以下、好ましくは0.25MPa以下であり、大気圧
(0.1MPa)またはこれ未満の圧力であってもよ
い。減圧後の液状純塩素の圧力(P2)と高圧液状純塩
素の圧力(P1)との差(ΔP12=P1−P2)は、好ましく
は0.3MPa以上であり、さらに好ましくは0.5M
Pa以上である。減圧によって高圧液状純塩素は上記圧
力に減圧され、その一部または全部が気化してもよく、
かくして得られる液状純塩素には通常、減圧されること
で気化された塩素が含まれている。
The pressure (P1) of the high-pressure liquid pure chlorine immediately after being withdrawn from the column bottom (31) is substantially the same as the reaction pressure (P0), but it must pass through the pressure reducing control valve (50). It is decompressed with. The pressure (P2) after depressurization is usually 0.3MP in absolute pressure.
a or less, preferably 0.25 MPa or less, and may be atmospheric pressure (0.1 MPa) or lower. The difference (ΔP12 = P1-P2) between the pressure (P2) of liquid pure chlorine after depressurization and the pressure (P1) of high-pressure liquid pure chlorine is preferably 0.3 MPa or more, more preferably 0.5 M.
Pa or higher. High-pressure liquid pure chlorine is reduced to the above pressure by decompression, and part or all of it may be vaporized,
The liquid pure chlorine thus obtained usually contains chlorine vaporized by being depressurized.

【0022】本発明の製造方法では、かかる液状純塩素
を気化させる。気化させるには、例えば液状純塩素に外
部からエネルギーを与えて加熱してもよいが、先の高圧
粗塩素ガスを昇圧することなく冷却して、該ガス中の塩
素を液化させて生じた潜熱で、液状順塩素を気化させる
こととすれば、潜熱を有効に利用できて、より少ないエ
ネルギーで純塩素ガスを得ることができるので、好まし
い。かかる潜熱で気化させるには、例えば図1に示すよ
うに、冷却手段(20)として熱交換器を用いればよい。こ
の熱交換器(20)は、高圧粗塩素ガスと液状純塩素とを熱
交換させる。熱交換器で熱交換させることで、高圧粗塩
素ガスを冷却し高圧粗塩素ガス中の塩素を液化させて高
圧液状粗塩素とすると共に、液状純塩素を加熱し気化さ
せて純塩素ガスとすることができる。得られた純塩素ガ
スは、更に加熱器(B2)などで温度調整されもよい。
In the production method of the present invention, such liquid pure chlorine is vaporized. In order to vaporize, for example, liquid pure chlorine may be heated by externally applying energy, but the high-pressure crude chlorine gas is cooled without pressurization, and latent heat generated by liquefying chlorine in the gas is generated. Then, it is preferable to vaporize the liquid normal chlorine because the latent heat can be effectively utilized and pure chlorine gas can be obtained with less energy. To vaporize with such latent heat, for example, as shown in FIG. 1, a heat exchanger may be used as the cooling means (20). The heat exchanger (20) exchanges heat between high-pressure crude chlorine gas and liquid pure chlorine. By exchanging heat with a heat exchanger, the high-pressure crude chlorine gas is cooled and the chlorine in the high-pressure crude chlorine gas is liquefied into high-pressure liquid crude chlorine, and liquid pure chlorine is heated and vaporized into pure chlorine gas. be able to. The temperature of the obtained pure chlorine gas may be further adjusted with a heater (B2) or the like.

【0023】[0023]

【発明の効果】本発明の製造方法によれば、塩化水素と
酸素とを0.6MPa以上の圧力下に反応させるので、
収率よく塩素が得られる。また、反応により得られた高
圧粗塩素ガスからは十分な量の塩素を液化させることが
できるので、高圧粗塩素ガスの昇圧が不要で、高圧粗塩
素ガスに含まれる未反応酸素をも昇圧するためのエネル
ギーが不要である。そして、反応収率が高く、高圧粗塩
素ガスから十分な量の塩素を液化させることができるの
で、多くの純塩素ガスを得ることができる。
According to the production method of the present invention, since hydrogen chloride and oxygen are reacted under a pressure of 0.6 MPa or more,
Chlorine can be obtained in good yield. Further, since it is possible to liquefy a sufficient amount of chlorine from the high-pressure crude chlorine gas obtained by the reaction, it is not necessary to pressurize the high-pressure crude chlorine gas and also pressurize unreacted oxygen contained in the high-pressure crude chlorine gas. No energy is needed for it. Since the reaction yield is high and a sufficient amount of chlorine can be liquefied from the high-pressure crude chlorine gas, a large amount of pure chlorine gas can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法で純塩素ガスを製造するための純
塩素ガス製造装置の一例を模式的に示す図である。
FIG. 1 is a diagram schematically showing an example of a pure chlorine gas production apparatus for producing pure chlorine gas by the method of the present invention.

【図2】従来の方法で純塩素ガスを製造するための純塩
素ガス製造装置の一例を模式的に示す図である。
FIG. 2 is a diagram schematically showing an example of a pure chlorine gas production device for producing pure chlorine gas by a conventional method.

【符号の説明】[Explanation of symbols]

1:純塩素ガス製造装置 10:反応器 60:吸収塔 20:熱交換器(冷却手段) 61:塔底 30:蒸留塔(塩素精製手段) 62:塔頂 31:塔底 70:乾燥塔 32:塔頂 71:塔底 40:圧縮機(回収手段) 72:塔頂 50:圧力調整弁(減圧手段) 80:圧縮機(回収手段) B1〜B2:加熱器 C1〜C5:冷却器 1: Pure chlorine gas production equipment 10: Reactor 60: Absorption tower 20: Heat exchanger (cooling means) 61: Bottom of tower 30: Distillation tower (chlorine refining means) 62: Tower top 31: Tower bottom 70: Drying tower 32: Tower top 71: Tower bottom 40: Compressor (collection means) 72: Tower top 50: Pressure control valve (pressure reducing means) 80: Compressor (collection means) B1-B2: Heater C1-C5: Cooler

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】塩化水素と酸素とを0.6MPa以上の圧
力下に反応させて未反応酸素を含む高圧粗塩素ガスを
得、得られた高圧粗塩素ガスを昇圧することなく冷却
し、高圧粗塩素ガス中の塩素を液化させて高圧液状粗塩
素を得、得られた高圧液状粗塩素から未反応酸素を分離
して高圧液状純塩素を得、分離された未反応酸素は回収
して塩化水素との反応に用い、得られた高圧液状純塩素
は減圧して液状純塩素としたのち気化させて純塩素ガス
とすることを特徴とする純塩素ガスの製造方法。
1. A high pressure crude chlorine gas containing unreacted oxygen is obtained by reacting hydrogen chloride and oxygen under a pressure of 0.6 MPa or more, and the obtained high pressure crude chlorine gas is cooled without pressurization to obtain a high pressure. The chlorine in the crude chlorine gas is liquefied to obtain high-pressure liquid crude chlorine, unreacted oxygen is separated from the obtained high-pressure liquid crude chlorine to obtain high-pressure liquid pure chlorine, and the separated unreacted oxygen is recovered and chlorinated. A method for producing pure chlorine gas, which is characterized in that the obtained high-pressure liquid pure chlorine used for the reaction with hydrogen is decompressed into liquid pure chlorine and then vaporized into pure chlorine gas.
【請求項2】高圧粗塩素ガス中の塩素を液化させて生じ
た潜熱で、液状純塩素を気化させる請求項1に記載の製
造方法。
2. The method according to claim 1, wherein liquid pure chlorine is vaporized by latent heat generated by liquefying chlorine in the high-pressure crude chlorine gas.
【請求項3】高圧粗塩素ガスの塩素濃度がモル分率で4
5%以上であり、高圧液状純塩素を0.3MPa以下に
減圧する請求項1に記載の製造方法。
3. The chlorine concentration of high-pressure crude chlorine gas is 4 in terms of mole fraction.
The production method according to claim 1, wherein the high-pressure liquid pure chlorine is reduced to 0.3 MPa or less by 5% or more.
【請求項4】塩化水素と酸素とを0.6MPa以上の圧
力下に反応させて未反応酸素を含む高圧粗塩素ガスを得
る反応器と、反応器で得られた高圧粗塩素ガスを冷却し
て高圧粗塩素ガス中の塩素を液化させて高圧液状粗塩素
を得る冷却手段と、冷却手段で得られた高圧液状粗塩素
から未反応酸素を分離して高圧液状純塩素を得る塩素精
製手段と、塩素精製手段で分離された酸素を回収して反
応器に供給する回収手段と、塩素精製手段で得られた高
圧液状純塩素を減圧して液状純塩素とする減圧手段とを
備えており、反応器(10)で得られた高圧粗塩素ガスは昇
圧されることなく冷却手段で冷却されるように構成され
ていることを特徴とする純塩素ガスの製造装置。
4. A reactor for reacting hydrogen chloride and oxygen under a pressure of 0.6 MPa or more to obtain high-pressure crude chlorine gas containing unreacted oxygen, and cooling the high-pressure crude chlorine gas obtained in the reactor. Cooling means for liquefying chlorine in high-pressure crude chlorine gas to obtain high-pressure liquid crude chlorine, and chlorine purification means for separating unreacted oxygen from the high-pressure liquid crude chlorine obtained by the cooling means to obtain high-pressure liquid pure chlorine A recovery means for recovering the oxygen separated by the chlorine refining means and supplying it to the reactor, and a decompression means for decompressing the high-pressure liquid pure chlorine obtained by the chlorine refining means into liquid pure chlorine, An apparatus for producing pure chlorine gas, characterized in that the high-pressure crude chlorine gas obtained in the reactor (10) is configured to be cooled by a cooling means without being pressurized.
【請求項5】冷却手段は、高圧粗塩素ガスと液状純塩素
とを熱交換させて、高圧粗塩素ガスを冷却し高圧粗塩素
ガス中の塩素を液化させて高圧液状粗塩素とすると共
に、液状純塩素を加熱し気化させて純塩素ガスとする熱
交換器である請求項4に記載の純塩素ガスの製造装置。
5. The cooling means heat-exchanges high-pressure crude chlorine gas with liquid pure chlorine to cool the high-pressure crude chlorine gas and liquefy chlorine in the high-pressure crude chlorine gas to obtain high-pressure liquid crude chlorine. The apparatus for producing pure chlorine gas according to claim 4, which is a heat exchanger that heats and vaporizes liquid pure chlorine to produce pure chlorine gas.
【請求項6】高圧粗塩素ガスの塩素濃度がモル分率で4
5%以上であり、減圧手段は高圧液状純塩素を0.3M
Pa以下に減圧する請求項5に記載の製造装置。
6. The chlorine concentration of high-pressure crude chlorine gas is 4 in terms of mole fraction.
5% or more, and the decompression means uses 0.3M of high-pressure liquid pure chlorine.
The manufacturing apparatus according to claim 5, wherein the pressure is reduced to Pa or less.
JP2002094481A 2002-03-29 2002-03-29 Method for manufacturing pure chlorine gas Pending JP2003292304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002094481A JP2003292304A (en) 2002-03-29 2002-03-29 Method for manufacturing pure chlorine gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002094481A JP2003292304A (en) 2002-03-29 2002-03-29 Method for manufacturing pure chlorine gas

Publications (1)

Publication Number Publication Date
JP2003292304A true JP2003292304A (en) 2003-10-15

Family

ID=29238447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002094481A Pending JP2003292304A (en) 2002-03-29 2002-03-29 Method for manufacturing pure chlorine gas

Country Status (1)

Country Link
JP (1) JP2003292304A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029940A1 (en) * 2006-09-06 2008-03-13 Sumitomo Chemical Company, Limited Start-up method
JP2008063174A (en) * 2006-09-06 2008-03-21 Sumitomo Chemical Co Ltd Chlorine production method, chlorine production apparatus, and heat exchanger
WO2008125236A2 (en) * 2007-04-17 2008-10-23 Bayer Materialscience Ag Heat integration in a deacon process
JP2013545704A (en) * 2011-10-11 2013-12-26 ホンインケミカル シーオー.,エルティディ. Method and system for producing high purity hydrogen chloride
CN110775943A (en) * 2018-07-31 2020-02-11 中国科学院大连化学物理研究所 High-pressure chlorine generating device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008029940A1 (en) * 2006-09-06 2008-03-13 Sumitomo Chemical Company, Limited Start-up method
JP2008063175A (en) * 2006-09-06 2008-03-21 Sumitomo Chemical Co Ltd Start-up method
JP2008063174A (en) * 2006-09-06 2008-03-21 Sumitomo Chemical Co Ltd Chlorine production method, chlorine production apparatus, and heat exchanger
US8168154B2 (en) 2006-09-06 2012-05-01 Sumitomo Chemical Company, Limited Start-up method for producing chlorine
KR101337440B1 (en) 2006-09-06 2013-12-06 스미또모 가가꾸 가부시끼가이샤 Start-up method
WO2008125236A2 (en) * 2007-04-17 2008-10-23 Bayer Materialscience Ag Heat integration in a deacon process
DE102007018014A1 (en) 2007-04-17 2008-10-23 Bayer Materialscience Ag Heat integration in a Deacon process
WO2008125236A3 (en) * 2007-04-17 2009-04-16 Bayer Materialscience Ag Heat integration in a deacon process
JP2013545704A (en) * 2011-10-11 2013-12-26 ホンインケミカル シーオー.,エルティディ. Method and system for producing high purity hydrogen chloride
CN110775943A (en) * 2018-07-31 2020-02-11 中国科学院大连化学物理研究所 High-pressure chlorine generating device
CN110775943B (en) * 2018-07-31 2023-04-07 中国科学院大连化学物理研究所 High-pressure chlorine generating device

Similar Documents

Publication Publication Date Title
RU2331575C2 (en) Installation of cleaning with low δ p for the removal of nitrogen, methane and argon from syngas
JP3294390B2 (en) Ultra high purity nitrous oxide production method and apparatus
US20210331919A1 (en) Method and system for producing high-purity hydrogen chloride
JP6653388B2 (en) Method of synthesizing urea by supplying carbon dioxide
JPH0412392B2 (en)
TWI687633B (en) Oxygen production system and oxygen production method
KR101413621B1 (en) Method for generating high quality geh_4 and apparatus for generating high quality geh_4
JP2003292304A (en) Method for manufacturing pure chlorine gas
JP2594604B2 (en) Argon recovery method
JP4765630B2 (en) Method and apparatus for producing carbonyl fluoride
BR112021005520A2 (en) a process for urea synthesis
KR101363571B1 (en) Method for generating high quality GeH₄and Apparatus for generating high quality GeH₄
JP3181546B2 (en) Method and apparatus for producing nitrogen and argon from air
JPH0777385A (en) Method and apparatus for separating high purity argon
JP3082092B2 (en) Oxygen purification method and apparatus
JPH1163812A (en) Manufacture and device for low-purity oxygen
JPH0730998B2 (en) Method for recovering argon from ammonia synthesis purge gas
JPH1163811A (en) Method and device for manufacturing low impurity oxygen
JP2685523B2 (en) Method and apparatus for producing ultra-high purity nitrogen
JP3191165B2 (en) Method and apparatus for producing high purity argon by cryogenic liquefaction separation method
JP4072841B2 (en) Method and apparatus for producing ultra high purity gas
JPH0563718B2 (en)
JP2002372367A (en) Air separator for gas product and its cold heat utilizing method
JPH11118352A (en) Manufacture of low purity oxygen, and its device
JPH0814458B2 (en) Nitrogen production method