JP2003286865A - Reformed fuel combustion gas turbine device and oil- heating method therefor - Google Patents

Reformed fuel combustion gas turbine device and oil- heating method therefor

Info

Publication number
JP2003286865A
JP2003286865A JP2002093554A JP2002093554A JP2003286865A JP 2003286865 A JP2003286865 A JP 2003286865A JP 2002093554 A JP2002093554 A JP 2002093554A JP 2002093554 A JP2002093554 A JP 2002093554A JP 2003286865 A JP2003286865 A JP 2003286865A
Authority
JP
Japan
Prior art keywords
heavy oil
gas turbine
reformed fuel
pipe
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002093554A
Other languages
Japanese (ja)
Other versions
JP3788379B2 (en
Inventor
Shinichi Inage
真一 稲毛
Nobuyuki Hokari
信幸 穂刈
Akinori Hayashi
林  明典
Hirokazu Takahashi
宏和 高橋
Hiromi Koizumi
浩美 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002093554A priority Critical patent/JP3788379B2/en
Publication of JP2003286865A publication Critical patent/JP2003286865A/en
Application granted granted Critical
Publication of JP3788379B2 publication Critical patent/JP3788379B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reformed fuel combustion gas turbine and an oil-heating method preventing a heat-transfer pipe at a heavy oil side from being corroded and broken, and the leakage of heavy oil from the heat-transfer pipe. <P>SOLUTION: In the reformed fuel combustion gas turbine device equipped with the gas turbine operated with reformed fuel which is reformed into light oil from heavy oil by raising the temperature and pressure of the heavy oil and mixing it with supercritical water, the heat-transfer pipe of a double-type structure is installed in a heat recovery steam generator installed downstream of the gas turbine, the heavy oil is fed into an inside tube of the double tube, and non-combustible oil is fed into the outside of the double tube. As a result, the reformed fuel combustion gas turbine device and the oil-heating method improved in reliability can be provided. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、改質燃料焚きガス
タービン設備及びその油加熱方法に関わる。
TECHNICAL FIELD The present invention relates to a reformed fuel burning gas turbine equipment and an oil heating method thereof.

【0002】[0002]

【従来の技術】従来、重質油を昇温昇圧し、別途製造し
た超臨界水と混合させることにより前記重質油を改質及
び軽質化した改質燃料にて運用されるコンバインドガス
タービン設備がある。
2. Description of the Related Art Conventionally, a combined gas turbine facility operated with a reformed fuel obtained by reforming and lightening heavy oil by heating and boosting the heavy oil and mixing it with supercritical water produced separately. There is.

【0003】[0003]

【発明が解決しようとする課題】重質油を改質した燃料
焚きのコンバインドガスタービン設備では、重質油の改
質には、重質油を350℃程度に昇温する必要がある。
従来の方式では、重質油を直接、コンバインドガスター
ビン下流に設置した排熱回収ボイラーにて昇温してい
た。しかし、重質油中には硫黄,バナジウム等の腐食成
分が含まれているために、重質油側伝熱管を腐食/破損
させる可能性がある。排熱回収ボイラー内には酸素を含
む550℃程度の排ガスが流れており、伝熱管より重質
油がリークした場合には火災となる可能性がある。
In the fuel-fired combined gas turbine equipment in which heavy oil is reformed, it is necessary to raise the temperature of the heavy oil to about 350 ° C. in order to reform the heavy oil.
In the conventional method, the temperature of heavy oil is directly raised by an exhaust heat recovery boiler installed downstream of the combined gas turbine. However, since the heavy oil contains corrosive components such as sulfur and vanadium, the heavy oil side heat transfer tube may be corroded / damaged. Exhaust gas containing oxygen at about 550 ° C is flowing in the exhaust heat recovery boiler, and if heavy oil leaks from the heat transfer tube, a fire may occur.

【0004】本発明の目的は、信頼性を向上した改質燃
料焚きガスタービン設備及びその油加熱方法を提供する
ことにある。
An object of the present invention is to provide a reformed fuel burning gas turbine equipment and an oil heating method for the same, which have improved reliability.

【0005】[0005]

【課題を解決するための手段】本発明は、重質油を昇温
昇圧し、超臨界水と混合させることにより前記重質油を
改質及び軽質化した改質燃料にて運用されるガスタービ
ンを備えた改質燃料焚きガスタービン設備において、前
記ガスタービンの下流に設置した排熱回収ボイラー内に
二重管構造の伝熱管を設置し、その二重管の内側管に該
重質油を供給し、該二重管の外側管に非燃焼性の流体を
供給するよう構成したことを特徴とする。
DISCLOSURE OF THE INVENTION The present invention is a gas operated by a reformed fuel obtained by reforming and lightening the heavy oil by heating and pressurizing the heavy oil and mixing it with supercritical water. In a reformed fuel-fired gas turbine facility equipped with a turbine, a heat transfer pipe having a double pipe structure is installed in an exhaust heat recovery boiler installed downstream of the gas turbine, and the heavy oil is placed inside the double pipe. And a non-combustible fluid is supplied to the outer pipe of the double pipe.

【0006】[0006]

【発明の実施の形態】ガスタービンの下流に設置した排
熱回収ボイラー内に二重管構造の伝熱管を設置し、その
二重管の内側管に該重質油を供給し、該二重管の外側管
に非燃焼性の流体を供給するよう構成したことにより、
信頼性を向上することが可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION A heat transfer pipe having a double pipe structure is installed in an exhaust heat recovery boiler installed downstream of a gas turbine, and the heavy oil is supplied to the inner pipe of the double pipe to By configuring to supply a non-combustible fluid to the outer tube of the tube,
It is possible to improve reliability.

【0007】排熱回収ボイラーにて重質油を直接加熱す
るのではなく、ガスタービンの下流に設置した排熱回収
ボイラー内に二重管構造からなる伝熱管を設置し、かつ
二重管の内側管に重質油を、外側管には非燃焼性の流体
を供給することにより、非燃焼性の流体を介して排熱回
収ボイラー中を流れる排ガスと前記重質油と熱交換する
ことにより達成できる。このような構成にすることによ
り、重質油が内側伝熱管よりリークしても外側管を流れ
る流体と混合するため、火災が生じることはない。
Instead of directly heating the heavy oil in the exhaust heat recovery boiler, a heat transfer tube having a double pipe structure is installed in the exhaust heat recovery boiler installed downstream of the gas turbine, and By supplying heavy oil to the inner pipe and non-combustible fluid to the outer pipe, by exchanging heat with the exhaust gas flowing through the exhaust heat recovery boiler via the non-combustible fluid and the heavy oil. Can be achieved. With such a configuration, even if the heavy oil leaks from the inner heat transfer pipe, it mixes with the fluid flowing in the outer pipe, so that no fire will occur.

【0008】前記二重管の外側管を流れる非燃焼性の流
体として好ましくは上記排熱回収ボイラー内において蒸
気タービン用蒸気を生成する水を用いることである。二
重管の外側管を流れる水も排ガスと熱交換をしている。
その熱を蒸気タービン用蒸気により熱回収することによ
り、全体の熱効率の低下を低減できる。
The non-combustible fluid flowing through the outer pipe of the double pipe is preferably water that produces steam for the steam turbine in the exhaust heat recovery boiler. Water flowing through the outer pipe of the double pipe also exchanges heat with the exhaust gas.
By recovering the heat with the steam for the steam turbine, it is possible to reduce a decrease in the overall thermal efficiency.

【0009】重質油中には、硫黄,バナジウム等の金属
に対する腐食成分が含まれる。特に、高温高圧条件下で
は上記熱交換器の伝熱管の腐食作用は著しくなるものと
考える。その対策には、耐腐食性の高い材料を用いるこ
とであるが、同時にコストを増大させることにも繋が
る。そのため、二重管の内側伝熱管の母材には比較的安
価な材料を用い、重質油に直接接触する内部に耐腐食性
に優れる材料を溶射或いは溶接することにより、コスト
の増大を伴うことなく、耐腐食性に優れる伝熱管及び熱
交換器の信頼性を向上できる。
Heavy oil contains corrosive components for metals such as sulfur and vanadium. Particularly, it is considered that the corrosive action of the heat transfer tube of the heat exchanger becomes remarkable under high temperature and high pressure conditions. The countermeasure is to use a material having high corrosion resistance, but at the same time, it also leads to an increase in cost. Therefore, a relatively inexpensive material is used as the base material of the inner heat transfer tube of the double tube, and the cost is increased by spraying or welding a material with excellent corrosion resistance inside the direct contact with the heavy oil. It is possible to improve the reliability of the heat transfer tube and the heat exchanger having excellent corrosion resistance.

【0010】二重管の内伝熱管内に圧力センサーを設置
することにより、伝熱管内蒸気の圧力を計測する。油が
伝熱管よりリークした場合には、外側伝熱管内部圧力は
増加するために、圧力を通じて外側伝熱管への重質油の
リークを確認できる。リーク時には、内側管への重質油
供給を停止することにより、蒸気への油混入を最低限に
抑制する。
By installing a pressure sensor in the heat transfer tube of the double tube, the pressure of the steam in the heat transfer tube is measured. When the oil leaks from the heat transfer tube, the internal pressure of the outer heat transfer tube increases, so that the leak of the heavy oil to the outer heat transfer tube can be confirmed through the pressure. In the event of a leak, the supply of heavy oil to the inner pipe is stopped to minimize oil contamination in the steam.

【0011】重質油を昇温昇圧し、別途製造した超臨界
水と混合させることにより前記重質油を改質及び軽質化
した改質燃料にて運用されるコンバインドガスタービン
について図3に示す。
FIG. 3 shows a combined gas turbine operated with a reformed fuel obtained by reforming and lightening the heavy oil by heating and pressurizing the heavy oil and mixing it with supercritical water produced separately. .

【0012】図3で、1は重質油タンク、2は重質油加
圧ポンプ、3は重質油供給系統、4は重質油熱交換用伝
熱管、5は水タンク、6は水加圧ポンプ、7は水供給系
統、8は水熱交換用伝熱管、9は排熱回収ボイラー、1
0はガスタービン、11は改質器、12はコンデンサ、
13は改質燃料供給系統、14は減圧弁、15は燃焼
器、16は重質油、17は水、18は排ガス、19は改
質燃料、20は蒸気タービン用の蒸気、21は蒸気ター
ビン、22は発電機である。
In FIG. 3, 1 is a heavy oil tank, 2 is a heavy oil pressure pump, 3 is a heavy oil supply system, 4 is a heat transfer pipe for heavy oil heat exchange, 5 is a water tank, and 6 is water. Pressure pump, 7 water supply system, 8 heat transfer tube for water heat exchange, 9 waste heat recovery boiler, 1
0 is a gas turbine, 11 is a reformer, 12 is a condenser,
13 is a reformed fuel supply system, 14 is a pressure reducing valve, 15 is a combustor, 16 is heavy oil, 17 is water, 18 is exhaust gas, 19 is reformed fuel, 20 is steam for steam turbine, 21 is steam turbine , 22 are generators.

【0013】重質油タンク1より供給された重質油16
は、加圧ポンプ2により25Mpa程度に昇圧され、排
熱回収ボイラー9内に設置された伝熱管4にて550℃
程度の排ガスと熱交換することにより、350℃程度に
昇温される。同様に水タンク5より供給された水17
は、加圧ポンプ6により25Mpa程度に昇圧され、排
熱回収ボイラー9内に設置された伝熱管8にて550℃
程度の排ガスと熱交換することにより、450℃程度に
昇温される。それぞれ昇温昇圧された重質油16及び超
臨界状態の水17を改質器11にて混合し、改質燃料1
9を製造する。前記改質燃料19を減圧弁14で減圧
し、燃焼器15に供給することにより、ガスタービン1
0を駆動する。さらに、排熱回収ボイラー9にて生成さ
れた蒸気20により蒸気タービン21を駆動する。
Heavy oil 16 supplied from heavy oil tank 1
Is pressurized to about 25 MPa by the pressurizing pump 2 and is heated to 550 ° C. by the heat transfer tube 4 installed in the exhaust heat recovery boiler 9.
The temperature is raised to about 350 ° C. by exchanging heat with the exhaust gas. Similarly, the water supplied from the water tank 5 is 17
Is pressurized to about 25 MPa by the pressurizing pump 6, and is heated to 550 ° C. by the heat transfer tube 8 installed in the exhaust heat recovery boiler 9.
The temperature is raised to about 450 ° C. by exchanging heat with the exhaust gas. The heavy oil 16 and the water 17 in a supercritical state, which have been heated and pressurized, respectively, are mixed in the reformer 11, and the reformed fuel 1
9 is manufactured. By reducing the pressure of the reformed fuel 19 with the pressure reducing valve 14 and supplying it to the combustor 15, the gas turbine 1
Drive 0. Further, the steam turbine 21 is driven by the steam 20 generated in the exhaust heat recovery boiler 9.

【0014】重質油を改質した燃料焚きのコンバインド
ガスタービン設備では、重質油の改質には、重質油を3
50℃程度に昇温する必要がある。重質油を直接、コン
バインドガスタービン下流に設置した排熱回収ボイラー
にて昇温すると、重質油中には硫黄,バナジウム等の腐
食成分が含まれているために、重質油側伝熱管を腐食/
破損させる可能性がある。また、排熱回収ボイラー内に
は酸素を含む550℃程度の排ガスが流れており、伝熱
管より重質油がリークした場合には火災となる可能性が
ある。
In the fuel-fired combined gas turbine equipment in which the heavy oil is reformed, the heavy oil is reformed by using three heavy oils.
It is necessary to raise the temperature to about 50 ° C. When heavy oil is heated directly by an exhaust heat recovery boiler installed downstream of the combined gas turbine, the heavy oil contains corrosive components such as sulfur and vanadium. Corrosion /
May cause damage. Further, exhaust gas containing oxygen at about 550 ° C. is flowing in the exhaust heat recovery boiler, and if heavy oil leaks from the heat transfer tube, a fire may occur.

【0015】以下、図示した実施例を詳細に説明する。
図1には、本発明の第一実施例を示す。図1で、1は重
質油タンク、2は重質油加圧ポンプ、3は重質油供給系
統、5は水タンク、6は水加圧ポンプ、7は水供給系
統、8は水熱交換用伝熱管、9は排熱回収ボイラー、1
0はガスタービン、11は改質器、12はコンデンサ、
13は改質燃料供給系統、14は減圧弁、15は燃焼
器、16は重質油、17は水、18は排ガス、19は改
質燃料、20は蒸気タービン用の蒸気、21は蒸気ター
ビン、22は発電機、23は重質油と蒸気の二重管から
なる熱交換器である。
The illustrated embodiment will be described in detail below.
FIG. 1 shows a first embodiment of the present invention. In FIG. 1, 1 is a heavy oil tank, 2 is a heavy oil pressure pump, 3 is a heavy oil supply system, 5 is a water tank, 6 is a water pressure pump, 7 is a water supply system, and 8 is water heat. Exchange heat transfer tube, 9 is an exhaust heat recovery boiler, 1
0 is a gas turbine, 11 is a reformer, 12 is a condenser,
13 is a reformed fuel supply system, 14 is a pressure reducing valve, 15 is a combustor, 16 is heavy oil, 17 is water, 18 is exhaust gas, 19 is reformed fuel, 20 is steam for steam turbine, 21 is steam turbine 22 is a generator, and 23 is a heat exchanger consisting of a double pipe for heavy oil and steam.

【0016】さらに、図2には、前記熱交換器23の構
造を示す。図2で、16は重質油、18は排ガス、20
は蒸気タービン用の蒸気、23は重質油と蒸気の二重管
からなる熱交換器、24は重質油の伝熱管、25は蒸気
の伝熱管、26は蒸気伝熱管のヘッダーである。
Further, FIG. 2 shows the structure of the heat exchanger 23. In FIG. 2, 16 is heavy oil, 18 is exhaust gas, and 20 is
Is a steam for a steam turbine, 23 is a heat exchanger consisting of a double tube of heavy oil and steam, 24 is a heavy oil heat transfer tube, 25 is a steam heat transfer tube, and 26 is a steam heat transfer tube header.

【0017】ガスタービン10下流に設置された排熱回
収ボイラー9では、蒸気タービン21を駆動するための
蒸気20を伝熱管25を介して排ガス18と熱交換する
ことにより製造する。また、タンク1より供給された重
質油16は、加圧ポンプ2により25Mpa程度に昇圧
された後、上記伝熱管25内に設置された伝熱管24を
通じて伝熱管25周囲の蒸気と熱交換することにより3
50℃程度に昇温される。さらに、水タンク5より供給
された水17は加圧ポンプ6により25Mpa程度に昇
圧され、排熱回収ボイラー9内に設置された伝熱管8を
介して550℃程度の排ガスと熱交換することにより、
450℃程度に昇温される。それぞれ昇温昇圧された重
質油16及び超臨界水17を改質器11にて混合し、改
質燃料19を製造する。
The exhaust heat recovery boiler 9 installed downstream of the gas turbine 10 is manufactured by exchanging heat between the steam 20 for driving the steam turbine 21 and the exhaust gas 18 via the heat transfer pipe 25. In addition, the heavy oil 16 supplied from the tank 1 is heat-exchanged with the steam around the heat transfer tube 25 through the heat transfer tube 24 installed in the heat transfer tube 25 after being pressurized to about 25 MPa by the pressurizing pump 2. By 3
The temperature is raised to about 50 ° C. Further, the water 17 supplied from the water tank 5 is pressurized to about 25 MPa by the pressurizing pump 6 and exchanges heat with the exhaust gas at about 550 ° C. through the heat transfer pipe 8 installed in the exhaust heat recovery boiler 9. ,
The temperature is raised to about 450 ° C. The heavy oil 16 and the supercritical water 17 that have been heated and pressurized are mixed in the reformer 11 to produce the reformed fuel 19.

【0018】超臨界水は化学的に活性が高いために、重
質油中の分子量が大きい成分を、容易により分子量の小
さい成分へ分解することができる。そのため、大分子量
成分の含有率に大きく依存する燃焼安定性や、燃料の粘
度を改質することが容易に行える。同時に、超臨界水は
油と分子レベルでも容易に混合する性質を持っているた
めに、均一な状態で重質油を改質することができる。さ
らには、前記改質燃料は排熱回収ボイラー9において一
種の熱回収をして、その熱をガスタービン側に戻してい
るために、コンバインドサイクル全体の熱効率も向上さ
せることができる。
Since supercritical water is chemically active, a component having a large molecular weight in heavy oil can be easily decomposed into a component having a smaller molecular weight. Therefore, it is possible to easily modify the combustion stability that greatly depends on the content ratio of the large molecular weight component and the viscosity of the fuel. At the same time, since supercritical water has the property of easily mixing with oil even at the molecular level, it is possible to reform heavy oil in a uniform state. Furthermore, since the reformed fuel recovers a kind of heat in the exhaust heat recovery boiler 9 and returns the heat to the gas turbine side, the thermal efficiency of the entire combined cycle can be improved.

【0019】このようにして製造した前記改質燃料19
を減圧弁14で減圧し、燃焼器15に供給することによ
り、ガスタービン10を駆動する。さらに、排熱回収ボ
イラー9にて生成された蒸気20により蒸気タービン2
1を駆動する。蒸気20は、コンデンサ12において凝
縮され、再度排熱回収ボイラーへ戻される。
The reformed fuel 19 produced in this way
The pressure is reduced by the pressure reducing valve 14 and supplied to the combustor 15 to drive the gas turbine 10. Furthermore, the steam turbine 2 is generated by the steam 20 generated in the exhaust heat recovery boiler 9.
Drive 1 The steam 20 is condensed in the condenser 12 and is returned to the exhaust heat recovery boiler again.

【0020】次に、第二実施例として重質油/蒸気の二
重管型熱交換器の伝熱管構造を図4に示す。図4で、1
6は重質油、20は蒸気タービン用の蒸気、24は重油
加熱用の伝熱管、25は蒸気加熱用の伝熱管、27は耐
腐食性に優れる材料である。重質油中には、硫黄,バナ
ジウム等の金属を腐食させる成分が含まれる。その腐食
を抑制するには、SUSなどの中でも、特に耐腐食性の
強いSUS316やSUS310Sなどを伝熱管に適用
することが望ましい。
Next, as a second embodiment, a heat transfer tube structure of a heavy oil / steam double tube heat exchanger is shown in FIG. In FIG. 4, 1
6 is heavy oil, 20 is steam for a steam turbine, 24 is a heat transfer tube for heating heavy oil, 25 is a heat transfer tube for heating steam, and 27 is a material having excellent corrosion resistance. Heavy oil contains components that corrode metals such as sulfur and vanadium. In order to suppress the corrosion, it is desirable to apply SUS316, SUS310S, or the like having particularly strong corrosion resistance to the heat transfer tube among SUS and the like.

【0021】一方、蒸気/水が混在すると、前記SUS
系の材料には、応力腐食割れが生じる。そのため、蒸気
/水に接する伝熱管の母材は、炭素鋼などの蒸気による
応力腐食割れ等を生じない材料を用いることが望まし
い。そのため、伝熱管24には炭素鋼を用い、その内面
にはSUS系のように耐腐食性に優れる材料27を、内
側を流れる重質油が帯の間隙から進入しないように、帯
状に設置しながら溶接により固定する。このような構造
を伝熱管24に適用することにより、外部の蒸気20に
よる応力腐食割れ,内部の重質油16中に含まれる硫黄
分等による腐食の発生を抑制できる。
On the other hand, if steam / water are mixed, the SUS
Stress corrosion cracking occurs in the material of the system. Therefore, it is desirable to use a material such as carbon steel that does not cause stress corrosion cracking due to steam as the base material of the heat transfer tube in contact with steam / water. Therefore, carbon steel is used for the heat transfer tube 24, and a material 27 having excellent corrosion resistance, such as SUS, is installed on the inner surface in a strip shape so that heavy oil flowing inside does not enter through the gap between the strips. While fixing by welding. By applying such a structure to the heat transfer tube 24, it is possible to suppress stress corrosion cracking caused by the steam 20 outside and corrosion caused by sulfur contained in the heavy oil 16 inside.

【0022】次に、本発明の第三実施例を図5に示す。
図5で、16は重質油、20は蒸気タービン用の蒸気、
24は伝熱管、28は圧力センサー、29は圧力計測装
置である。圧力センサー28により伝熱管25内の蒸気
圧力が測定される。計測された圧力は、圧力計測装置2
9により計測される。圧力のトレンドは、ガスタービン
負荷が一定であれば変化しない。蒸気そのものの圧力は
通常定格条件で4Mpa程度である。
Next, a third embodiment of the present invention is shown in FIG.
In FIG. 5, 16 is heavy oil, 20 is steam for a steam turbine,
Reference numeral 24 is a heat transfer tube, 28 is a pressure sensor, and 29 is a pressure measuring device. The pressure sensor 28 measures the vapor pressure in the heat transfer tube 25. The measured pressure is the pressure measuring device 2
9 is measured. The pressure trend does not change if the gas turbine load is constant. The pressure of steam itself is usually about 4 MPa under rated conditions.

【0023】それに対して、蒸気タービンに用いる蒸気
圧力に加圧した重質油は25Mpaであり、蒸気圧力よ
りも6倍程度の大きさである。そのために、伝熱管にリ
ークがある場合には伝熱管内の圧力は図6のように増加
する。これにより、圧力を計測することにより重質油の
リークを検知することができる。リーク検知と同時に、
熱交換器への重質油供給を遮断することにより、蒸気へ
の重質油混入を最低限に留めることができる。
On the other hand, the heavy oil pressurized to the steam pressure used in the steam turbine has a pressure of 25 MPa, which is about 6 times larger than the steam pressure. Therefore, when there is a leak in the heat transfer tube, the pressure in the heat transfer tube increases as shown in FIG. Thus, the leak of heavy oil can be detected by measuring the pressure. At the same time as leak detection,
By shutting off the supply of heavy oil to the heat exchanger, the mixture of heavy oil into the steam can be minimized.

【0024】以上のように、本発明の第一実施例によれ
ば、重質油加熱伝熱管を二重管構造にし、内側管に重質
油、外側管に蒸気を供給することにより、重質油を蒸気
を通じて間接的に加熱できる。そのため、内側伝熱管よ
り重質油がリークした場合でも、外側伝熱管内部は蒸気
であることにより、火災が発生することはない。
As described above, according to the first embodiment of the present invention, the heavy oil heating heat transfer tube has a double tube structure, and by supplying the heavy oil to the inner tube and the steam to the outer tube, the heavy oil is heated. The quality oil can be heated indirectly through steam. Therefore, even if the heavy oil leaks from the inner heat transfer tube, since the inside of the outer heat transfer tube is steam, no fire will occur.

【0025】さらに、本発明の第二実施例によれば、重
質油加熱用熱交換器の伝熱管において、母材として炭素
鋼等の蒸気/水共存雰囲気による応力腐食割れに強い材
料を用い、その内側にはSUSなどの耐腐食性に優れる
材料を用いることができる。このような構造により、外
側を流れる蒸気による応力腐食割れ,内側の重質油の硫
黄分等による腐食が発生するのを防止できる。
Further, according to the second embodiment of the present invention, in the heat transfer tube of the heat exchanger for heating heavy oil, a material such as carbon steel which is resistant to stress corrosion cracking due to a steam / water coexisting atmosphere is used. A material having excellent corrosion resistance such as SUS can be used on the inside thereof. With such a structure, it is possible to prevent stress corrosion cracking due to steam flowing outside and corrosion due to the sulfur content of heavy oil inside.

【0026】本発明の第三実施例によれば、重質油加熱
用熱交換器伝熱管内に圧力センサーを設けて監視し、異
常な圧力増加が認められた場合には熱交換器への重質油
供給を停止することにより、重質油が伝熱管からリーク
し、蒸気に混入するのを最小限に留めることができる。
According to the third embodiment of the present invention, a pressure sensor is provided inside the heat exchanger heat exchanger for heating heavy oil to monitor the temperature, and when an abnormal increase in pressure is observed, the heat exchanger is switched to the heat exchanger. By stopping the supply of the heavy oil, it is possible to prevent the heavy oil from leaking from the heat transfer tube and being mixed with the steam.

【0027】[0027]

【発明の効果】本発明によると、信頼性を向上した改質
燃料焚きガスタービン設備及びその油加熱方法を提供す
ることができるという効果を奏する。
According to the present invention, there is an effect that it is possible to provide a reformed fuel burning gas turbine equipment and an oil heating method thereof with improved reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を用いた重質油改質燃料で運用するコン
バインドガスタービン設備の実施例を示した図。
FIG. 1 is a diagram showing an embodiment of a combined gas turbine facility operated with a heavy oil reforming fuel using the present invention.

【図2】本発明を用いた二重管型重質油熱交換器構造を
示す図。
FIG. 2 is a diagram showing a double-tube heavy oil heat exchanger structure using the present invention.

【図3】重質油改質燃料で運用するコンバインドガスタ
ービン設備の実施例を示した図。
FIG. 3 is a diagram showing an embodiment of a combined gas turbine facility operated with a heavy oil reformed fuel.

【図4】本発明を用いた重質油改質燃料で運用するコン
バインドガスタービンの二重管型重質油加熱用熱交換器
の伝熱管構造を第二実施例として示す図。
FIG. 4 is a diagram showing a heat transfer tube structure of a double tube type heavy oil heating heat exchanger of a combined gas turbine operated with a heavy oil reformed fuel according to the present invention as a second embodiment.

【図5】本発明を用いた重質油改質燃料で運用するコン
バインドガスタービンの第四実施例を示す図。
FIG. 5 is a diagram showing a fourth embodiment of a combined gas turbine operated with a heavy oil reformed fuel according to the present invention.

【図6】重質油のリークがあった場合の、伝熱管内の圧
力変化。
FIG. 6 is a pressure change in the heat transfer tube when there is a leak of heavy oil.

【符号の説明】[Explanation of symbols]

1…重質油タンク、2…重質油加圧ポンプ、3…重質油
供給系統、4…重質油熱交換用伝熱管、5…水タンク、
6…水加圧ポンプ、7…水供給系統、8…水熱交換用伝
熱管、9…排熱回収ボイラー、10…ガスタービン、1
1…改質器、12…コンデンサ、13…改質燃料供給系
統、14…減圧弁、15…燃焼器、16…重質油、17
…水、18…排ガス、19…改質燃料、20…蒸気ター
ビン用の蒸気、21…蒸気タービン、22…発電機、2
3…熱交換器、24,25…伝熱管、26…ヘッダー、
27…材料、28,33…圧力センサー、29,34…
圧力計測装置、30…低温蒸気或いは凝縮水の出口、3
1…高温蒸気用キャビティ、32…低温蒸気或いは凝縮
水のキャビティ。
DESCRIPTION OF SYMBOLS 1 ... Heavy oil tank, 2 ... Heavy oil pressurizing pump, 3 ... Heavy oil supply system, 4 ... Heat transfer tube for heavy oil heat exchange, 5 ... Water tank,
6 ... Water pressurizing pump, 7 ... Water supply system, 8 ... Heat transfer tube for water heat exchange, 9 ... Exhaust heat recovery boiler, 10 ... Gas turbine, 1
DESCRIPTION OF SYMBOLS 1 ... Reformer, 12 ... Condenser, 13 ... Reforming fuel supply system, 14 ... Pressure reducing valve, 15 ... Combustor, 16 ... Heavy oil, 17
... Water, 18 ... Exhaust gas, 19 ... Reformed fuel, 20 ... Steam for steam turbine, 21 ... Steam turbine, 22 ... Generator, 2
3 ... Heat exchanger, 24, 25 ... Heat transfer tube, 26 ... Header,
27 ... Material, 28, 33 ... Pressure sensor, 29, 34 ...
Pressure measuring device, 30 ... Low-temperature steam or condensed water outlet, 3
1 ... Cavity for high temperature steam, 32 ... Cavity for low temperature steam or condensed water.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 明典 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 高橋 宏和 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 小泉 浩美 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 Fターム(参考) 4H013 AA02 AA04 AA05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Akinori Hayashi             2-12-1 Omika-cho, Hitachi-shi, Ibaraki Prefecture             Ceremony Company Hitachi, Ltd. (72) Inventor Hirokazu Takahashi             2-12-1 Omika-cho, Hitachi-shi, Ibaraki Prefecture             Ceremony Company Hitachi, Ltd. (72) Inventor Hiromi Koizumi             2-12-1 Omika-cho, Hitachi-shi, Ibaraki Prefecture             Ceremony Company Hitachi, Ltd. F-term (reference) 4H013 AA02 AA04 AA05

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】重質油を昇温昇圧し、超臨界水と混合させ
ることにより前記重質油を改質及び軽質化した改質燃料
にて運用されるガスタービンを備えた改質燃料焚きガス
タービン設備において、 前記ガスタービンの下流に設置した排熱回収ボイラー内
に二重管構造の伝熱管を設置し、その二重管の内側管に
該重質油を供給し、該二重管の外側管に非燃焼性の流体
を供給するよう構成したことを特徴とする改質燃料焚き
ガスタービン設備。
Claim: What is claimed is: 1. Refueling a fuel using a reformed fuel obtained by reforming and lightening the heavy oil by heating and boosting the heavy oil and mixing with supercritical water. In a gas turbine facility, a heat transfer pipe having a double pipe structure is installed in an exhaust heat recovery boiler installed downstream of the gas turbine, and the heavy oil is supplied to an inner pipe of the double pipe, A reformed fuel-fired gas turbine facility, characterized in that it is configured to supply a non-combustible fluid to the outer pipe of the.
【請求項2】重質油を昇温昇圧し、超臨界水と混合させ
ることにより前記重質油を改質及び軽質化した改質燃料
にて運用されるガスタービンを備えた改質燃料焚きガス
タービン設備において、 前記ガスタービンの下流に設置した排熱回収ボイラー内
に二重管構造の伝熱管を設置し、その二重管の内側管に
該重質油を供給し、該二重管の外側管に非燃焼性の流体
を供給するよう構成し、該非燃焼性の流体を介して排熱
回収ボイラー中を流れる排ガスと前記重質油とを熱交換
することを特徴とする改質燃料焚きガスタービン設備。
2. A reformed fuel firing equipped with a gas turbine operated with a reformed fuel obtained by reforming and lightening the heavy oil by heating and pressurizing the heavy oil and mixing it with supercritical water. In a gas turbine facility, a heat transfer pipe having a double pipe structure is installed in an exhaust heat recovery boiler installed downstream of the gas turbine, and the heavy oil is supplied to an inner pipe of the double pipe, A reformed fuel configured to supply a non-combustible fluid to the outer pipe of the exhaust gas, and heat-exchanging the exhaust gas flowing in the exhaust heat recovery boiler with the heavy oil via the non-combustible fluid. Fired gas turbine equipment.
【請求項3】請求項2に記載の改質燃料焚きガスタービ
ン設備において、 前記二重管の外側管を流れる非燃焼性の流体として、該
排熱回収ボイラー内で蒸気タービン用蒸気を生成する水
を用いることを特徴とする改質燃料焚きガスタービン設
備。
3. The reformed fuel-fired gas turbine equipment according to claim 2, wherein steam for steam turbine is generated in the exhaust heat recovery boiler as a non-combustible fluid flowing through the outer pipe of the double pipe. A reformed fuel-fired gas turbine facility characterized by using water.
【請求項4】請求項2又は請求項3記載の改質燃料焚き
ガスタービン設備において、 前記二重管の内側管内面に耐腐食性に優れる金属を溶射
したことを特徴とする改質燃料焚きガスタービン設備。
4. The reformed fuel-fired gas turbine equipment according to claim 2 or 3, wherein a metal having excellent corrosion resistance is sprayed on the inner surface of the inner pipe of the double pipe. Gas turbine equipment.
【請求項5】請求項2〜請求項4の何れかに記載の改質
燃料焚きガスタービン設備において、 前記二重管の内外管各部の圧力変化を測定し、圧力に異
常が認められた場合に、該二重管への重質油供給を停止
することを特徴とする改質燃料焚きガスタービン設備。
5. The reformed fuel-fired gas turbine equipment according to any one of claims 2 to 4, wherein a pressure change in each part of the inner and outer pipes of the double pipe is measured, and an abnormal pressure is detected. In addition, the reformed fuel-fired gas turbine equipment, characterized in that the supply of heavy oil to the double pipe is stopped.
【請求項6】重質油を昇温昇圧し、超臨界水と混合させ
ることにより前記重質油を改質及び軽質化した改質燃料
にて運用されるガスタービンを備えた改質燃料焚きガス
タービン設備の油加熱方法において、 前記ガスタービンの下流に設置した排熱回収ボイラー内
に二重管構造の伝熱管を設置し、その二重管の内側管に
該重質油を供給し、該二重管の外側管に非燃焼性の流体
を供給し、 該非燃焼性の流体を介して排熱回収ボイラー中を流れる
排ガスと前記重質油とを熱交換することを特徴とする改
質燃料焚きガスタービン設備の油加熱方法。
6. A reformed fuel firing equipped with a gas turbine operated with a reformed fuel obtained by reforming and lightening the heavy oil by heating and pressurizing the heavy oil and mixing it with supercritical water. In an oil heating method for gas turbine equipment, a heat transfer pipe having a double pipe structure is installed in an exhaust heat recovery boiler installed downstream of the gas turbine, and the heavy oil is supplied to an inner pipe of the double pipe, A reforming characterized in that a non-combustible fluid is supplied to the outer pipe of the double pipe, and the exhaust gas flowing through the exhaust heat recovery boiler and the heavy oil are heat-exchanged via the non-combustible fluid. Oil heating method for fuel-fired gas turbine equipment.
JP2002093554A 2002-03-29 2002-03-29 Reformed fuel-fired gas turbine equipment and oil heating method thereof Expired - Fee Related JP3788379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093554A JP3788379B2 (en) 2002-03-29 2002-03-29 Reformed fuel-fired gas turbine equipment and oil heating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093554A JP3788379B2 (en) 2002-03-29 2002-03-29 Reformed fuel-fired gas turbine equipment and oil heating method thereof

Publications (2)

Publication Number Publication Date
JP2003286865A true JP2003286865A (en) 2003-10-10
JP3788379B2 JP3788379B2 (en) 2006-06-21

Family

ID=29237956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093554A Expired - Fee Related JP3788379B2 (en) 2002-03-29 2002-03-29 Reformed fuel-fired gas turbine equipment and oil heating method thereof

Country Status (1)

Country Link
JP (1) JP3788379B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1616931A1 (en) * 2004-07-15 2006-01-18 Hitachi, Ltd. Modified fuel burning gas turbine and method of operating the same
JP2006232961A (en) * 2005-02-24 2006-09-07 Hitachi Ltd Heavy oil reforming apparatus and heavy oil combustion gas turbine system
JP2007127051A (en) * 2005-11-04 2007-05-24 Hitachi Ltd Gas turbine facility using reformed fuel as fuel and its operating method
JP2009228475A (en) * 2008-03-19 2009-10-08 Mitsubishi Heavy Ind Ltd Gas turbine power generation system
JP2012092852A (en) * 2012-02-16 2012-05-17 Mitsubishi Heavy Ind Ltd Gas turbine power generation system
JP2014196743A (en) * 2014-05-09 2014-10-16 三菱重工業株式会社 Gas turbine power generation system
KR20170030889A (en) * 2015-09-10 2017-03-20 두산중공업 주식회사 A gas turbine combustor control is possible by using a dual fuel tube containing the sensor and Burner control method using a pressure sensor.
JP2019215004A (en) * 2013-10-08 2019-12-19 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Casing for rotating machine and rotating machine including such casing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282491A (en) * 1987-05-14 1988-11-18 Kawasaki Heavy Ind Ltd Exhaust heat recovery method
JPH06207796A (en) * 1993-01-08 1994-07-26 Nippon Steel Corp Leakage sensing and preventing mechanism for mounting structure of heat transfer tube and tube plate of multitubular heat exchanger
JPH08313192A (en) * 1995-05-19 1996-11-29 Hitachi Zosen Corp Spray coating film for heat resistant member
JPH1180750A (en) * 1997-09-03 1999-03-26 Mitsubishi Heavy Ind Ltd Combined cycle power generation method and power generator
JPH11173111A (en) * 1997-12-10 1999-06-29 Toshiba Corp Thermal power plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282491A (en) * 1987-05-14 1988-11-18 Kawasaki Heavy Ind Ltd Exhaust heat recovery method
JPH06207796A (en) * 1993-01-08 1994-07-26 Nippon Steel Corp Leakage sensing and preventing mechanism for mounting structure of heat transfer tube and tube plate of multitubular heat exchanger
JPH08313192A (en) * 1995-05-19 1996-11-29 Hitachi Zosen Corp Spray coating film for heat resistant member
JPH1180750A (en) * 1997-09-03 1999-03-26 Mitsubishi Heavy Ind Ltd Combined cycle power generation method and power generator
JPH11173111A (en) * 1997-12-10 1999-06-29 Toshiba Corp Thermal power plant

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1616931A1 (en) * 2004-07-15 2006-01-18 Hitachi, Ltd. Modified fuel burning gas turbine and method of operating the same
US7594387B2 (en) 2004-07-15 2009-09-29 Hitachi, Ltd. Modified fuel burning gas turbine
JP2006232961A (en) * 2005-02-24 2006-09-07 Hitachi Ltd Heavy oil reforming apparatus and heavy oil combustion gas turbine system
JP4680628B2 (en) * 2005-02-24 2011-05-11 株式会社日立製作所 Heavy oil reformer and heavy oil-fired gas turbine system
JP2007127051A (en) * 2005-11-04 2007-05-24 Hitachi Ltd Gas turbine facility using reformed fuel as fuel and its operating method
JP4550720B2 (en) * 2005-11-04 2010-09-22 株式会社日立製作所 Gas turbine equipment using reformed fuel as fuel and operation method thereof
JP2009228475A (en) * 2008-03-19 2009-10-08 Mitsubishi Heavy Ind Ltd Gas turbine power generation system
JP2012092852A (en) * 2012-02-16 2012-05-17 Mitsubishi Heavy Ind Ltd Gas turbine power generation system
JP2019215004A (en) * 2013-10-08 2019-12-19 ヌオーヴォ ピニォーネ ソチエタ レスポンサビリタ リミタータNuovo Pignone S.R.L. Casing for rotating machine and rotating machine including such casing
JP2014196743A (en) * 2014-05-09 2014-10-16 三菱重工業株式会社 Gas turbine power generation system
KR20170030889A (en) * 2015-09-10 2017-03-20 두산중공업 주식회사 A gas turbine combustor control is possible by using a dual fuel tube containing the sensor and Burner control method using a pressure sensor.
KR101951751B1 (en) * 2015-09-10 2019-02-25 두산중공업 주식회사 A gas turbine combustor control is possible by using a dual fuel tube containing the sensor and Burner control method using a pressure sensor.

Also Published As

Publication number Publication date
JP3788379B2 (en) 2006-06-21

Similar Documents

Publication Publication Date Title
JP6245404B1 (en) Combustion equipment and power generation equipment
CA2190675C (en) Conversion of waste heat to power
US7874156B2 (en) Methods and apparatus for heating a fluid
JPH0339166B2 (en)
JP2003286865A (en) Reformed fuel combustion gas turbine device and oil- heating method therefor
CA2701592A1 (en) Organic rankine cycle system and method
CN101305163B (en) Method for starting a steam turbine installation
Hill Study of low-grade waste heat recovery and energy transportation systems in industrial applications
JP2003286858A (en) Gas turbine equipment for burning reformed fuel and method of oil-heating the equipment
JP3643676B2 (en) Press injection method of boiler exhaust gas into oil field
JP2010138884A (en) Heat exchanging device and engine
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
CN2911592Y (en) Water heat medium air preheater for heating furnace
CN1979051A (en) Boiler smoke after-heat utilizing device
JP4150948B2 (en) Liquefied gas supply device
CA2701284C (en) An improved organic rankine cycle system and method
EP2344731B1 (en) Start-up system mixing sphere
JP5013414B2 (en) Gas turbine system and power generation system
TWI461523B (en) Method and reactor for gasification of powdery, solid or liquid fuels such as coal, pet coke, oil, bitumen or the like
KR20180073998A (en) Self generating boiler plant for ironworks
CN102393024A (en) Composite phase change heat exchange device for boiler flue gas waste heat recovery
JPH08260909A (en) Fresh water generator
JP2930520B2 (en) Heat recovery unit for boiler with denitration equipment
PL107696B1 (en) OKRET POWER PLANT WITH HEAT RECOVERY SYSTEM
CN213630388U (en) Boiler feed water preheating and deoxidizing system in comprehensive energy system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060320

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees