JP2003286069A - Alumina sintered compact having machinability and production method thereof - Google Patents

Alumina sintered compact having machinability and production method thereof

Info

Publication number
JP2003286069A
JP2003286069A JP2002093195A JP2002093195A JP2003286069A JP 2003286069 A JP2003286069 A JP 2003286069A JP 2002093195 A JP2002093195 A JP 2002093195A JP 2002093195 A JP2002093195 A JP 2002093195A JP 2003286069 A JP2003286069 A JP 2003286069A
Authority
JP
Japan
Prior art keywords
alumina
sintered body
crystal grain
grain size
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002093195A
Other languages
Japanese (ja)
Inventor
Osamu Himeno
修 姫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002093195A priority Critical patent/JP2003286069A/en
Publication of JP2003286069A publication Critical patent/JP2003286069A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alumina sintered compact which has machinability, and to provide a method of producing the same. <P>SOLUTION: The alumina sintered compact contains, by weight, 90 to 99.99% alumina and 0.01 to 10% magnesium oxide, and in which the mean crystal grain size and the maximum crystal grain size of the alumina are 10 to 50 μm and ≤70 μm, respectively, and three-point bending resistance deflective strength is 250 to 450 MPa. In the method of producing the sintered compact, 90 to 99.99% easily sinterable alumina powder having a mean crystal grain size of ≤1.0 μm is blended with 0.01 to 10% magnesium oxide, and, a binder for molding is added thereto, and the blend is compacted so as to be a prescribed shape, and subsequently, firing is performed in an oxidizing atmosphere heated at 1,620 to 1,800°C. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、快削性を有するア
ルミナ質焼結体およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to an alumina-based sintered body having free-cutting properties and a method for producing the same.

【0002】[0002]

【従来の技術】アルミナ質焼結体は、セラミック焼結体
の中でも耐摩耗性、耐熱性、耐薬品性等に優れ、かつ原
料であるアルミナが比較的安価であるため、例えば摺動
部材、粉砕部材、構造部材等の工業材料として広く使用
されている。
2. Description of the Related Art Alumina-based sintered bodies are excellent in wear resistance, heat resistance, chemical resistance and the like among ceramic sintered bodies, and alumina as a raw material is relatively inexpensive. It is widely used as an industrial material such as crushing members and structural members.

【0003】また、近年、フッ素系、塩素系等のハロゲ
ン系腐食性ガスまたはそのプラズマ雰囲気に曝される真
空チャンバーの内壁材、マイクロ波導入窓、フォーカス
リング、クランプリング、サセプタ等の半導体製造装置
の耐食性部材として、アルミナ質焼結体を用いることが
提案されている(特開平5−217946号公報号参
照)。
In recent years, semiconductor manufacturing equipment such as vacuum chamber inner wall material, microwave introduction window, focus ring, clamp ring, susceptor, etc. exposed to halogen-based corrosive gases such as fluorine-based and chlorine-based or their plasma atmospheres. It has been proposed to use an alumina-based sintered body as the corrosion-resistant member (see JP-A-5-217946).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、アルミ
ナ質焼結体は、金属材料等と比較して強度および硬度が
高く、一般に破壊靱性値も高いため、研削加工を行う際
の加工負荷が高くなり加工に時間がかかるので、構造部
材を安価に製作することができないという問題があっ
た。特に、構造部材が大型化すると加工面積が増え、加
工に多大な時間を要することになるので、加工コストが
増大し構造部材が高価なものになるという問題があっ
た。
However, the alumina-based sintered body has higher strength and hardness as compared with metal materials and the like, and generally has a high fracture toughness value, so that the processing load during grinding becomes high. Since it takes time to process, there is a problem that the structural member cannot be manufactured at low cost. In particular, when the structural member becomes large in size, the processing area increases, and it takes a lot of time for processing. Therefore, there is a problem that the processing cost increases and the structural member becomes expensive.

【0005】したがって、本発明の目的は、加工負荷お
よび加工コストを低減することができる快削性(高い加
工性)を有するアルミナ質焼結体およびその製造方法を
提供することである。
Therefore, an object of the present invention is to provide an alumina-based sintered body having a free-cutting property (high processability) capable of reducing the processing load and the processing cost, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
の本発明のアルミナ質焼結体は、アルミナ90〜99.
99重量%と酸化マグネシウム0.01〜10重量%と
を含有し、前記アルミナの平均結晶粒子径および最大結
晶粒子径がそれぞれ10〜50μmおよび70μm以下
であり、3点曲げ抗折強度が250〜450MPaであ
ることを特徴とする。
The alumina-based sintered body of the present invention for solving the above-mentioned problems is alumina 90-99.
99% by weight and 0.01 to 10% by weight of magnesium oxide, the average crystal grain size and the maximum crystal grain size of the alumina are 10 to 50 μm and 70 μm or less, respectively, and the three-point bending transverse strength is 250 to It is characterized by being 450 MPa.

【0007】これにより、本発明のアルミナ焼結体は、
十分な機械的強度を保持しつつ、高い快削性(高い加工
性)が得られる。
As a result, the alumina sintered body of the present invention is
High free machinability (high workability) is obtained while maintaining sufficient mechanical strength.

【0008】また、本発明のアルミナ質焼結体は、破壊
靱性値が4.5〜6.0MPa・m 1/2であるのが好ま
しい。さらに、本発明のアルミナ質焼結体は、研削抵抗
値が25N以下であるのが好ましい。この研削抵抗値は
アルミナ質焼結体の加工性を評価する指標となるもので
ある。
Further, the alumina-based sintered body of the present invention is destroyed.
Toughness value is 4.5-6.0 MPa · m 1/2Like to be
Good Further, the alumina-based sintered body of the present invention has a grinding resistance.
The value is preferably 25 N or less. This grinding resistance value is
It is an index to evaluate the workability of alumina sintered body.
is there.

【0009】上記アルミナ質焼結体を得るための本発明
の製造方法は、平均結晶粒子径1.0μm以下の易焼結
性アルミナ粉末90〜99.99重量%に酸化マグネシ
ウム0.01〜10重量%を配合し、さらに成形用バイ
ンダーを添加して、所定の形状に成形した後、1620
〜1800℃の酸化雰囲気中で焼成することを特徴とす
る。ここで、「易焼結性アルミナ粉末」とは、個々の粒
子径が小さく比表面積が大きいため、粒成長のエネルギ
ーが大きく低温でも焼結しやすいアルミナ粉末のことを
いう。
According to the production method of the present invention for obtaining the above-mentioned alumina sintered body, 90 to 99.99% by weight of easily sinterable alumina powder having an average crystal grain size of 1.0 μm or less is added to magnesium oxide of 0.01 to 10%. 16 wt% after blending the weight% and adding a molding binder to mold into a predetermined shape
It is characterized by firing in an oxidizing atmosphere of up to 1800 ° C. Here, the “sinterable alumina powder” refers to an alumina powder that has a large particle growth energy and is easy to sinter even at a low temperature because the individual particle size is small and the specific surface area is large.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施形態を詳細
に説明する。本実施形態のアルミナ質焼結体は、機械的
強度の指標である3点曲げ抗折強度が250〜450M
Paの範囲にあり、破壊靱性値が4.5〜6.0MPa
・m1/2の範囲にある。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail below. The alumina sintered body of the present embodiment has a three-point bending bending strength of 250 to 450 M, which is an index of mechanical strength.
It is in the range of Pa and has a fracture toughness value of 4.5 to 6.0 MPa.
・ It is in the range of m 1/2 .

【0011】3点曲げ抗折強度が250MPa未満にな
ると、機械的強度を必要とする構造部材として使用する
ことができなくおそれがある。一方、3点曲げ抗折強度
が450MPaを越えると、加工性が低下するおそれが
ある。3点曲げ抗折強度はJIS R 1601に規定さ
れている方法に準拠して測定したものである。
If the three-point bending bending strength is less than 250 MPa, there is a possibility that it cannot be used as a structural member requiring mechanical strength. On the other hand, if the three-point bending transverse strength exceeds 450 MPa, the workability may decrease. The three-point bending transverse strength is measured according to the method specified in JIS R 1601.

【0012】また、破壊靭性値が4.5MPa・m1/2
未満になると、機械的強度を必要とする構造部材として
使用することができなくおそれがある。一方、破壊靭性
値が6.0MPa・m1/2を越えると、加工性が低下す
るおそれがある。破壊靭性値はJIS R 1607に規
定されている方法に準拠して測定したものである。
The fracture toughness value is 4.5 MPa · m 1/2
If it is less than the range, it may not be used as a structural member requiring mechanical strength. On the other hand, if the fracture toughness value exceeds 6.0 MPa · m 1/2 , the workability may decrease. The fracture toughness value is measured according to the method specified in JIS R1607.

【0013】本発明のアルミナ質焼結体は、3点曲げ抗
折強度および破壊靭性値が上記範囲にあるので、優れた
加工性を有している。この加工性は以下に示す研削抵抗
値により表すことができ、本発明のアルミナ質焼結体で
はこの研削抵抗値が25N以下であるのが好ましい。
Since the alumina sintered body of the present invention has the three-point bending transverse strength and the fracture toughness value within the above ranges, it has excellent workability. This workability can be represented by the following grinding resistance value, and the alumina-based sintered body of the present invention preferably has a grinding resistance value of 25 N or less.

【0014】<研削抵抗値の測定方法>まず、縦150
mm×横30mm×厚さ10mmのアルミナ質焼結体を
作製する。ついで、縦150mm×横30mmの面(被
研削面)を、平面研削盤のメタルホイールダイヤモンド
研削ツール(直径300mm)によって、ホイール周速
1800m/分、平面研削盤テーブル移動速度150m
m/分、切り込み量0.5mmで研削する。この研削時
に被研削面の法線方向に向かって研削ツールに加わる抵
抗値を研削抵抗値(N)とする。
<Measurement Method of Grinding Resistance Value> First, the vertical 150
An alumina sintered body having a size of mm × width 30 mm × thickness 10 mm is prepared. Then, using a metal wheel diamond grinding tool (diameter 300 mm) of a surface grinder, a surface (surface to be ground) of length 150 mm × width 30 mm, wheel peripheral speed 1800 m / min, surface grinder table moving speed 150 m
Grind at m / min and cut depth of 0.5 mm. A resistance value applied to the grinding tool in the normal direction of the surface to be ground during this grinding is defined as a grinding resistance value (N).

【0015】また、アルミナ質焼結体中のアルミナの平
均結晶粒子径および最大結晶粒子径はそれぞれ10〜5
0μmおよび70μm以下であることが必要である。
The average crystal grain size and the maximum crystal grain size of alumina in the alumina sintered body are 10 to 5 respectively.
It should be 0 μm and 70 μm or less.

【0016】平均結晶粒子径が50μmを超えると、焼
結体中に気孔が多数介在することになり、焼結体の3点
曲げ抗折強度、破壊靱性値および硬度が過度に低下する
おそれがある。一方、平均結晶粒子径が10μm未満と
なると、焼結体の3点曲げ抗折強度、破壊靱性値および
硬度が過度に高くなり、快削性が損なわれるおそれがあ
る。
When the average crystal grain size exceeds 50 μm, a large number of pores are present in the sintered body, and the three-point bending resistance strength, fracture toughness value and hardness of the sintered body may be excessively lowered. is there. On the other hand, when the average crystal grain size is less than 10 μm, the three-point bending resistance strength, fracture toughness value and hardness of the sintered body become excessively high, which may impair free-machining property.

【0017】また、最大結晶粒径が70μmを越える
と、3点曲げ抗折強度、破壊靱性値および硬度が過度に
低下するおそれがある。
If the maximum crystal grain size exceeds 70 μm, the three-point bending resistance strength, fracture toughness value and hardness may be excessively reduced.

【0018】このような粒子径特性を有するアルミナ質
焼結体を得るためには、当該焼結体中にアルミナを90
〜99.99重量%、酸化マグネシウムを0.01〜1
0重量%の範囲で含有していることが必要である。
To obtain an alumina-based sintered body having such a particle size characteristic, 90% of alumina is contained in the sintered body.
~ 99.99 wt%, magnesium oxide 0.01-1
It is necessary that the content is 0% by weight.

【0019】酸化マグネシウムの含有量が0.01〜1
0重量%の範囲にあることにより、1620〜1800
℃の高温下で焼成した場合であっても、部分的な結晶の
異常粒成長を抑制することができ、前記最大結晶粒子径
を上記範囲にすることができる。
The content of magnesium oxide is 0.01 to 1
By being in the range of 0% by weight, 1620 to 1800
Even when firing is performed at a high temperature of ° C, partial grain abnormal grain growth can be suppressed, and the maximum crystal grain size can be within the above range.

【0020】アルミナの含有量が90重量%未満になる
と、焼結体の機械的特性および熱的特性がアルミナ以外
の他の成分(酸化マグネシウム、および必要に応じて添
加される酸化ケイ素、酸化カルシウム等の焼結助剤等)
の特性に支配される割合が高くなり、焼結体の3点曲げ
抗折強度、破壊靱性値および硬度が過度に低下するおそ
れがある。一方、アルミナの含有量が99.99重量%
を超えると、酸化マグネシウムの含有量が少なくなり、
上記した異常粒成長の抑制効果が小さくなるので、焼結
体の3点曲げ抗折強度、破壊靱性値および硬度の過度の
低下を抑制できないおそれがある。
When the content of alumina is less than 90% by weight, the mechanical properties and thermal properties of the sintered body are other than alumina, and other components (magnesium oxide, and silicon oxide, calcium oxide added as necessary) are added. Sintering aids, etc.)
The ratio controlled by the characteristics of 1) becomes high, and the three-point bending bending strength, fracture toughness value and hardness of the sintered body may be excessively lowered. On the other hand, the content of alumina is 99.99% by weight
If it exceeds, the content of magnesium oxide will decrease,
Since the above-described effect of suppressing abnormal grain growth is reduced, it may not be possible to suppress an excessive decrease in the three-point bending bending strength, fracture toughness value and hardness of the sintered body.

【0021】上記のような機械的特性および快削性が付
与されたアルミナ質焼結体は、以下に示すような製造方
法により作製することができる。
The alumina-based sintered body to which the above-mentioned mechanical characteristics and free-cutting property are given can be produced by the following manufacturing method.

【0022】まず、原料として易焼結性アルミナ粉末、
酸化マグネシウム粉末および必要に応じて焼結助剤等の
助剤成分を準備する。易焼結性アルミナ粉末としては、
アルミナ純度が95%以上で、平均結晶粒子径が1.0
μm以下のものであるのが好ましい。
First, an easily sinterable alumina powder as a raw material,
Prepare magnesium oxide powder and, if necessary, auxiliary components such as a sintering auxiliary. As the easily sinterable alumina powder,
Alumina purity is 95% or more, average crystal grain size is 1.0
It is preferably not more than μm.

【0023】アルミナ粉末の平均結晶粒子径が1.0μ
mを越えると、比表面積が減少するため焼結を促進する
ための活性が低下するので、粒成長のエネルギーが減少
する。このような活性の低いアルミナ粉末は、焼成温度
を調節するだけでは平均結晶粒子径および最大結晶粒子
径を目標とする上記範囲に調節するのが困難である。一
方、平均結晶粒子径が1.0μm以下のアルミナ粉末は
比表面積が大きいため粒成長のエネルギーが大きいの
で、焼成温度の調節で平均結晶粒子径および最大結晶粒
子径を容易に調節することができる。
The average crystal grain size of the alumina powder is 1.0 μ
When it exceeds m, the specific surface area is reduced and the activity for promoting sintering is reduced, so that the energy for grain growth is reduced. It is difficult to adjust the average crystal grain size and the maximum crystal grain size of the alumina powder having such low activity to the above-mentioned ranges by simply adjusting the firing temperature. On the other hand, since the alumina powder having an average crystal grain size of 1.0 μm or less has a large specific surface area and thus has a large energy for grain growth, the average crystal grain size and the maximum crystal grain size can be easily adjusted by adjusting the firing temperature. .

【0024】次に、易焼結性アルミナ粉末90〜99.
99重量%に酸化マグネシウム0.01〜10.0重量
%を配合し、さらにワックスエマルジョン(ワックス+
乳化剤)、PVA(ポリビニルアルコール)、PEG
(ポリエチレングリコール)等の有機バインダー(成形
用バインダー)を添加して、これらを混練してスラリー
を作製するか、あるいは混練乾燥させて造粒粉を作製す
る。
Next, easily sinterable alumina powder 90-99.
Magnesium oxide 0.01 to 10.0% by weight is added to 99% by weight, and a wax emulsion (wax +
Emulsifier), PVA (polyvinyl alcohol), PEG
An organic binder (molding binder) such as (polyethylene glycol) is added and kneaded to prepare a slurry, or kneaded and dried to prepare granulated powder.

【0025】スラリーを作製する場合には、鋳込成形
法、射出成形法、ドクターブレード法等のテープ成形法
により所定の形状に成形する。一方、造粒粉を作製する
場合には、型内に充填して成形するプレス成形等の一軸
加圧成形法を用いるか、あるいはラバープレス成形等の
ように等加圧成形法を用いて所定の形状に成形する。
When the slurry is prepared, it is molded into a predetermined shape by a tape molding method such as a casting method, an injection molding method, a doctor blade method or the like. On the other hand, when producing granulated powder, a uniaxial pressure molding method such as press molding in which the powder is filled into a mold is used, or a predetermined pressure molding method such as rubber press molding is used. To shape.

【0026】ついで、得られた成形体を必要に応じて3
00〜600℃で脱脂し、さらに、1620〜1800
℃の酸化雰囲気中で焼成する。
Then, if necessary, the obtained molded body is subjected to 3
Degreased at 00-600 ° C, and further 1620-1800
Baking in an oxidizing atmosphere at ℃.

【0027】ここで、本発明で使用する易焼結性アルミ
ナ粉末は、通常、1400〜1600℃程度の焼成温度
で焼成される。この温度範囲で焼成すると、平均結晶粒
子径が10μm以下と小さくなり、高度に緻密化した焼
結体を得ることができるものの、破壊靱性値が6.0M
Pa・m1/2以上に、3点曲げ抗折強度が450MPa
以上になるので、焼結体の研削加工時の加工性が低下す
る。さらに焼成温度が1400℃未満になると、緻密化
していないアルミナ焼結体が得られ、吸水率が高くなる
と共に、破壊靱性値が4.5MPa・m1/2以下に、3
点曲げ抗折強度が250MPa以下に低下し、機械的強
度を必要とする構造部材として使用することができな
い。一方、焼成温度が1800℃を超えると、アルミナ
粉末が異常粒成長を起こし、焼結体の曲げ強度、硬度、
破壊靱性値等の機械的特性が極端に低下するので、機械
的強度を必要とする構造部材として使用することができ
なくなるおそれがある。
Here, the easily sinterable alumina powder used in the present invention is usually fired at a firing temperature of about 1400 to 1600 ° C. When firing in this temperature range, the average crystal grain size becomes as small as 10 μm or less, and a highly densified sintered body can be obtained, but the fracture toughness value is 6.0 M.
Three-point bending bending strength of 450 MPa over Pa · m 1/2
As described above, the workability at the time of grinding the sintered body decreases. When the firing temperature is lower than 1400 ° C, an undensified alumina sintered body is obtained, the water absorption rate is increased, and the fracture toughness value is 4.5 MPa · m 1/2 or less.
The bending resistance against point bending is reduced to 250 MPa or less, and it cannot be used as a structural member requiring mechanical strength. On the other hand, if the firing temperature exceeds 1800 ° C., the alumina powder causes abnormal grain growth, and the bending strength, hardness, and
Since mechanical properties such as fracture toughness value are extremely lowered, there is a possibility that it cannot be used as a structural member requiring mechanical strength.

【0028】そこで、本発明の製造方法では、易焼結性
アルミナ粉末の焼成温度を通常の焼成温度(1400〜
1600℃程度)よりも敢えて高温(1620〜180
0℃)に設定することによって、得られる焼結体の粒子
径を適度に大きくし、構造部材等に求められる充分な機
械的強度と高い加工性とを付与している。
Therefore, in the production method of the present invention, the firing temperature of the easily sinterable alumina powder is set to the normal firing temperature (1400 to 1400).
Higher temperature (1620-180)
By setting the temperature to 0 ° C.), the particle size of the obtained sintered body is appropriately increased, and sufficient mechanical strength and high workability required for structural members and the like are provided.

【0029】このようにして得られるアルミナ質焼結体
は、3点曲げ抗折強度が250〜450MPaで、破壊
靱性値が4.5〜6.0MPa・m1/2で、研削抵抗値
が25N以下であるため加工性に優れ、さらにビッカー
ス硬度が15GPa以上の硬度を有すると共に、耐熱衝
撃性(△T)が150℃以上であるので、熱が加わる環
境下で使用しても熱衝撃で割れるおそれが少なく、安定
して使用することができる。また、本発明のアルミナ質
焼結体は、フッ素系、塩素系等のハロゲン系腐食性ガス
またはそのプラズマ雰囲気に曝される真空チャンバーの
内壁材、マイクロ波導入窓、フォーカスリング、クラン
プリング、サセプタ等の半導体製造装置等の耐食性部材
としても使用することができる。
The alumina sintered body thus obtained has a three-point bending bending strength of 250 to 450 MPa, a fracture toughness value of 4.5 to 6.0 MPa · m 1/2 , and a grinding resistance value. Since it is 25N or less, it has excellent workability, and has a Vickers hardness of 15 GPa or more and a thermal shock resistance (ΔT) of 150 ° C. or more, so even if it is used in an environment where heat is applied, it is not subject to thermal shock. It is less likely to crack and can be used stably. Further, the alumina-based sintered body of the present invention is an inner wall material of a vacuum chamber exposed to a halogen-based corrosive gas such as a fluorine-based or chlorine-based gas or its plasma atmosphere, a microwave introduction window, a focus ring, a clamp ring, a susceptor. It can also be used as a corrosion resistant member for semiconductor manufacturing equipment such as.

【0030】また、本発明のアルミナ質焼結体は、所定
の形状に加工するために各種加工装置に留め具でハンド
リングする際に欠けや割れを生じにくく、また、研削、
切削加工する際には快削性に優れるため、比較的短時間
で加工することができる。
Further, the alumina-based sintered body of the present invention is less likely to be chipped or cracked when it is handled by a fastener in various processing devices for processing into a predetermined shape, and is also subjected to grinding,
Since it has excellent free-cutting properties when it is cut, it can be cut in a relatively short time.

【0031】なお、本発明の快削性を有するアルミナ質
焼結体は、アルミナおよび酸化マグネシウムが上記した
範囲内にあれば、他の助剤成分、例えばアルミナ質焼結
体の焼結助剤として用いられる酸化ケイ素、酸化カルシ
ウム等を含有していてもよい。
The alumina-based sintered body having free-cutting property of the present invention has other auxiliary components, for example, a sintering aid for the alumina-based sintered body, as long as alumina and magnesium oxide are within the above-mentioned ranges. It may contain silicon oxide, calcium oxide or the like used as.

【0032】[0032]

【実施例】原料であるアルミナの平均結晶粒子径、アル
ミナの含有量、酸化マグネシウムの含有量および焼成温
度を表1に示す各条件に設定し、試料No.1〜15のア
ルミナ質焼結体を以下の手順で作製し、各試料の3点曲
げ抗折強度、破壊靱性値および研削抵抗値をそれぞれ測
定した。
[Examples] The average crystal particle size of alumina as a raw material, the content of alumina, the content of magnesium oxide and the firing temperature were set to the respective conditions shown in Table 1, and the alumina sintered bodies of Sample Nos. 1 to 15 were set. Was prepared by the following procedure, and the three-point bending bending strength, fracture toughness value, and grinding resistance value of each sample were measured.

【表1】 [Table 1]

【0033】<アルミナ質焼結体の作製方法>表1に示
す割合で純度99.5%以上のアルミナ粉末と、酸化マ
グネシウム粉末とを混合し、さらにイオン交換水と、バ
インダーとしてワックスエマルジョン(ワックスと乳化
剤との混合物)と、PVA(ポリビニルアルコール)
と、PEG(ポリエチレングリコール)とを添加して混
練乾燥させることにより造粒粉を作製した。
<Production Method of Alumina Sintered Body> Alumina powder having a purity of 99.5% or more and magnesium oxide powder were mixed in the proportions shown in Table 1, and ion-exchanged water and a wax emulsion (wax) as a binder were mixed. And a mixture of emulsifier) and PVA (polyvinyl alcohol)
And PEG (polyethylene glycol) were added and kneaded and dried to prepare granulated powder.

【0034】ついで、得られた造粒粉を金型内に充填
し、CIP成形法にて直径100mm、厚さ10mmの
円盤状の成形体を作製し、これを酸化雰囲気中にて表1
に示す焼成温度で5時間程度焼成することにより、表1
に示す試料No.1〜15の各アルミナ質焼結体を得た。
Next, the obtained granulated powder was filled in a mold, and a disk-shaped molded body having a diameter of 100 mm and a thickness of 10 mm was prepared by the CIP molding method.
By firing for about 5 hours at the firing temperature shown in Table 1,
Each of the alumina-based sintered bodies of Sample Nos. 1 to 15 shown in FIG.

【0035】上記方法により得られた各アルミナ質焼結
体を走査型電子顕微鏡にて観察し、焼結体中のアルミナ
の平均結晶粒子径および最大結晶粒子径を画像解析装置
((株)ニレコ社製のルーゼックス)にてそれぞれ測定
した。測定結果を表1に示す。
Each of the alumina-based sintered bodies obtained by the above method was observed with a scanning electron microscope, and the average crystal grain size and the maximum crystal grain size of alumina in the sintered body were measured by an image analyzer (Nireco Corporation). It was measured by using Luzex manufactured by the company. The measurement results are shown in Table 1.

【0036】また、上記方法により得られた各アルミナ
質焼結体の3点曲げ抗折強度および破壊靱性値を測定し
た。3点曲げ強度はJIS R 1601に準拠した前
記条件にて測定し、破壊靱性値はJIS R 1607
に準拠した前記条件にて測定した。測定結果を表1に示
す。
The three-point bending bending strength and fracture toughness of each alumina sintered body obtained by the above method were measured. The three-point bending strength was measured under the above conditions according to JIS R 1601, and the fracture toughness value was JIS R 1607.
The measurement was performed under the above conditions according to The measurement results are shown in Table 1.

【0037】さらに、研削加工時の加工性を確認するた
めに、上記と同様の方法により、試料No.1〜15のア
ルミナ質焼結体を作製し、これらの研削抵抗値を測定し
た。研削抵抗値は、前記した方法により測定した。測定
結果を表1に示す。
Further, in order to confirm the workability during grinding, the alumina sintered bodies of Sample Nos. 1 to 15 were produced by the same method as above, and the grinding resistance values of these were measured. The grinding resistance value was measured by the method described above. The measurement results are shown in Table 1.

【0038】なお、表1において、平均結晶粒子径およ
び最大結晶粒子径がそれぞれ10〜50μmおよび70
μm以下の範囲内にある試料には評価欄に「○」を記入
し、上記範囲外にある試料には評価欄に「×」を記入し
た。
In Table 1, the average crystal grain size and the maximum crystal grain size are 10 to 50 μm and 70, respectively.
Samples within the range of μm or less are marked with “◯” in the evaluation column, and samples outside the above range are marked with “x” in the evaluation column.

【0039】また、表1において、3点曲げ抗折強度お
よび破壊靱性値がそれぞれ250〜450MPaおよび
4.5〜6.0MPa・m1/2の範囲内にある試料には
評価欄に「○」を記入し、上記範囲外にある試料には評
価欄に「×」を記入した。
Further, in Table 1, the samples whose three-point bending transverse strength and fracture toughness are in the ranges of 250 to 450 MPa and 4.5 to 6.0 MPa · m 1/2 , respectively, are marked with "○" in the evaluation column. "," And "x" was entered in the evaluation column for samples outside the above range.

【0040】さらに、表1において、研削抵抗値が25
N以下と小さいため加工性が優れていると判断された試
料には評価欄に「○」を記入し、加工性が劣る試料には
評価欄に「×」を記入した。それ以外の「−」を記入し
た試料については、上記の3点曲げ抗折強度または破壊
靱性値が適正な範囲よりも低く、アルミナ質焼結体とし
て使用できないものであったため、研削抵抗値の測定は
実施しなかった。
Further, in Table 1, the grinding resistance value is 25
Samples that were judged to have excellent workability because they were as small as N or less were marked with "O" in the evaluation column, and samples with poor workability were marked with "X" in the evaluation column. For the other samples with "-" entered, the above-mentioned three-point bending bending strength or fracture toughness value was lower than the proper range and could not be used as an alumina-based sintered body. No measurement was performed.

【0041】表1から、試料No.1、No.6およびNo.8
〜15は、3点曲げ抗折強度および破壊靱性値が適正範
囲よりも低いためアルミナ質焼結体として使用できない
ものであった。試料No.7は、破壊靱性値については適
正範囲内にあったが、3点曲げ抗折強度が適正範囲より
も高く、研削抵抗値も大きな値で加工性が劣るものであ
った。これに対して、本発明にかかる試料No.2〜5
は、3点曲げ抗折強度および破壊靱性値が共に適正範囲
内であり、研削抵抗値も低く加工性が優れていた。
From Table 1, samples No. 1, No. 6 and No. 8
Nos. 15 to 15 could not be used as an alumina-based sintered body because the three-point bending strength and fracture toughness values were lower than the proper ranges. Although the fracture toughness value of Sample No. 7 was within the proper range, the three-point bending transverse strength was higher than the proper range, and the grinding resistance value was large and the workability was poor. On the other hand, sample Nos. 2 to 5 according to the present invention
The three-point bending resistance strength and fracture toughness value were both within proper ranges, the grinding resistance value was low, and the workability was excellent.

【0042】[0042]

【発明の効果】本発明によれば、原料が比較的安価なア
ルミナを主成分とし、得られた焼結体が快削性を有して
いるため加工時間の短縮による加工コストの低減を図る
ことができるので、安価な構造部材を提供することがで
き、しかも大型の構造部材として用いても充分な機械的
強度を有しているという効果がある。
According to the present invention, the raw material is mainly composed of relatively inexpensive alumina, and the obtained sintered body has the free-cutting property, so that the processing time is shortened to reduce the processing cost. Therefore, it is possible to provide an inexpensive structural member, and there is an effect that it has sufficient mechanical strength even when used as a large structural member.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】アルミナ90〜99.99重量%と酸化マ
グネシウム0.01〜10重量%とを含有し、前記アル
ミナの平均結晶粒子径および最大結晶粒子径がそれぞれ
10〜50μmおよび70μm以下であり、3点曲げ抗
折強度が250〜450MPaであることを特徴とする
快削性を有するアルミナ質焼結体。
1. Alumina containing 90 to 99.99% by weight and 0.01 to 10% by weight of magnesium oxide, wherein the alumina has an average crystal grain size and a maximum crystal grain size of 10 to 50 μm and 70 μm or less, respectively. A free-cutting alumina sintered body having a three-point bending transverse strength of 250 to 450 MPa.
【請求項2】破壊靱性値が4.5〜6.0MPa・m
1/2である請求項1記載のアルミナ質焼結体。
2. A fracture toughness value of 4.5 to 6.0 MPa.m.
The alumina sintered body according to claim 1, which is 1/2 .
【請求項3】研削抵抗値が25N以下である請求項1ま
たは2記載のアルミナ質焼結体。
3. The alumina sintered body according to claim 1, which has a grinding resistance value of 25 N or less.
【請求項4】平均結晶粒子径1.0μm以下の易焼結性
アルミナ粉末90〜99.99重量%に酸化マグネシウ
ム0.01〜10重量%を配合し、さらに成形用バイン
ダーを添加して、所定の形状に成形した後、1620〜
1800℃の酸化雰囲気中で焼成することを特徴とする
快削性を有するアルミナ質焼結体の製造方法。
4. 90 to 99.99% by weight of easily sinterable alumina powder having an average crystal particle size of 1.0 μm or less is mixed with 0.01 to 10% by weight of magnesium oxide, and a molding binder is further added. After molding into a predetermined shape, 1620-
A method for producing an alumina-based sintered body having free-cutting properties, which comprises firing in an oxidizing atmosphere at 1800 ° C.
JP2002093195A 2002-03-28 2002-03-28 Alumina sintered compact having machinability and production method thereof Pending JP2003286069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093195A JP2003286069A (en) 2002-03-28 2002-03-28 Alumina sintered compact having machinability and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093195A JP2003286069A (en) 2002-03-28 2002-03-28 Alumina sintered compact having machinability and production method thereof

Publications (1)

Publication Number Publication Date
JP2003286069A true JP2003286069A (en) 2003-10-07

Family

ID=29237777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093195A Pending JP2003286069A (en) 2002-03-28 2002-03-28 Alumina sintered compact having machinability and production method thereof

Country Status (1)

Country Link
JP (1) JP2003286069A (en)

Similar Documents

Publication Publication Date Title
TWI464133B (en) Polycrystalline MgO sintered body and its manufacturing method and MgO target for sputtering
KR101794410B1 (en) Sintered silicon nitride having high thermal conductivity and Manufacturing method thereof
JPH08239270A (en) Superplastic silicon carbide sintered product and its production
JP5692845B2 (en) Highly rigid ceramic material and manufacturing method thereof
JP4605829B2 (en) High strength, high hardness alumina ceramics and manufacturing method thereof
JP4959113B2 (en) Alumina sintered body
JP2003112963A (en) Alumina sintered compact, and production method therefor
JP3904874B2 (en) Components for semiconductor manufacturing equipment
JP4889155B2 (en) High-strength alumina sintered body having free machinability and corrosion-resistant member using the same
JP2010095393A (en) Ceramic member for heat treatment excellent in corrosion resistance and method for producing the same
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP2003286069A (en) Alumina sintered compact having machinability and production method thereof
JP4773744B2 (en) Method for producing aluminum nitride sintered body
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JP6877586B2 (en) Precursor of alumina sintered body, manufacturing method of alumina sintered body, manufacturing method of abrasive grains and alumina sintered body
JP2006327924A (en) Ceramic-made blade and method manufacturing the same
JP2020045268A (en) Sintered body, sputtering target, and manufacturing method of sintered body
JP6179026B2 (en) Low thermal expansion ceramics and method for producing the same
JP5890666B2 (en) Aluminum nitride sintered body and method for producing the same
JP2012171845A (en) Silicon nitride-based sintered compact
KR101062442B1 (en) Low Temperature Sintered Silicon Carbide with Excellent High Temperature Properties and Manufacturing Method Thereof
KR101907038B1 (en) Alumina-based ceramics and method for the preparation thereof
JPS6350308B2 (en)
JPH09165264A (en) Silicon nitride sintetred product and its production
JP2001322009A (en) Alumina ceramic cutting tool and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080430