JP2003286524A - METHOD FOR MANUFACTURING (Ni, Al)-V ALLOY MATERIAL - Google Patents

METHOD FOR MANUFACTURING (Ni, Al)-V ALLOY MATERIAL

Info

Publication number
JP2003286524A
JP2003286524A JP2002089467A JP2002089467A JP2003286524A JP 2003286524 A JP2003286524 A JP 2003286524A JP 2002089467 A JP2002089467 A JP 2002089467A JP 2002089467 A JP2002089467 A JP 2002089467A JP 2003286524 A JP2003286524 A JP 2003286524A
Authority
JP
Japan
Prior art keywords
alloy
alloy material
base material
manufacturing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002089467A
Other languages
Japanese (ja)
Other versions
JP3931227B2 (en
Inventor
Tetsuya Ozaki
哲也 尾崎
Masao Komaki
政雄 古牧
Mutsumi Nishimura
睦 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002089467A priority Critical patent/JP3931227B2/en
Publication of JP2003286524A publication Critical patent/JP2003286524A/en
Application granted granted Critical
Publication of JP3931227B2 publication Critical patent/JP3931227B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a V-based alloy material which can be a material for producing a large area of a hydrogen separation and refinement film with an arbitrary form, in order to treat a large quantity of hydrogen. <P>SOLUTION: This manufacturing method is characterized by diffusing and infiltrating V, or V and Al into a Ni substrate to form the alloy phase, or diffusing and infiltrating one or more of Ni and Al in a V substrate to form the alloy phase. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この出願の発明は(Ni,A
l)−V合金材の製造方法に関するものである。さらに
詳しくは、この出願の発明は、水素分離精製用部材とし
て有用な、(Ni,Al)−V合金材を任意の形状のも
のとして製造可能とし、大流量の水素の分離精製をも可
能とすることのできる、(Ni,Al)−V合金材の新
しい製造方法に関するものである。
TECHNICAL FIELD The invention of this application is (Ni, A
l) -V alloy material manufacturing method. More specifically, the invention of this application makes it possible to manufacture a (Ni, Al) -V alloy material, which is useful as a member for hydrogen separation and purification, in an arbitrary shape, and enables separation and purification of hydrogen at a large flow rate. The present invention relates to a new manufacturing method of a (Ni, Al) -V alloy material that can be manufactured.

【0002】[0002]

【従来の技術と発明の課題】Ni、あるいはAlを含有
するV基合金は高い水素透過能を有し、現在、水素透過
膜として実用化レベルにあるPd合金と比較して安価で
あるという特徴をもっている。このような特徴のあるV
基合金について、水素の分離精製膜としての実用化に向
けて、この出願の発明者らによってこれまでにも詳細な
検討が進められてきている(たとえば、Materials Tran
sactions, JIM, Vol.32,No.5(1991),pp.501−507;
Journal of Alloys and Compounds 330-332(2002)902−
906)。
2. Description of the Related Art V-based alloys containing Ni or Al have a high hydrogen permeability and are less expensive than Pd alloys currently in practical use as hydrogen permeable membranes. I have V with such characteristics
With respect to the base alloy, the inventors of the present application have made detailed studies for practical use as a hydrogen separation / purification membrane (for example, Materials Tran).
sactions, JIM, Vol.32, No.5 (1991), pp.501-507;
Journal of Alloys and Compounds 330-332 (2002) 902-
906).

【0003】しかしながら、これらの合金は酸化されや
すく、酸化物の融点が低いことから熱間圧延が難しく、
インゴットを直接冷間圧延することもわれが生じやすい
ことから実際的に困難であるという問題があった。
However, since these alloys are easily oxidized and the melting point of the oxide is low, hot rolling is difficult,
There is also a problem that it is actually difficult to directly cold-roll an ingot because cracks are likely to occur.

【0004】このため、従来では、薄板状のものを得る
にはインゴットを切断した後に研磨によって薄くすると
いう汎用性の低い方法による外になく、任意の形状に、
しかも大面積のものにすることができないという問題が
あった。
Therefore, conventionally, in order to obtain a thin plate-shaped product, the ingot is cut and then thinned by polishing.
Moreover, there is a problem that it cannot be made a large area.

【0005】そこで、この出願の発明は、以上のとおり
の従来の問題点を解消し、水素の分離精製膜として、任
意の形状に、しかも大流量の水素を対象とすることがで
きるように大面積のものとすることが可能な、V基合金
材の新しい製造方法を提供することを課題としている。
Therefore, the invention of the present application solves the conventional problems as described above, and is large so that it can be used as a hydrogen separation and purification membrane in any shape and with a large flow rate of hydrogen. It is an object of the present invention to provide a new method for producing a V-based alloy material that can have an area.

【0006】[0006]

【課題を解決するための手段】この出願の発明は、上記
の課題を解決するものとして、第1には、Ni基材中に
VまたはVとAlを拡散浸透させて合金相を形成するこ
とを特徴とする(Ni,Al)−V合金材の製造方法を
提供し、第2には、V基材中にNiおよびAlの1種以
上を拡散浸透させて合金相を形成することを特徴とする
(Ni,Al)−V合金材の製造方法を提供する。
Means for Solving the Problems In order to solve the above problems, the invention of the present application is as follows. First, V or V and Al are diffused and permeated into a Ni base material to form an alloy phase. And a second method for forming an alloy phase by diffusing and permeating at least one of Ni and Al into a V base material. A method of manufacturing a (Ni, Al) -V alloy material is provided.

【0007】また、この出願の発明は、上記方法につい
て、第3には、ガス状の金属ハロゲン化物を基材と接触
させて拡散浸透させることを特徴とする(Ni,Al)
−V合金材の製造方法を、第4には、ガス状の金属ハロ
ゲン化物の生成とその温度勾配上での化学輸送、並びに
基材との接触のプロセスを含むことを特徴とする(N
i,Al)−V合金材の製造方法を、第5には、基材は
薄板またはパイプ状体であることを特徴とする(Ni,
Al)−V合金材の製造方法を提供する。
The third aspect of the invention of the present application is the above method, wherein a gaseous metal halide is brought into contact with a substrate to diffuse and permeate (Ni, Al).
Fourth, the method for producing a -V alloy material is characterized by including a process of producing a gaseous metal halide and its chemical transport on a temperature gradient, and a contact with a substrate (N.
Fifth, the base material is a thin plate or a pipe-shaped body (Ni, Al) -V alloy material (Ni,
An Al) -V alloy material manufacturing method is provided.

【0008】以上のとおりのこの出願の発明において
は、気相拡散浸透法を利用して合金材を製造するため、
加工の難しい合金材に比べて加工が容易なNiあるいは
Vの純金属を冷間圧延等によって予め所定の形状に加工
しておいたものを合金化することができる。このため、
複雑な形状のものをはじめとして任意の形状のものの、
さらには大面積のものの製造が容易とされる。
In the invention of this application as described above, since the alloy material is manufactured by utilizing the vapor phase diffusion infiltration method,
It is possible to alloy a pure metal of Ni or V, which is easier to process than an alloy material that is difficult to process, into a predetermined shape by cold rolling or the like in advance. For this reason,
Of any shape, including complicated shapes,
Further, it is easy to manufacture a large area.

【0009】そして拡散浸透法であることから、温度や
圧力、気体濃度等の条件の選択、変更によって合金の組
成を精密に制御することが可能であり、さらには傾斜組
成のものを得ることも可能である。
Since it is a diffusion infiltration method, it is possible to precisely control the composition of the alloy by selecting and changing the conditions such as temperature, pressure and gas concentration, and also to obtain a graded composition. It is possible.

【0010】[0010]

【発明の実施の形態】この出願の発明は上記のとおりの
特徴をもつものであるが、以下にその実施の形態につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the characteristics as described above, and the embodiments thereof will be described below.

【0011】この出願の発明においては、水素の分離精
製用の膜体をその主な用途とするV基合金材を製造す
る。その組成としては、Ni−V合金、Ni−Al−V
合金、そしてAl−V合金のいずれかのものとなる。
In the invention of this application, a V-base alloy material is produced, which has a main use as a membrane for separating and refining hydrogen. Its composition is Ni-V alloy, Ni-Al-V.
Either the alloy or the Al-V alloy.

【0012】これらの合金材を製造するための手段とし
て、気体(ガス)と基材との接触による拡散浸透法が採
用される。基材としては、NiもしくはVの純金属が使
用され、これらの基体は、あらかじめ所定の形状、たと
えば薄板、円筒体、さらには他の複雑形状のものに成形
加工されていてよい。
As a means for producing these alloy materials, a diffusion permeation method in which a gas (gas) is brought into contact with a substrate is adopted. As the base material, a pure metal of Ni or V is used, and these base materials may be previously formed into a predetermined shape, for example, a thin plate, a cylindrical body, or another complicated shape.

【0013】拡散浸透のためにこれらの基材に接触され
る気体(ガス)は、Ni基材の場合には、VまたはVと
Alとの化合物であり、V基材の場合には、Ni、Al
の化合物の1種以上である。これらの化合物は、所定の
温度レベルにおいてガス状で存在し得るものであれば各
種のものであってよく、たとえば塩化物、沃化物等のハ
ロゲン化物や、カルボニル化合物等が考慮される。これ
らのガス状の金属化合物の使用に際しては、その生成
と、温度勾配上での化学輸送、並びに基材との接触を連
続的プロセスとして行うことも考慮される。
The gas that is contacted with these substrates for diffusional permeation is either V or a compound of V and Al in the case of Ni substrates and Ni in the case of V substrates. , Al
One or more compounds of These compounds may be various compounds as long as they can exist in a gaseous state at a predetermined temperature level, and halides such as chlorides and iodides, carbonyl compounds and the like are considered. When using these gaseous metal compounds, it is also conceivable to carry out their production, chemical transport on a temperature gradient and contact with the substrate as a continuous process.

【0014】実際、この出願の発明者は、金属V、N
i、Alを塩化水素、ヨウ素などの存在下で加熱するこ
とにより形成した気体の塩化物またはヨウ化物が温度勾
配に沿って輸送された後分解し、もとの金属として析出
する化学輸送反応に着目し、温度傾斜炉上の1ヶ所に金
属V、Ni、Alと塩化水素の発生源を設置し、これよ
り離れたところにVまたはNi基材を設置し、それぞれ
を異なる温度に加熱することにより、金属と塩化水素と
の反応により生成した塩化物が温度勾配上を化学輸送さ
れ、基材上で分解し拡散浸透することで、合金層が形成
されることを知見している。形成された合金の組成は輸
送原料と基材との温度差によって異なっており、反応条
件を変えてやることにより、合金組成を精密に制御する
ことが可能であることが確認されている。さらに傾斜組
成のものを得ることも可能である。加工がきわめて容易
な純V、Niを冷間圧延等によって予め任意の形状とし
た後に上記の処理を施すことにより、従来法では製造す
るのが困難であった複雑な形状のV基合金膜を製造する
ことが可能となる。
In fact, the inventor of this application has found that metals V, N
In the chemical transport reaction in which gaseous chloride or iodide formed by heating i and Al in the presence of hydrogen chloride, iodine, etc. is decomposed after being transported along a temperature gradient and precipitated as the original metal. Paying attention, install a source of metal V, Ni, Al and hydrogen chloride in one place on the temperature gradient furnace, install a V or Ni base material in a place apart from this, and heat each to a different temperature. According to the above, it has been found that a chloride produced by the reaction between a metal and hydrogen chloride is chemically transported on a temperature gradient, decomposes on a base material and diffuses and permeates to form an alloy layer. The composition of the formed alloy differs depending on the temperature difference between the transport raw material and the base material, and it has been confirmed that the alloy composition can be precisely controlled by changing the reaction conditions. It is also possible to obtain a composition with a gradient composition. By subjecting pure V and Ni, which are extremely easy to process, to an arbitrary shape by cold rolling or the like and then performing the above-mentioned treatment, a V-based alloy film having a complicated shape, which is difficult to manufacture by the conventional method, can be obtained. It becomes possible to manufacture.

【0015】水素分離合金の原料となりうる金属は金属
単独での蒸気圧が非常に低いものばかりであり、気相中
を経由して析出させるには蒸着、スパッタリングなどの
物理的な方法か化学輸送反応のいずれかを用いる必要が
ある。しかしながら、前者の方法は装置がきわめて高価
であり、水素分離合金膜の大量生産に向かない上に、パ
イプ状などの複雑な形状の基材上へ均一に析出させるの
が難しい。これに対し、化学輸送反応を用いる場合に
は、原料の入手が容易であり、塩化物、ヨウ化物等は1
000℃以下の比較的低温でも高い蒸気圧をもつことか
ら、たとえば塩化水素、ヨウ素を輸送剤とすることが実
際的に有効である。
Metals that can be used as raw materials for hydrogen separation alloys have only a very low vapor pressure as a single metal, and in order to deposit them through the gas phase, physical methods such as vapor deposition and sputtering, or chemical transport. Either of the reactions needs to be used. However, the former method requires extremely expensive equipment, is not suitable for mass production of hydrogen separation alloy membranes, and is difficult to uniformly deposit on a substrate having a complicated shape such as a pipe shape. On the other hand, when the chemical transport reaction is used, the raw materials are easily available, and chloride, iodide, etc.
Since it has a high vapor pressure even at a relatively low temperature of 000 ° C. or less, it is practically effective to use hydrogen chloride or iodine as a transport agent.

【0016】そこで以下に実施例を示し、さらに詳しく
この出願の発明について説明する。もちろん以下の例に
よって発明が限定されることはない。
The invention of this application will now be described in more detail with reference to the following examples. Of course, the invention is not limited to the following examples.

【0017】[0017]

【実施例】図1に例示した構成の装置を用いた。図中の
符号は次のものを示している。1:温度傾斜炉、2:石
英管、3:Ni基材、4:アルミナボート、5:化学輸
送原料(金属V、塩化白金、塩化アンモニウム) まず、10mm×10mm×0.2mmのNi板の両面
を機械研磨により鏡面に仕上げた。HCl発生源として
塩化白金0.0733gと塩化アンモニウム0.0098gを混合し
たものをNi箔で包み、輸送原料である塊状のV金属と
ともに石英管(2)の封じた一端に化学輸送原料(5)
として置いた。そこから6cmほど離れたところにNi
板(3)を置いた。石英管(2)を真空ラインに接続
し、10-6Torr台まで引いた状態でもう一端を封じ
た。独立した複数の加熱部をもち温度勾配が設定可能な
電気炉内に最低温度が900℃、最高温度が924℃と
なる温度勾配を図1のように設定した。石英管(2)の
原料部(5)が900℃に、Ni板(3)が924℃と
なるように石英管(2)を電気炉内に配置した。8日
後、石英管(2)を取り出し冷却した。Ni板(3)の
試料重量は0.158gから0.200gへ0.032gの増加が見ら
れた。また、試料の厚さは0.20mmから0.31mmへ0.11
mm増加した。図2はこの拡散浸透実験前後のNi基材
のX線回折パターンである。実験前の基材はNiに基づ
くピーク以外ほとんど観察されないのに対し、実験後の
基材ではNiのピークは消え、fcc相とσ相に基づく
ピークが現れた。fcc相はNiと同じ構造であるが、
ピーク全体が低角度側へシフトしており、計算された格
子定数は3.638とNiの格子定数3.5238に比べて大きい
ことからNiに比べて原子半径の大きいVが固溶するこ
とで格子が膨張したものと判断される。Ni−V二元系
状態図から基材温度の924℃でfcc相とσ相の二相
領域をとるのはVが39〜55at%の場合であり、X
線回折の結果は8日間の実験でこれに相当する量のVが
Ni基材中に拡散浸透したことを示している。
EXAMPLE An apparatus having the configuration illustrated in FIG. 1 was used. The reference numerals in the figure indicate the following. 1: Temperature gradient furnace, 2: Quartz tube, 3: Ni base material, 4: Alumina boat, 5: Chemical transport raw material (metal V, platinum chloride, ammonium chloride) First, a 10 mm × 10 mm × 0.2 mm Ni plate was prepared. Both sides were mirror-polished by mechanical polishing. A mixture of 0.0733 g of platinum chloride and 0.0098 g of ammonium chloride as a source of HCl was wrapped in Ni foil, and a chemical transport material (5) was attached to one end of the quartz tube (2) that was sealed together with the bulk V metal that was the transport material.
I put it as. Ni about 6 cm away from there
The plate (3) was placed. The quartz tube (2) was connected to a vacuum line, and the other end was sealed while being pulled up to the level of 10 −6 Torr. As shown in FIG. 1, a temperature gradient was set such that the lowest temperature was 900 ° C. and the highest temperature was 924 ° C. in an electric furnace having a plurality of independent heating parts and capable of setting the temperature gradient. The quartz tube (2) was placed in an electric furnace so that the raw material part (5) of the quartz tube (2) was 900 ° C and the Ni plate (3) was 924 ° C. After 8 days, the quartz tube (2) was taken out and cooled. The sample weight of the Ni plate (3) increased from 0.158 g to 0.200 g by 0.032 g. The thickness of the sample is 0.11 from 0.20mm to 0.31mm.
mm increased. FIG. 2 is an X-ray diffraction pattern of the Ni base material before and after the diffusion and penetration experiment. Almost no peaks other than the peaks based on Ni were observed in the base material before the experiment, whereas the Ni peaks disappeared in the base material after the experiment and peaks based on the fcc phase and the σ phase appeared. The fcc phase has the same structure as Ni,
The whole peak is shifted to the lower angle side, and the calculated lattice constant is 3.638, which is larger than the lattice constant of Ni, 3.5238. Therefore, V has a large atomic radius as compared with Ni, and the lattice expands. Judged as something. It is the case where V is 39 to 55 at% that the two-phase region of the fcc phase and the σ phase is taken from the Ni-V binary system phase diagram at the base material temperature of 924 ° C.
The line diffraction results show that an equivalent amount of V diffused and penetrated into the Ni substrate in the 8 day experiment.

【0018】[0018]

【発明の効果】以上詳しく説明したとおり、この出願の
発明によって、任意の形状、任意の組成のV−Ni合金
膜体の作製が可能となる。これによりV−Ni合金を用
いた水素分離装置を作製することが可能となり、低温で
大量の水素を効率的に純化することが可能になる。
As described above in detail, according to the invention of this application, it is possible to manufacture a V-Ni alloy film having an arbitrary shape and an arbitrary composition. This makes it possible to fabricate a hydrogen separation device using a V-Ni alloy and efficiently purify a large amount of hydrogen at low temperatures.

【0019】水素分離膜材料として知られているPdの
価格はこの1年で金の2〜4倍に高騰し、膜材料として
使用するのはコスト的に苦しい状況にある。これに対し
てNi、Alは極めて安価であり、また、Vは1g当た
りの価格がPdの1/10以下であるため、Vを主成分
とする透過膜を分離装置に利用することができれば大幅
な低価格化が可能となる。そしてこの出願の発明の合金
材は燃料電池自動車用の水素製造装置としても応用可能
なものであり、燃料電池自動車の普及に貢献するものと
考えられる。
The price of Pd, which is known as a hydrogen separation membrane material, has risen 2 to 4 times as much as that of gold in the past year, and it is difficult to use it as a membrane material in terms of cost. On the other hand, Ni and Al are extremely inexpensive, and the price of V per gram is 1/10 or less of Pd. It is possible to reduce the price. The alloy material of the invention of this application is also applicable as a hydrogen production device for fuel cell vehicles, and is considered to contribute to the spread of fuel cell vehicles.

【図面の簡単な説明】[Brief description of drawings]

【図1】拡散浸透のための実験的装置の構成を例示した
図である。
FIG. 1 is a diagram illustrating the configuration of an experimental device for diffusion osmosis.

【図2】Ni基材のX線回折パターンであって、(a)
実験前、(b)924℃で192時間の拡散浸透実験後
のものを示す。
FIG. 2 is an X-ray diffraction pattern of a Ni base material, (a)
Before the experiment, (b) after the diffusion and penetration experiment at 924 ° C. for 192 hours is shown.

【符号の説明】[Explanation of symbols]

1 温度傾斜炉 2 石英管 3 Ni基材 4 アルミナボート 5 輸送原料(金属V、塩化白金、塩化アンモニウム) 1 Temperature gradient furnace 2 Quartz tube 3 Ni base material 4 Alumina boat 5 Transport materials (metal V, platinum chloride, ammonium chloride)

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA41 MA02 MA03 MB03 MC12X NA31 NA50 PA01 PB18 PB66 PC80    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D006 GA41 MA02 MA03 MB03 MC12X                       NA31 NA50 PA01 PB18 PB66                       PC80

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Ni基材中にVまたはVとAlを拡散浸
透させて合金相を形成することを特徴とする(Ni,A
l)−V合金材の製造方法。
1. An alloy phase is formed by diffusing and permeating V or V and Al into a Ni base material (Ni, A).
l) -V alloy material manufacturing method.
【請求項2】 V基材中にNiおよびAlの1種以上を
拡散浸透させて合金相を形成することを特徴とする(N
i,Al)−V合金材の製造方法。
2. An alloy phase is formed by diffusing and permeating at least one of Ni and Al into a V base material (N.
i, Al) -V alloy material manufacturing method.
【請求項3】 ガス状の金属ハロゲン化物を基材と接触
させて拡散浸透させることを特徴とする請求項1または
2の(Ni,Al)−V合金材の製造方法。
3. The method for producing a (Ni, Al) -V alloy material according to claim 1, wherein the gaseous metal halide is brought into contact with the base material to diffuse and permeate.
【請求項4】 ガス状の金属ハロゲン化物の生成とその
温度勾配上での化学輸送、並びに基材との接触のプロセ
スを含むことを特徴とする請求項3の(Ni,Al)−
V合金材の製造方法。
4. The (Ni, Al)-of claim 3, characterized in that it comprises the process of the production of the gaseous metal halide and its chemical transport over a temperature gradient and the contact with the substrate.
V alloy material manufacturing method.
【請求項5】 基材は薄板またはパイプ状体であること
を特徴とする請求項1なしい4のいずれかの(Ni,A
l)−V合金材の製造方法。
5. The substrate (Ni, A) according to claim 1, wherein the substrate is a thin plate or a pipe.
l) -V alloy material manufacturing method.
JP2002089467A 2002-03-27 2002-03-27 Method for producing Ni substrate having Ni-V alloy phase Expired - Lifetime JP3931227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002089467A JP3931227B2 (en) 2002-03-27 2002-03-27 Method for producing Ni substrate having Ni-V alloy phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002089467A JP3931227B2 (en) 2002-03-27 2002-03-27 Method for producing Ni substrate having Ni-V alloy phase

Publications (2)

Publication Number Publication Date
JP2003286524A true JP2003286524A (en) 2003-10-10
JP3931227B2 JP3931227B2 (en) 2007-06-13

Family

ID=29235044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002089467A Expired - Lifetime JP3931227B2 (en) 2002-03-27 2002-03-27 Method for producing Ni substrate having Ni-V alloy phase

Country Status (1)

Country Link
JP (1) JP3931227B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055295A (en) * 2006-08-30 2008-03-13 Ihi Corp Hydrogen separation membrane
JP2013215717A (en) * 2012-03-12 2013-10-24 Tokyo Gas Co Ltd Hydrogen separation membrane and hydrogen separation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055295A (en) * 2006-08-30 2008-03-13 Ihi Corp Hydrogen separation membrane
JP2013215717A (en) * 2012-03-12 2013-10-24 Tokyo Gas Co Ltd Hydrogen separation membrane and hydrogen separation method

Also Published As

Publication number Publication date
JP3931227B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
Ryi et al. Electroless Pd membrane deposition on alumina modified porous Hastelloy substrate with EDTA-free bath
Shu et al. Structurally stable composite Pd Ag alloy membranes: Introduction of a diffusion barrier
David et al. Devlopment of palladium/ceramic membranes for hydrogen separation
Haag et al. Pure nickel coating on a mesoporous alumina membrane: preparation by electroless plating and characterization
EP1042049A1 (en) Hydrogen gas-extraction module
US3344582A (en) Irreversible hydrogen membrane
Ryi et al. Characterization of Pd–Cu–Ni ternary alloy membrane prepared by magnetron sputtering and Cu-reflow on porous nickel support for hydrogen separation
Zhang et al. Effects of heat treatment in air on hydrogen sorption over Pd–Ag and Pd–Au membrane surfaces
CN100455341C (en) Hydrogen permeation alloy and a method of manufacturing the same
JP2010070818A (en) Pd-Cu BASED ALLOY SUPERIOR IN HYDROGEN PERMEABILITY
Li et al. Development of dual-phase V90Fe5Al5/Cu alloys for enhanced malleability and sustainable hydrogen permeability
JP2003286524A (en) METHOD FOR MANUFACTURING (Ni, Al)-V ALLOY MATERIAL
JP4953278B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
Rahman et al. Evaluation and characterization of Pd-Ag composite membrane fabricated by surfactant induced electroless plating (SIEP) for hydrogen separation
JP2897958B2 (en) Amorphous alloy catalyst for exhaust gas purification
JP2004074070A (en) Hydrogen-permeable membrane
Petriev et al. Investigation of Low-Temperature Hydrogen Permeability of Surface Modified Pd–Cu Membranes
JP2000256002A (en) Amorphous zirconium-nickel alloy based hydrogen separation dissociation membrane, its production and activating method thereof
Omidifar et al. H2 permeance and surface characterization of a thin (2 μm) Pd-Ni composite membrane prepared by electroless plating
JP2008063628A (en) Dual-phase hydrogen permeable alloy, and its production method
JP4178143B2 (en) Hydrogen separation membrane and method for producing the same
Fletcher Thin film Palladium-Ytrium membranes for hydrogen separation
JP4953279B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
KR101281576B1 (en) A hydrogen permeation alloy with dual phase and manufacturing method of hydrogen separation membrane using the same
JP2008194629A (en) Hydrogen-permeable alloy membrane

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Ref document number: 3931227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term