JP2003285064A - Water treatment method for cooling water system - Google Patents

Water treatment method for cooling water system

Info

Publication number
JP2003285064A
JP2003285064A JP2002088847A JP2002088847A JP2003285064A JP 2003285064 A JP2003285064 A JP 2003285064A JP 2002088847 A JP2002088847 A JP 2002088847A JP 2002088847 A JP2002088847 A JP 2002088847A JP 2003285064 A JP2003285064 A JP 2003285064A
Authority
JP
Japan
Prior art keywords
cooling water
electrodes
water
chlorine
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002088847A
Other languages
Japanese (ja)
Other versions
JP3925269B2 (en
Inventor
Akira Iimura
晶 飯村
Kazuhiko Tsunoda
和彦 角田
Masanori Oishi
正典 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Engineering Co Ltd
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Asahi Glass Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Asahi Glass Engineering Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002088847A priority Critical patent/JP3925269B2/en
Publication of JP2003285064A publication Critical patent/JP2003285064A/en
Application granted granted Critical
Publication of JP3925269B2 publication Critical patent/JP3925269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an excellent slime prevention effect by controlling the amount of generation of a chlorine-base agent within an appropriate range and preventing the corrosion inside a system in a water treatment method for a cooling water system for preventing slime from generating inside the system by supplying electrolytic water containing the chlorine-base oxidizing agent produced by electrolyzing cooling water to the cooling water system. <P>SOLUTION: The water treatment method for the cooling water system contains the electrolytic water wherein the chlorine-base oxidizing agent is produced from chloride ions contained in the cooling water by passing a current through electrodes 4A and 4B dipped in the cooling water in the cooling water system. In the method, the current is passed through the electrodes 4A and 4B so that chlorine concentration in the cooling water is taken as target concentration. When the ratio between an applied voltage and a theoretical voltage for becoming a target current value becomes a predetermined value or more, an electrolytic cell 4 is cleaned by a cleaning unit 27. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷却水系の水処理方
法に係り、詳しくは、冷却水を電解処理することにより
冷却水中の塩化物イオンから次亜塩素酸等の塩素系酸化
剤を生成させ、この塩素系酸化剤により冷却水系のスラ
イム障害を防止する冷却水系の水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling water-based water treatment method, and more specifically, to electrolytically process cooling water to produce a chlorine-based oxidizer such as hypochlorous acid from chloride ions in the cooling water. The present invention relates to a cooling water system water treatment method for preventing a slime problem of a cooling water system by this chlorine-based oxidizing agent.

【0002】[0002]

【従来の技術】冷却水系では、微生物によりスライムが
発生し易い。特に、循環冷却水系の高濃縮運転では、冷
却水の水質が悪化し、細菌、黴、藻類などの微生物群に
土砂、塵埃などが混ざり合って形成されるスライムが発
生し易くなり、熱交換器における熱効率の低下や通水の
悪化を引き起こす。また、スライム付着部において、機
器や配管の局部腐食を誘発する。
2. Description of the Related Art In a cooling water system, slimes are easily generated by microorganisms. In particular, in highly concentrated operation of the circulating cooling water system, the water quality of the cooling water is deteriorated, and slime, which is formed by mixing earth and sand and dust with microbial groups such as bacteria, mold, algae, etc., easily occurs, and the heat exchanger Cause deterioration of heat efficiency and deterioration of water flow. It also induces local corrosion of equipment and piping at the slime adhesion part.

【0003】このようなスライムによる障害を防止する
ために、スライムコントロール剤として塩素系薬剤や非
塩素系の微生物忌避剤を循環冷却水中に添加することが
行われている。また、このような薬剤添加を行うことな
くスライムを防止するための方法として、冷却水中に含
まれる塩化物イオンを電解酸化により次亜塩素酸などの
塩素系酸化剤に変換し、この塩素系酸化剤を冷却水中に
存在させる方法も行われている。
In order to prevent such damage caused by slime, a chlorine-based agent or a non-chlorine-based microbial repellent is added to the circulating cooling water as a slime control agent. Also, as a method for preventing slime without adding such chemicals, chloride ions contained in cooling water are converted to chlorine-based oxidizers such as hypochlorous acid by electrolytic oxidation, and this chlorine-based oxidation is performed. The method of making an agent exist in cooling water is also performed.

【0004】即ち、冷却水系の補給水として用いられる
水道水や工業用水には、通常数mg−Cl/L〜10
mg−Cl/L程度の塩化物イオンが含まれているこ
とから、循環冷却水系の冷却水には、6〜8倍の高濃縮
運転で、この補給水中の塩化物イオンが濃縮されてい
る。このため、この冷却水を電解処理することにより、
冷却水中の塩化物イオンからスライム防止効果のある残
留塩素(遊離塩素)を発生させることができる。この残
留塩素を含む電解処理水を冷却水系に戻すことにより、
スライム障害を防止することができる。
[0004] That is, the tap water or industrial water used as make-up water for the cooling water system, usually several mg-Cl - / L~10
Since chloride ions of about mg-Cl / L are contained, the chloride water in the makeup water is concentrated in the cooling water of the circulating cooling water system by the highly concentrated operation of 6 to 8 times. . Therefore, by electrolytically treating this cooling water,
Residual chlorine (free chlorine) having a slime preventing effect can be generated from chloride ions in cooling water. By returning the electrolytically treated water containing this residual chlorine to the cooling water system,
Slime disorders can be prevented.

【0005】この塩素系酸化剤を発生させるための電解
処理装置では、陽極と陰極との間に外部電源を用いて直
流電圧を印加すると共に、両極間に冷却水を通水する。
これにより、陽極の表面において冷却水中の塩化物イオ
ンが酸化され、次亜塩素酸などの強い酸化力を有する残
留塩素が生成する。生成した残留塩素は、スライムの原
因となる微生物を殺菌し、あるいは増殖を抑制するの
で、循環冷却水系のスライム発生を効果的に防止するこ
とができる。
In the electrolytic treatment apparatus for generating the chlorine-based oxidizing agent, a DC voltage is applied between the anode and the cathode by using an external power source, and cooling water is passed between both electrodes.
As a result, chloride ions in the cooling water are oxidized on the surface of the anode, and residual chlorine having a strong oxidizing power such as hypochlorous acid is generated. The generated residual chlorine sterilizes the microorganisms that cause slime or suppresses the growth thereof, so that the generation of slime in the circulating cooling water system can be effectively prevented.

【0006】[0006]

【発明が解決しようとする課題】冷却水系内のスライム
を確実に防止するためには、系内の残留塩素濃度をある
程度高くする必要があるが、系内の金属材の腐食の防止
のためには、系内の残留塩素濃度を過度に高くすること
は避けるべきである。
In order to surely prevent slime in the cooling water system, it is necessary to raise the residual chlorine concentration in the system to some extent, but in order to prevent corrosion of the metal material in the system. Should avoid excessively high residual chlorine concentration in the system.

【0007】このようなことから、電解処理により残留
塩素を発生させて冷却水系に添加する場合、残留塩素生
成量を適正範囲にコントロールする必要があり、このた
めには電極間に所定範囲の電流を通電する必要がある。
For this reason, when residual chlorine is generated by electrolytic treatment and added to the cooling water system, it is necessary to control the amount of residual chlorine produced within an appropriate range. Need to be energized.

【0008】一般に、この電解方式による酸化剤発生装
置にあっては、運転の継続に伴って電極にスケールが付
着してくる。そして、スケールが付着すると、目標電流
値を通電させるために電極間に印加する電圧が上昇す
る。
[0008] Generally, in this oxidizer generator by the electrolysis system, the scale adheres to the electrodes as the operation continues. Then, when the scale adheres, the voltage applied between the electrodes for energizing the target current value rises.

【0009】従来は、電極へのスケール付着状況を目視
観察し、スケール付着の程度がひどくなったと判断され
るときには電極の洗浄を行うようにしているが、これで
はメンテナンスに人手がかかり人件費コスト高であると
共に、判断も人によって異なるという不具合がある。
Conventionally, the state of scale adhesion to the electrodes is visually observed, and when it is judged that the degree of scale adhesion is severe, the electrodes are washed, but this requires labor for maintenance and labor costs. There is a problem that the judgment is different depending on the person as well as being high.

【0010】本発明は上記従来の問題点を解決し、冷却
水を電解処理することにより生成させた塩素系酸化剤を
含む電解処理水を冷却水系に供給することにより系内の
スライムの発生を防止する冷却水系の水処理方法におい
て、電極へのスケール付着状況を的確に判定し、必要な
ときに確実に洗浄を行い、これにより塩素系酸化剤の発
生量を適正範囲に制御することを目的とする。
The present invention solves the above-mentioned conventional problems, and the generation of slime in the system is prevented by supplying electrolytically treated water containing a chlorine-based oxidant produced by electrolytically treating cooling water to the cooling water system. In the water treatment method of cooling water system to prevent, the purpose is to accurately judge the scale adhesion state to the electrode and surely clean it when necessary, thereby controlling the amount of chlorine-based oxidant generation within an appropriate range. And

【0011】[0011]

【課題を解決するための手段】本発明の冷却水系の水処
理方法は、冷却水中に浸漬した電極に通電して、該水中
に含まれる塩化物イオンから塩素系酸化剤を生成させた
電解処理水を冷却水系の冷却水に含有させる冷却水系の
水処理方法において、該冷却水の電気伝導率、電極間の
印加電圧及び電極間の通電電流から電極へのスケール付
着状況を検知し、この検知結果に基づいて電極の洗浄を
行うことを特徴とする。
The cooling water-based water treatment method of the present invention is an electrolytic treatment in which an electrode immersed in cooling water is energized to generate a chlorine-based oxidizer from chloride ions contained in the water. In a water treatment method of a cooling water system, in which water is contained in cooling water of a cooling water system, the electric conductivity of the cooling water, the applied voltage between the electrodes, and the current applied between the electrodes are used to detect the scale adhesion state to the electrodes, and this detection is performed. It is characterized in that the electrode is cleaned based on the result.

【0012】電極間に電圧を印加して電極間に電流を通
電し、これによって水中の塩化物イオンを酸化して塩素
を生成させる場合、電極間に印加すべき電圧は、目標電
流値及び電極間距離にそれぞれ比例し、電極が接する冷
却水の電気伝導率に反比例する。又、この目標電流値
は、電流密度と電極面積との積であるが、電極面積は一
定である。
When a voltage is applied between the electrodes and a current is applied between the electrodes to oxidize chloride ions in water to generate chlorine, the voltage to be applied between the electrodes is the target current value and the electrode. It is respectively proportional to the distance between them and inversely proportional to the electric conductivity of the cooling water with which the electrodes are in contact. The target current value is the product of the current density and the electrode area, but the electrode area is constant.

【0013】そのため、電極にスケールが全く付着して
いない場合に目標電流値を通電して目標塩素発生量を得
るために印加する電圧(以下、これを理論電圧とい
う。)は理論電圧=電流密度×電極間距離/電気伝導率
+塩素発生電圧として算出することができる。
Therefore, when the scale is not attached to the electrode at all, the voltage applied to obtain the target chlorine generation amount by energizing the target current value is the theoretical voltage = current density. It can be calculated as × inter-electrode distance / electrical conductivity + chlorine generation voltage.

【0014】一方、電極にスケールが付着してくると、
目標電流値を通電するために電極間に印加する電圧が次
第に上昇する。そこで、目標電流値を通電すべく電極に
実際に印加している電圧を検知することにより、電極へ
のスケール付着状況を検知することができ、これに基づ
いて電極の洗浄の要否を判断することができる。
On the other hand, when scale adheres to the electrodes,
The voltage applied between the electrodes for energizing the target current value gradually rises. Therefore, by detecting the voltage that is actually applied to the electrode to supply the target current value, it is possible to detect the scale adhesion state to the electrode, and based on this, determine whether or not the electrode needs to be cleaned. be able to.

【0015】本発明では、上記の実際の印加電圧と理論
電圧との比を算出し、この比が所定比以上となったとき
に電極を制御するのが好適である。
In the present invention, it is preferable to calculate the ratio between the actual applied voltage and the theoretical voltage, and control the electrode when this ratio exceeds a predetermined ratio.

【0016】なお、本発明方法は理論電圧と実際の電圧
との比に基づく判定に限定されるものではなく、理論電
流や理論電気伝導率で判断してもよい。
The method of the present invention is not limited to the judgment based on the ratio between the theoretical voltage and the actual voltage, and the judgment may be based on the theoretical current or the theoretical electric conductivity.

【0017】[0017]

【発明の実施の形態】以下に図面を参照して本発明の冷
却水系の水処理方法の実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a cooling water system water treatment method of the present invention will be described in detail below with reference to the drawings.

【0018】図1は本発明の冷却水系の水処理方法の実
施の形態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a water treatment method for a cooling water system according to the present invention.

【0019】冷却塔1のピット内の冷却水は、ポンプP
により、配管11を経て熱交換器2に送給され、戻り
水は配管12を経て冷却塔1に戻され、散水板1Aから
散水される。この冷却水に塩素系酸化剤を添加するため
に電解処理装置3に冷却水が循環される。この電解処理
装置3は、電解槽4と、この電解槽4内に設けられた電
極4A,4Bと、電極4A,4Bに電圧を印加する電源
制御回路5とを備える。
The cooling water in the pit of the cooling tower 1 is pumped by the pump P.
1 , the water is sent to the heat exchanger 2 via the pipe 11, the return water is returned to the cooling tower 1 via the pipe 12, and is sprayed from the water spray plate 1A. Cooling water is circulated in the electrolytic treatment apparatus 3 in order to add a chlorine-based oxidizing agent to this cooling water. The electrolytic treatment apparatus 3 includes an electrolytic bath 4, electrodes 4A and 4B provided in the electrolytic bath 4, and a power supply control circuit 5 that applies a voltage to the electrodes 4A and 4B.

【0020】この冷却塔1のピットにはORP計6と電
気伝導率計7とが設けられている。電気伝導率計7の検
出信号は、濃縮管理装置8に入力される。この濃縮管理
装置8は、電気伝導率を演算し、この電気伝導率が目標
範囲に納まるように、補給水配管9の給水バルブ9a及
びブロー配管10のブローバルブ10aの開閉を制御す
る。
An ORP meter 6 and an electric conductivity meter 7 are provided in the pit of the cooling tower 1. The detection signal of the electric conductivity meter 7 is input to the concentration management device 8. The concentration management device 8 calculates the electric conductivity, and controls the opening and closing of the water supply valve 9a of the makeup water pipe 9 and the blow valve 10a of the blow pipe 10 so that the electric conductivity falls within the target range.

【0021】なお、濃縮管理装置8で演算された電気伝
導率は塩素発生用電解処理装置3の電源制御回路5にも
入力される。
The electrical conductivity calculated by the concentration control device 8 is also input to the power supply control circuit 5 of the electrolytic treatment device 3 for chlorine generation.

【0022】前記電解処理装置3の電解槽4には、冷却
塔1のピット内の冷却水が、ポンプPにより配管13
を経て導入され、電解槽4内で電解処理され、電解処理
水は配管14より冷却塔1のピットに戻される。
In the electrolytic bath 4 of the electrolytic treatment apparatus 3, the cooling water in the pit of the cooling tower 1 is piped by the pump P 2.
And is electrolyzed in the electrolysis tank 4, and the electrolyzed water is returned to the pit of the cooling tower 1 through the pipe 14.

【0023】この電解処理装置3の電源制御回路5は、
前記ORP計6の測定結果に基いて制御を行うように構
成されている。即ち、ORP計6のORP測定値が所定
値を超えた場合には、電極4A,4Bへの通電を停止し
て電解処理を中断し、ORP測定値が所定値を下回った
場合には、電極4A,4Bに通電して電解処理を再開す
ることにより、冷却水中の残留塩素濃度を所定の範囲内
に保つ。
The power supply control circuit 5 of this electrolytic processing apparatus 3 is
Control is performed based on the measurement result of the ORP meter 6. That is, when the ORP measurement value of the ORP meter 6 exceeds a predetermined value, the energization of the electrodes 4A and 4B is stopped to interrupt the electrolytic treatment, and when the ORP measurement value falls below the predetermined value, The residual chlorine concentration in the cooling water is kept within a predetermined range by energizing 4A and 4B and restarting the electrolytic treatment.

【0024】なお、このような電源のON、OFF操作
の代りに電極4A,4Bへの通電量の増減を行っても良
く、例えばORPが所定値を超えた場合には通電量を低
下させて電解処理で生成する残留塩素量を低減し、OR
Pが所定値を下回った場合には通電量を増やし、電解処
理で生成する残留塩素量を増加させるようにしても良
い。
The amount of electricity supplied to the electrodes 4A, 4B may be increased or decreased in place of such an ON / OFF operation of the power source. For example, when the ORP exceeds a predetermined value, the amount of electricity supplied may be decreased. The amount of residual chlorine generated by electrolytic treatment is reduced, and OR
When P is less than the predetermined value, the amount of electricity supplied may be increased to increase the amount of residual chlorine produced by the electrolytic treatment.

【0025】この実施の形態では、ポンプPと電解槽
4の入口との間、及び電解槽4の出口と冷却塔1のピッ
トとの間にそれぞれ三方弁21,22が設けられてい
る。これらの三方弁21,22間には電解槽4を迂回す
るバイパス配管23が架設されている。また、三方弁2
1と電解槽4との間及び三方弁22と電解槽4との間か
らはそれぞれ分岐配管25,26が分岐しており、該分
岐配管25,26は電解槽4の電極洗浄用の洗浄ユニッ
ト27に接続されている。この洗浄ユニット27は、洗
浄液を貯留するためのタンクと該タンク間の洗浄液を電
解槽4に循環供給するためのポンプとを備えている。こ
の洗浄液としては希塩酸、EDTA等のキレート剤溶液
などが用いられる。
In this embodiment, three-way valves 21 and 22 are provided between the pump P 2 and the inlet of the electrolytic cell 4 and between the outlet of the electrolytic cell 4 and the pit of the cooling tower 1, respectively. Between these three-way valves 21 and 22, a bypass pipe 23 that bypasses the electrolytic cell 4 is installed. Also, three-way valve 2
1 and the electrolyzer 4 and between the three-way valve 22 and the electrolyzer 4, branch pipes 25 and 26 are respectively branched, and the branch pipes 25 and 26 are cleaning units for cleaning electrodes of the electrolyzer 4. It is connected to 27. The cleaning unit 27 includes a tank for storing the cleaning liquid and a pump for circulating and supplying the cleaning liquid between the tanks to the electrolytic cell 4. A chelating agent solution such as dilute hydrochloric acid or EDTA is used as the cleaning liquid.

【0026】定常の冷却塔稼動時には、三方弁21,2
2はポンプPと電解槽4の入口とを連通し、電解槽4
の出口と冷却塔1とを連通する流路選択となっている。
During steady operation of the cooling tower, the three-way valves 21, 2
2 communicates the pump P 2 with the inlet of the electrolytic cell 4 and
The flow path is selected so that the outlet of the cooling tower and the cooling tower 1 communicate with each other.

【0027】電極4A,4B間には、目標とする電流が
両電極間に流れるように電圧が電源制御回路5から印加
されている。この印加電圧と理論電圧との比が所定比
(好ましくは1.1〜1.8特に好ましくは1.1〜
1.5の間から選択された比)以上となったときには電
解槽4が洗浄ユニット27によって洗浄される。この洗
浄時には、三方弁21,22はポンプPからの水がバ
イパス配管23を通って冷却塔1へ戻るように切り換わ
る。この状態において洗浄ユニット27が作動し、電解
槽4に洗浄液が循環流通される。
A voltage is applied between the electrodes 4A and 4B from the power supply control circuit 5 so that a target current flows between the electrodes. The ratio of the applied voltage to the theoretical voltage is a predetermined ratio (preferably 1.1 to 1.8, particularly preferably 1.1 to 1.8).
When the ratio exceeds a ratio selected from the range of 1.5) or more, the electrolytic cell 4 is cleaned by the cleaning unit 27. During this cleaning, the three-way valves 21, 22 are switched so that the water from the pump P 2 returns to the cooling tower 1 through the bypass pipe 23. In this state, the cleaning unit 27 operates and the cleaning liquid is circulated and circulated in the electrolytic bath 4.

【0028】なお、三方弁21,22の代りに開閉弁を
設け、バイパス配管23を省略し、洗浄ユニット27の
動作時にはポンプPを停止すると共に該開閉弁を閉と
するよう構成してもよい。
An on-off valve may be provided instead of the three-way valves 21 and 22, the bypass pipe 23 may be omitted, and the pump P 2 may be stopped and the on-off valve may be closed when the cleaning unit 27 operates. Good.

【0029】この冷却水系においては、このように電解
槽4への実際の印加電圧と、理論電圧との比に基づいて
電解槽4は自動的に洗浄が行われるので、長期にわたり
サービスマンによるメンテナンスなしに運転が継続され
る。
In this cooling water system, the electrolytic cell 4 is automatically cleaned on the basis of the ratio of the voltage actually applied to the electrolytic cell 4 to the theoretical voltage in this manner, so that maintenance by a service person is performed for a long period of time. The operation continues without it.

【0030】この間、濃縮管理装置8及び電源制御回路
5の運転データと、電気伝導度計7及びORP計6の検
知データは、それぞれ通信機器30を介して集中管理セ
ンターに送信され、集中管理センターのホストコンピュ
ータに蓄積される。
During this time, the operation data of the concentration control device 8 and the power supply control circuit 5 and the detection data of the electric conductivity meter 7 and the ORP meter 6 are transmitted to the central control center via the communication device 30, respectively. Stored in the host computer.

【0031】上記の洗浄ユニット27が作動しても電解
槽4の動作が定常状態に復帰しないようになったときに
は、アラーム信号が通信機器30から集中管理センター
に通報される。集中管理センターは、このアラーム信号
に基づいてサービスマン派遣センターにサービスマン派
遣を要求する信号を送信する。
When the operation of the electrolytic cell 4 does not return to the steady state even if the cleaning unit 27 is operated, an alarm signal is sent from the communication device 30 to the central control center. Based on this alarm signal, the centralized control center sends a signal requesting dispatch of a serviceman to the serviceman dispatch center.

【0032】[0032]

【実施例】実施例1 図1の冷却水系を、空気伝導率計7の検出電気伝導率が
1.0×10−3S/cmになるように維持管理した。
電解槽4には、電極面積100cmの電極が極間距離
0.3cmで設置されており、4.5Aの定電流で電解
し、塩素を発生させた。理論電圧は以下の式で算出し
た。 理論電圧=電流密度×極間距離/電気伝導率+塩素発生電圧 =0.045A/cm×0.3cm/(1.0×10−3S/cm )+3V=18V
Example 1 The cooling water system shown in FIG. 1 was maintained and managed so that the electric conductivity detected by the air conductivity meter 7 was 1.0 × 10 −3 S / cm.
Electrodes having an electrode area of 100 cm 2 were installed in the electrolytic cell 4 with a distance between electrodes of 0.3 cm, and electrolysis was performed at a constant current of 4.5 A to generate chlorine. The theoretical voltage was calculated by the following formula. Theoretical voltage = current density × distance between electrodes / electrical conductivity + chlorine generation voltage = 0.045 A / cm 2 × 0.3 cm / (1.0 × 10 −3 S / cm) + 3V = 18V

【0033】洗浄時期を示す警報は、実際の電圧/理論
電圧=1.3で出力し、警報後すぐに酸洗を実施した。
なお、6日目で電圧比(実際の印加電圧/理論電圧)が
1.3に達したので、6日目に電解槽4を洗浄ユニット
27により3hにわたり希塩酸洗浄した。希塩酸濃度は
1N,総流通量は30Lであった。
An alarm indicating the cleaning time was output at the actual voltage / theoretical voltage = 1.3, and pickling was carried out immediately after the alarm.
Since the voltage ratio (actual applied voltage / theoretical voltage) reached 1.3 on the 6th day, the electrolytic cell 4 was washed with dilute hydrochloric acid for 3 hours by the washing unit 27 on the 6th day. The dilute hydrochloric acid concentration was 1N, and the total circulation volume was 30L.

【0034】試験結果と理論電圧、実際の電圧、電解槽
での塩素発生速度を表1に示す。
Table 1 shows the test results, theoretical voltage, actual voltage, and chlorine generation rate in the electrolytic cell.

【0035】[0035]

【表1】 [Table 1]

【0036】比較例1 6日目になっても酸洗浄を全く行わなかったこと以外は
上記実施例1と同条件で、図1の装置を運転した。その
結果を表2に示すが、6日目以降塩素発生量は著しく低
下した。
Comparative Example 1 The apparatus of FIG. 1 was operated under the same conditions as in Example 1 except that no acid cleaning was performed on the 6th day. The results are shown in Table 2, and the chlorine generation amount remarkably decreased after the 6th day.

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【発明の効果】以上詳述した通り、本発明の冷却水系の
水処理方法によれば、冷却水を電解処理することによ
り、冷却水中の塩化物イオンから塩素系酸化剤を生成さ
せ、塩素系酸化剤を含む電解処理水を冷却水系に供給す
ることにより系内のスライムの発生を防止するに当た
り、冷却水中の塩素系酸化剤濃度が所定の範囲となるよ
うに塩素系酸化剤の生成量を適正範囲に制御することが
でき、これにより、系内の腐食を防止した上で良好なス
ライム防止効果を得ることができる。
As described in detail above, according to the cooling water-based water treatment method of the present invention, the cooling water is electrolyzed to generate a chlorine-based oxidizer from chloride ions in the cooling water to generate a chlorine-based oxidizing agent. In preventing the generation of slime in the system by supplying electrolytically treated water containing an oxidant to the cooling water system, the amount of chlorine-based oxidant produced should be adjusted so that the concentration of chlorine-based oxidant in the cooling water is within the specified range. It can be controlled within an appropriate range, whereby a good slime prevention effect can be obtained while preventing corrosion in the system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷却水系の水処理方法の実施の形態を
示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a water treatment method for a cooling water system according to the present invention.

【符号の説明】 1 冷却塔 1A 散水板 2 熱交換器 3 電解処理装置 4 電解槽 4A,4B 電極 5 電源 6 ORP計 7 電気伝導率計 8 濃縮管理装置 21,22 三方弁 27 洗浄ユニット 30 通信機器[Explanation of symbols] 1 cooling tower 1A water spray plate 2 heat exchanger 3 Electrolytic treatment equipment 4 electrolyzer 4A, 4B electrodes 5 power supplies 6 ORP meter 7 Electrical conductivity meter 8 Concentration management device 21,22 3-way valve 27 Washing unit 30 communication equipment

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 560 C02F 1/50 560F F28F 19/01 F28G 13/00 Z F28G 13/00 F28F 19/00 501B (72)発明者 角田 和彦 東京都新宿区西新宿三丁目4番7号 栗田 工業株式会社内 (72)発明者 大石 正典 千葉県千葉市美浜区中瀬二丁目6番地 W BGマリブウエスト19階 旭硝子エンジニ アリング株式会社内 Fターム(参考) 4D061 DA05 DB02 DB10 EA02 EB01 EB04 EB37 EB39 ED20 GA06 GA12 GA14 GA23 GA30 GC11 GC15 Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 1/50 560 C02F 1/50 560F F28F 19/01 F28G 13/00 Z F28G 13/00 F28F 19/00 501B (72 ) Inventor Kazuhiko Kakuda 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd. (72) Masanori Oishi 2-chome, Nakase 2-chome, Nakase 2-chome, Mihama-ku, Chiba, Chiba Prefecture Asahi Glass Engineering Co., Ltd. In-house F-term (reference) 4D061 DA05 DB02 DB10 EA02 EB01 EB04 EB37 EB39 ED20 GA06 GA12 GA14 GA23 GA30 GC11 GC15

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 冷却水中に浸漬した電極に通電して、該
水中に含まれる塩化物イオンから塩素系酸化剤を生成さ
せた電解処理水を冷却水系の冷却水に含有させる冷却水
系の水処理方法において、 該冷却水の電気伝導率、電極間の印加電圧及び電極間の
通電電流から電極へのスケール付着状況を検知し、この
検知結果に基づいて電極の洗浄を行うことを特徴とする
冷却水系の水処理方法。
1. A water treatment of a cooling water system in which cooling water of a cooling water system contains electrolyzed water in which a chlorine-based oxidizing agent is generated from chloride ions contained in the water by energizing an electrode immersed in the cooling water. In the method, cooling conditions are characterized in that the scale adhesion state to the electrodes is detected from the electrical conductivity of the cooling water, the voltage applied between the electrodes, and the current flowing between the electrodes, and the electrodes are washed based on the detection results. Water-based water treatment method.
【請求項2】 請求項1において、電気伝導率、電極間
に通電すべき目標電流値、および塩素発生電圧に基づい
て理論電圧を設定し、 この目標電流値が電極間に流れるように印加された実際
の電圧を測定し、この実際の印加電圧と理論電圧との比
が所定比以上となったときに電極の洗浄を行うことを特
徴とする冷却水系の水処理方法。
2. The theoretical voltage according to claim 1, wherein the theoretical voltage is set based on the electrical conductivity, the target current value to be conducted between the electrodes, and the chlorine generation voltage, and the target current value is applied so as to flow between the electrodes. A water treatment method for a cooling water system, characterized in that the actual voltage is measured, and the electrode is washed when the ratio of the actual applied voltage to the theoretical voltage exceeds a predetermined ratio.
JP2002088847A 2002-03-27 2002-03-27 Water treatment method for cooling water system Expired - Fee Related JP3925269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088847A JP3925269B2 (en) 2002-03-27 2002-03-27 Water treatment method for cooling water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088847A JP3925269B2 (en) 2002-03-27 2002-03-27 Water treatment method for cooling water system

Publications (2)

Publication Number Publication Date
JP2003285064A true JP2003285064A (en) 2003-10-07
JP3925269B2 JP3925269B2 (en) 2007-06-06

Family

ID=29234594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088847A Expired - Fee Related JP3925269B2 (en) 2002-03-27 2002-03-27 Water treatment method for cooling water system

Country Status (1)

Country Link
JP (1) JP3925269B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289298A (en) * 2005-04-13 2006-10-26 Ase:Kk Water treatment method and water treatment device
JP2007216140A (en) * 2006-02-16 2007-08-30 Hitachi Plant Technologies Ltd Treatment method of sludge
JP5700736B1 (en) * 2014-08-28 2015-04-15 株式会社日立パワーソリューションズ Water treatment apparatus and control method for water treatment apparatus
JP2016109392A (en) * 2014-12-10 2016-06-20 株式会社デンソー Heat transport system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3643684A1 (en) * 2018-10-22 2020-04-29 Geodesic Innovations, S.L. System and procedure for the disinfection and preservation of water in circuits with water accumulation by means of applying combined electroporation and oxidation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006289298A (en) * 2005-04-13 2006-10-26 Ase:Kk Water treatment method and water treatment device
JP2007216140A (en) * 2006-02-16 2007-08-30 Hitachi Plant Technologies Ltd Treatment method of sludge
JP5700736B1 (en) * 2014-08-28 2015-04-15 株式会社日立パワーソリューションズ Water treatment apparatus and control method for water treatment apparatus
JP2016109392A (en) * 2014-12-10 2016-06-20 株式会社デンソー Heat transport system

Also Published As

Publication number Publication date
JP3925269B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
US20090229992A1 (en) Reverse Polarity Cleaning and Electronic Flow Control Systems for Low Intervention Electrolytic Chemical Generators
JP4790778B2 (en) Cooling water scale removing device and scale removing method using the scale removing device
EP0755362A1 (en) Electrolytic water treatment
US20120152760A1 (en) Water treatment method and system
JP2007515289A (en) Electrolytic ballast water treatment apparatus and treatment method
JP2003225672A (en) Water treatment equipment
JP2006098003A (en) Electrolytic treating method and electrolytic treating device for circulating type cooling water system
JP2006255653A (en) Electrolytic treatment method of water system
JP2003285064A (en) Water treatment method for cooling water system
KR20030009158A (en) Hypochlorous Acid Generating Method and Device
JP2005288358A (en) Electrolytic wastewater treatment system, electrolytic control device, electrolytic wastewater treatment method, program and storage medium
JP2019076815A (en) Water treatment system, electrode cleaning method, and electrode cleaning device
JP2005052787A (en) Electrolytic water for cleaning, and preparation method and preparation apparatus therefor
JP3757888B2 (en) Operation management method for water treatment equipment
JP3530452B2 (en) Water treatment equipment
JP2003190988A (en) Water treatment method for cooling water system
CN213866435U (en) Acid-washing-free efficient intelligent electrolytic sodium hypochlorite generator
JP2006198583A (en) Electrolytic treatment method and apparatus for water system
JP2006198547A (en) Electrolytic treatment method and apparatus for water system
JP2004082104A (en) Electrolytic sterilizing apparatus and method
JP3521896B2 (en) Water treatment method for cooling water system
JP2006150272A (en) Electrolytic water for alkali cleaning and method and apparatus for producing the same
JP3680786B2 (en) Water treatment method and water treatment apparatus for cooling water system
JP2006289298A (en) Water treatment method and water treatment device
JP3422366B2 (en) Cooling water slime prevention method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

R150 Certificate of patent or registration of utility model

Ref document number: 3925269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100309

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees