JP3680786B2 - Water treatment method and water treatment apparatus for cooling water system - Google Patents

Water treatment method and water treatment apparatus for cooling water system Download PDF

Info

Publication number
JP3680786B2
JP3680786B2 JP2001356298A JP2001356298A JP3680786B2 JP 3680786 B2 JP3680786 B2 JP 3680786B2 JP 2001356298 A JP2001356298 A JP 2001356298A JP 2001356298 A JP2001356298 A JP 2001356298A JP 3680786 B2 JP3680786 B2 JP 3680786B2
Authority
JP
Japan
Prior art keywords
water
cooling water
electrode
energization
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001356298A
Other languages
Japanese (ja)
Other versions
JP2003154367A (en
Inventor
和彦 角田
晶 飯村
正典 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001356298A priority Critical patent/JP3680786B2/en
Publication of JP2003154367A publication Critical patent/JP2003154367A/en
Application granted granted Critical
Publication of JP3680786B2 publication Critical patent/JP3680786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は冷却水系の水処理方法及び水処理装置に係り、詳しくは、冷却水を電解処理することにより冷却水中の塩化物イオンから次亜塩素酸等の塩素系酸化剤を生成させ、この塩素系酸化剤により冷却水系のスライム障害を防止する冷却水系の水処理方法及び水処理装置に関する。
【0002】
【従来の技術】
冷却水系では、微生物によりスライムが発生し易い。特に、循環冷却水系の高濃縮運転では、冷却水の水質が悪化し、細菌、黴、藻類などの微生物群に土砂、塵埃などが混ざり合って形成されるスライムが発生し易くなり、熱交換器における熱効率の低下や通水の悪化を引き起こす。また、スライム付着部において、機器や配管の局部腐食を誘発する。
【0003】
このようなスライムによる障害を防止するために、酸化剤が用いられている。スライム防止のための酸化剤は薬品タンクにストックされ、薬注ポンプにより冷却水系に注入される。この薬品タンクには定期的に薬品を補充する必要があり、薬品運搬の労力(ローリー運搬、コンテナ移動、キュービの高所への移動等)を要する。また、薬品の管理、発注等の手間もかかる。
【0004】
スライムを防止する別の方法として、冷却水中に含まれる塩化物イオンを電解酸化により次亜塩素酸などの塩素系酸化剤に変換し、この塩素系酸化剤を冷却水中に存在させる方法が知られている。
【0005】
冷却水系の補給水として用いられる水道水や工業用水には、通常数mg−Cl/L〜10mg−Cl/L程度の塩化物イオンが含まれており、循環冷却水系の冷却水には、補給水中の塩化物イオンが6〜8倍程度に濃縮して存在している。このため、この冷却水を電解処理することにより、冷却水中の塩化物イオンからスライム防止効果のある残留塩素(遊離塩素)を発生させることができる。この残留塩素を含む電解処理水を冷却水系に戻すことにより、スライム障害を防止することができる。
【0006】
この塩素系酸化剤を発生させるための電解処理装置では、陽極と陰極との間に外部電源を用いて直流電圧を印加すると共に、両極間に冷却水を通水する。これにより、陽極の表面において冷却水中の塩化物イオンが酸化され、次亜塩素酸などの強い酸化力を有する残留塩素が生成する。生成した残留塩素は、スライムの原因となる微生物を殺菌し、あるいは増殖を抑制するので、循環冷却水系のスライム発生を効果的に防止することができる。
【0007】
【発明が解決しようとする課題】
冷却水を電解処理する方法では、電解処理装置に冷却水を供給するポンプの故障、或いはこの供給配管の閉塞等の何らかの原因で、電解処理装置に冷却水が通水されなくなった場合、電極間に滞留している冷却水が発熱し、電極周辺の配管、その他の機器を過熱により劣化ないし損傷させる恐れがある。特に、耐熱性の低い材質で構成される部材にあっては大きな損傷を受ける。
【0008】
本発明は、冷却水を電解処理して塩素系酸化剤を含ませるようにした電解処理水を冷却水系に供給し、系内のスライムの発生を防止する冷却水系の水処理方法及び水処理装置において、電極部の異常発熱による配管や機器の劣化や損傷を防止して、長期に亘り安全に運転を継続することを目的とする。
【0009】
【課題を解決するための手段】
本発明の冷却水系の水処理方法は、冷却水中に浸漬した電極に通電して、該水中に含まれる塩化物イオンから塩素系酸化剤を生成させた電解処理水を冷却水系の冷却水に含有させる冷却水系の水処理方法において、前記電極付近の水の温度、前記電極付近の水の流、及び前記電極の冷却水中への浸漬の有無を監視し、この監視結果に基いて電解処理の異常の有無を判断し、いずれか1つでも異常が検知された場合には、前記電極への通電を停止、又は通電量を低減することを特徴とする。
【0010】
本発明の冷却水系の水処理装置は、冷却水中に浸漬した電極に通電して、該水中に含まれる塩化物イオンから塩素系酸化剤を生成させた電解処理水を冷却水系の冷却水に含有させる冷却水系の水処理装置において、前記電極付近の水の温度、前記電極付近の水の流、及び前記電極の冷却水中への浸漬の有無を監視する手段と、この監視結果に基いて電解処理の異常の有無を判断し、いずれか1つでも異常が検知された場合には、前記電極への通電を停止、又は通電量を低減する制御手段とを備えたことを特徴とする。
【0011】
本発明では、電極付近の水の温度、電極付近の水の流、及び電極の冷却水中への浸漬の有無を監視し、例えば、電極付近の水の温度が所定温度以上である場合、或いは電極付近の水の流速が所定値以下である場合、或いは電極が冷却水中に完全に浸漬していない場合には、電極への通電を停止、又は通電量を低減することにより、電極付近の異常発熱の有無を予知し、この結果に基いて電極への通電を制御することにより、過熱による配管や機器の劣化ないし損傷を防止することができる。
【0012】
【発明の実施の形態】
以下に図面を参照して本発明の冷却水系の水処理方法及び水処理装置の実施の形態を詳細に説明する。図1は本発明の冷却水系の水処理装置の実施の形態を示す通水型電解処理装置の断面図である。
【0013】
円筒形の本体部1Aの両端部を円盤状の端面部材1B,1Bで閉鎖することにより電解槽セル1が構成されている。この電解槽セル1の側周面には冷却水の導入口2Aと、電解処理水の排出口2Bが設けられている。電解槽セル1内には1対の板状の電極3A,3Bが対面配置されている。電極3A,3Bには接続線4,4A,4Bにより電源5から通電が行われる。
【0014】
冷却水の導入口2Aには、この導入口2A内を流れる冷却水の流量(流速)を測定する流量センサ6が設けられている。また、電極3Aの近傍の温度を測定するための温度センサ7が、端面部材1B側から電解槽セル1内に挿入されている。
【0015】
流量センサ6及び温度センサ7の測定結果は、制御装置8に入力され、制御装置8では、これらのセンサの測定結果に基いて、電源5から電極3A,3Bへの通電を制御する作動信号を出力する。
【0016】
導入口2Aから電解槽セル1内に導入された冷却水は、電源5からの通電で電極3A,3Bにより電解処理され、電解処理により生成した塩素系酸化剤を含む電解処理水は排出口2Bから排出される。この電解処理中に、導入口2Aから電解槽セル1内に導入される冷却水の流量が流量センサ6により測定されると共に、電極3Aの近傍の冷却水の水温が温度センサ7により測定される。これらのセンサ6,7の測定結果は制御装置8に入力される。制御装置8では、流量センサ6で測定された冷却水の流入量が所定値以下である場合、或いは、温度センサ7で測定された電極3A近傍の温度が所定値以上である場合には、電源5のOFF信号を出力し、電源5から電極3A,3Bへの通電を停止する。そして、この温度センサ7の測定温度が所定値を下回ると共に、流量センサ6の測定流量が所定値を上回ったときには、電源5のON信号を出力し、電源5から電極3A,3Bへの通電を再開する。
【0017】
この電極3A,3Bへの通電の制御基準となる温度及び流量は、電解処理装置を構成する配管や機器類の材質、その他の装置仕様や運転条件等によって、配管や機器類が電極部分の異常発熱によって劣化ないし損傷を受けることがないように適宜設定される。
【0018】
図1では、流量センサと温度センサとを用い、流量と温度に基いて電極への通電を制御している。即ち、図1の通水型電解処理装置の場合、電極が冷却水中に完全に浸漬されずに一部又は全部が露出する事態は起こり難いため、電極の浸漬状況の監視は行っていないが、電解処理装置の構造上、電極が冷却水中から露出する恐れがある場合には、更にレベルセンサ(水位計)を設け、電極の冷却水中への浸漬状況を監視して電極への通電を制御するようにすることが好ましい。
【0019】
温度センサ、流量センサ及びレベルセンサによる通電制御は、例えば次の(1)(3)のような方法で実施される。電極への通電制御は、温度センサ、流量センサ及びレベルセンサのすべてのセンサのうち、いずれか1つのセンサが安全条件を満たされない場合には電極への通電を停止、又は通電量を低減するようにする
【0020】
(1) 温度センサの測定値が所定温度よりも高い場合に、電極への通電を停止するか、通電量を低減する。その後、温度センサの測定値が所定温度よりも低くなったときに通電を再開するか、元の通電量に戻す。
(2) 流量センサの測定値が所定流量よりも低い場合に、電極への通電を停止するか、通電量を低減する。その後、流量センサの測定値が所定流量よりも高くなったときに通電を再開するか、元の通電量に戻す。
(3) レベルセンサの測定値が所定レベルよりも低い場合に、電極への通電を停止するか、通電量を低減する。その後、レベルセンサの測定値が所定レベルよりも高くなったときに通電を再開するか、元の通電量に戻す。
【0021】
図1に示す通水型の電解処理装置の場合、冷却水系の冷却塔のピットから冷却水を引き抜き、電解処理した後、電解処理水を冷却水系に戻したり、循環冷却水の配管にバイパスラインを設け、循環冷却水の一部を抜き出して電解処理し、電解処理水を循環配管に戻したりすることができる。
【0022】
電極への印加電圧は、塩素系酸化剤が発生し得る電圧であれば良く、特に制限はないが、人体への影響を考慮して40V以下であることが好ましく、また、塩素系酸化剤の生成効率の面からは2V以上であることが好ましい。電解処理のための電流値にも特に制限はないが、導入される冷却水1L/hrに対して0.01〜0.1Aであることが好ましい。
【0023】
本発明において、陰極の素材はステンレス、Al、Agなどが好ましく、また、陽極の素材はPt、Irなどの次亜塩素酸発生効率の良い素材が望ましいが、何らこれに限定されるものではない。陰極と陽極の素材は同一であっても良い。
【0024】
電極に印加する電圧は、定期的に反転させても良く、このようにすることにより、電極へのスケールの付着を防止することができる。この場合、極性の反転は0.5〜6hrに1回の頻度で行うのが好ましい。
【0025】
本発明では、電極は冷却塔のピット内など他の位置に配置されてもよい。
【0026】
なお、冷却水の塩化物イオン濃度は、当該水系の濃縮倍率等によっても異なるが、一般的には、30〜100mg/L程度である。従って、このような塩化物イオン濃度の冷却水を電解処理することにより、例えば、次亜塩素酸濃度1〜10mg/L程度の電解処理水を得ることができる。
【0027】
冷却水は、このように十分に高い塩化物イオン濃度を有し、従って、冷却水には特に塩化物イオンを補給することなく電解処理装置で処理して十分量の残留塩素濃度の電解処理水を得ることができるが、必要に応じて冷却水に食塩(NaCl)等を添加して塩化物イオン濃度を100〜300mg/L程度にまで高めても良い。
【0028】
【実施例】
以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
【0029】
実施例1
パイロット規模の熱交換器を有する冷却水系(濃縮倍率10倍)において、冷却塔のピットから冷却水を30L/minで抜き出し、図1に示す電解処理装置で電解処理した後、冷却塔のピットに戻した。この冷却水系には補給水として厚木市水を補給した。
【0030】
この電解処理装置では、温度センサの測定温度が60℃以上である場合、及び/又は、流量センサの測定流量が5L/min以下である場合に電極への通電を停止し、温度センサの測定温度が60℃未満で、流量センサの測定流量が5L/minを超える場合にのみ電極への通電を行った。
【0031】
なお、電解槽セルの構成材料はPVC(ポリ塩化ビニル)を主体とするものであり、電極付近の温度が60℃以上になるとセルが劣化ないし損傷する恐れがあることから、上記測定温度の基準値は60℃とした。
【0032】
用いた電解処理装置の仕様は下記の通りであり、電圧は10V、電流値は50Aとした。

Figure 0003680786
【0033】
各センサの測定値と電極への通電の有無は表1に示す通りであり、1ヶ月の運転期間中、電解槽セル内の温度を60℃以上に上昇させることなく安全に運転することができた。
【0034】
なお、運転期間中、電極への通電を行ったときの電解処理水中の残留塩素濃度は0.1〜0.5mg−Cl/Lであり、冷却水系のスライムを効果的に防止することができた。
【0035】
【表1】
Figure 0003680786
【0036】
比較例1
実施例1において、電極への通電を制御せず、常時通電を行ったこと以外は全く同様にして電解処理を行ったところ、2日目に電解槽セル内温度は、70℃にまで過熱され、セルが白く変色し、変形して水もれが生じたため、運転を継続することができなくなった。
【0037】
【発明の効果】
以上詳述した通り、本発明によれば、冷却水を電解処理することにより生成させた塩素系酸化剤を含む電解処理水を冷却水系に供給することにより、系内のスライムの発生を防止する冷却水系の水処理方法及び水処理装置において、電極部の異常発熱を防止して、過熱による配管や機器の劣化ないし損傷を確実に防止することができる。従って、電解処理装置の安全運転を継続して行うことができ、冷却水系に塩素系酸化剤を安定的に供給することにより冷却水系のスライム障害を長期に亘り防止することができる。
【図面の簡単な説明】
【図1】図1は本発明の冷却水系の水処理装置の実施の形態を示す通水型電解処理装置の断面図である。
【符号の説明】
1 電解槽セル
3A,3B 電極
5 電源
6 流量センサ
7 温度センサ
8 制御装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling water-based water treatment method and a water treatment apparatus, and more specifically, a chlorine-based oxidizing agent such as hypochlorous acid is generated from chloride ions in cooling water by electrolytic treatment of the cooling water, and the chlorine BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling water system water treatment method and a water treatment apparatus that prevent a slime failure of a cooling water system with a system oxidant.
[0002]
[Prior art]
In the cooling water system, slime is easily generated by microorganisms. In particular, in the high concentration operation of the circulating cooling water system, the quality of the cooling water deteriorates, and it becomes easy to generate slime formed by mixing soil, sand, and dust with microorganisms such as bacteria, cocoons and algae. Cause deterioration of heat efficiency and water flow. In addition, local corrosion of equipment and piping is induced in the slime adhesion part.
[0003]
An oxidizing agent is used to prevent such slime damage. The oxidant for preventing slime is stocked in a chemical tank and injected into the cooling water system by a chemical pump. This chemical tank needs to be regularly replenished with chemicals and requires labor for chemical transportation (such as lorry transportation, container movement, and cubic movement). In addition, it takes time to manage chemicals and place orders.
[0004]
As another method for preventing slime, a method is known in which chloride ions contained in cooling water are converted into chlorine-based oxidizing agents such as hypochlorous acid by electrolytic oxidation, and this chlorine-based oxidizing agent is present in cooling water. ing.
[0005]
Tap water and industrial water used as make-up water for the cooling water system, usually several mg-Cl - / L~10mg-Cl - / it is about contains chloride ions L, the cooling water in circulation cooling water system The chloride ions in the make-up water are concentrated about 6 to 8 times. For this reason, by subjecting this cooling water to electrolytic treatment, residual chlorine (free chlorine) having a slime prevention effect can be generated from chloride ions in the cooling water. By returning the electrolytically treated water containing residual chlorine to the cooling water system, slime failure can be prevented.
[0006]
In this electrolytic treatment apparatus for generating a chlorinated oxidant, a DC voltage is applied between an anode and a cathode using an external power source, and cooling water is passed between both electrodes. As a result, chloride ions in the cooling water are oxidized on the surface of the anode, and residual chlorine having strong oxidizing power such as hypochlorous acid is generated. The generated residual chlorine sterilizes microorganisms that cause slime, or suppresses growth, so that generation of slime in the circulating cooling water system can be effectively prevented.
[0007]
[Problems to be solved by the invention]
In the method of electrolytic treatment of the cooling water, if the cooling water is not passed through the electrolytic treatment device due to a failure of the pump that supplies the cooling water to the electrolytic treatment device or the blockage of this supply pipe, The cooling water staying in the chamber may generate heat, which may cause deterioration or damage to the piping and other equipment around the electrode due to overheating. In particular, a member made of a material having low heat resistance is greatly damaged.
[0008]
The present invention relates to a water treatment method and a water treatment apparatus for a cooling water system in which electrolytic water treated by electrolytic treatment of cooling water is supplied to the cooling water system to prevent generation of slime in the system. The purpose of the present invention is to prevent the deterioration and damage of piping and equipment due to abnormal heat generation of the electrode part, and to continue the operation safely for a long time.
[0009]
[Means for Solving the Problems]
The cooling water-based water treatment method of the present invention includes an electrolytically treated water in which a chlorine-based oxidizing agent is generated from chloride ions contained in the water by energizing an electrode immersed in the cooling water in the cooling water-based cooling water. in the water treatment method of the cooling water system to be, the water temperature of the electrode vicinity, the flow of water around the electrode, and to monitor the presence or absence of immersion in the cooling water of the electrodes, the electrolytic treatment on the basis of the monitoring result The presence or absence of abnormality is judged, and when any one of the abnormality is detected, the energization to the electrode is stopped or the energization amount is reduced .
[0010]
The cooling water-based water treatment apparatus of the present invention contains electrolyzed water in which a chlorine-based oxidant is generated from chloride ions contained in the water by energizing an electrode immersed in the cooling water in the cooling water-based cooling water. in the water treatment apparatus of the cooling water system to be, the water temperature of the electrode vicinity, the flow of water around the electrodes, and means for monitoring the presence or absence of immersion in the cooling water of the electrode, electrolysis based on the monitoring result It is characterized by determining whether or not there is an abnormality in the processing, and when any one of the abnormality is detected, a control means for stopping energization of the electrode or reducing the energization amount is provided.
[0011]
If the present invention, the temperature of the water near the electrode, the flow of water around the electrodes, and the presence or absence of immersion in the cooling water of the electrodes is monitored, for example, the temperature of the water near the electrode is higher than a predetermined temperature, or If the flow rate of water near the electrode is less than the specified value, or if the electrode is not completely immersed in the cooling water, stop the energization of the electrode or reduce the energization amount, By predicting the presence or absence of heat generation and controlling the energization of the electrodes based on this result, it is possible to prevent deterioration or damage of piping and equipment due to overheating.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a cooling water system water treatment method and a water treatment apparatus according to the present invention will be described below in detail with reference to the drawings. FIG. 1 is a cross-sectional view of a water flow type electrolytic treatment apparatus showing an embodiment of a cooling water system water treatment apparatus of the present invention.
[0013]
The electrolytic cell 1 is configured by closing both ends of the cylindrical main body 1A with disc-shaped end surface members 1B and 1B. A cooling water inlet 2A and an electrolytically treated water outlet 2B are provided on the side peripheral surface of the electrolytic cell 1. In the electrolytic cell 1, a pair of plate-like electrodes 3A and 3B are arranged facing each other. The electrodes 3A and 3B are energized from the power source 5 through connection lines 4, 4A and 4B.
[0014]
The cooling water inlet 2A is provided with a flow rate sensor 6 for measuring the flow rate (flow velocity) of the cooling water flowing through the inlet 2A. Further, a temperature sensor 7 for measuring the temperature in the vicinity of the electrode 3A is inserted into the electrolytic cell 1 from the end face member 1B side.
[0015]
The measurement results of the flow sensor 6 and the temperature sensor 7 are input to the control device 8, and the control device 8 generates an operation signal for controlling the energization from the power source 5 to the electrodes 3A and 3B based on the measurement results of these sensors. Output.
[0016]
The cooling water introduced into the electrolytic cell 1 from the inlet 2A is electrolytically treated by the electrodes 3A and 3B by energization from the power source 5, and the electrolytically treated water containing the chlorine-based oxidant generated by the electrolytic treatment is discharged from the outlet 2B. Discharged from. During the electrolytic treatment, the flow rate of the cooling water introduced into the electrolytic cell 1 from the introduction port 2A is measured by the flow sensor 6, and the temperature of the cooling water near the electrode 3A is measured by the temperature sensor 7. . The measurement results of these sensors 6 and 7 are input to the control device 8. In the control device 8, when the inflow amount of the cooling water measured by the flow sensor 6 is not more than a predetermined value, or when the temperature in the vicinity of the electrode 3A measured by the temperature sensor 7 is not less than a predetermined value, the power supply 5 is output to stop energization from the power source 5 to the electrodes 3A and 3B. When the measured temperature of the temperature sensor 7 falls below a predetermined value and the measured flow rate of the flow sensor 6 exceeds the predetermined value, an ON signal of the power source 5 is output, and energization from the power source 5 to the electrodes 3A and 3B is performed. Resume.
[0017]
The temperature and flow rate, which are the control criteria for energization of the electrodes 3A and 3B, are determined as abnormalities in the electrode portion of the piping and equipment depending on the materials of the piping and equipment constituting the electrolytic processing apparatus, other equipment specifications and operating conditions, etc. It is set appropriately so as not to be deteriorated or damaged by heat generation.
[0018]
In FIG. 1, a flow sensor and a temperature sensor are used to control energization to the electrodes based on the flow rate and temperature. That is, in the case of the water-flow type electrolytic treatment apparatus of FIG. 1, it is difficult to cause a situation in which the electrode is not completely immersed in the cooling water and part or all of the electrode is exposed. If there is a possibility that the electrode is exposed from the cooling water due to the structure of the electrolytic treatment apparatus, a level sensor (water level meter) is further provided to monitor the immersion state of the electrode in the cooling water and control the power supply to the electrode. It is preferable to do so.
[0019]
The energization control by the temperature sensor, the flow sensor, and the level sensor is performed by the following methods (1) to (3) , for example. Energization control to the electrodes, of the temperature sensor, the sensor of the flow rate sensor and level sensor ɽ all, stop the energization of the electrodes when any one sensor is not satisfied the safety condition, or reduce the amount of energization to be in.
[0020]
(1) When the measured value of the temperature sensor is higher than the predetermined temperature, stop energization of the electrode or reduce the energization amount. Thereafter, when the measured value of the temperature sensor becomes lower than the predetermined temperature, the energization is restarted or the original energization amount is restored.
(2) When the measured value of the flow rate sensor is lower than the predetermined flow rate, stop energization of the electrode or reduce the energization amount. Thereafter, when the measured value of the flow rate sensor becomes higher than the predetermined flow rate, the energization is resumed or returned to the original energization amount.
(3) When the measured value of the level sensor is lower than the predetermined level, stop energizing the electrode or reduce the energization amount. Thereafter, when the measured value of the level sensor becomes higher than a predetermined level, the energization is resumed or the original energization amount is restored.
[0021]
In the case of the water-flow type electrolytic treatment apparatus shown in FIG. 1, after extracting the cooling water from the pit of the cooling tower of the cooling water system and performing the electrolytic treatment, the electrolytic treatment water is returned to the cooling water system, or a bypass line is connected to the circulating cooling water piping. , A part of the circulating cooling water can be extracted and subjected to electrolytic treatment, and the electrolytically treated water can be returned to the circulation pipe.
[0022]
The voltage applied to the electrode is not particularly limited as long as it is a voltage at which a chlorine-based oxidant can be generated, but is preferably 40 V or less in consideration of the influence on the human body. From the viewpoint of production efficiency, it is preferably 2 V or more. Although there is no restriction | limiting in particular also in the electric current value for electrolytic treatment, It is preferable that it is 0.01-0.1A with respect to 1 L / hr of cooling water introduce | transduced.
[0023]
In the present invention, the cathode material is preferably stainless steel, Al, Ag or the like, and the anode material is preferably a material with good hypochlorous acid generation efficiency such as Pt or Ir, but is not limited thereto. . The cathode and anode materials may be the same.
[0024]
The voltage applied to the electrode may be periodically reversed, and in this way, the scale can be prevented from adhering to the electrode. In this case, it is preferable to reverse the polarity once every 0.5 to 6 hours.
[0025]
In the present invention, the electrodes may be arranged at other positions such as in the pits of the cooling tower.
[0026]
In addition, although the chloride ion density | concentration of cooling water changes also with the concentration rate etc. of the said water type | system | group, generally it is about 30-100 mg / L. Therefore, by electrolytically treating the cooling water having such a chloride ion concentration, for example, electrolytically treated water having a hypochlorous acid concentration of about 1 to 10 mg / L can be obtained.
[0027]
The cooling water has a sufficiently high chloride ion concentration in this way. Therefore, the cooling water is treated with an electrolytic treatment apparatus without supplementing chloride ions in particular, so that a sufficient amount of residual chlorine concentration is obtained. However, if necessary, sodium chloride (NaCl) or the like may be added to the cooling water to increase the chloride ion concentration to about 100 to 300 mg / L.
[0028]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
[0029]
Example 1
In a cooling water system having a pilot-scale heat exchanger (concentration ratio: 10 times), cooling water is extracted from the pit of the cooling tower at 30 L / min, subjected to electrolytic treatment with the electrolytic treatment apparatus shown in FIG. Returned. This cooling water system was supplemented with Atsugi City water as makeup water.
[0030]
In this electrolytic treatment apparatus, when the measurement temperature of the temperature sensor is 60 ° C. or higher and / or when the measurement flow rate of the flow sensor is 5 L / min or less, the energization to the electrode is stopped, and the measurement temperature of the temperature sensor Was less than 60 ° C. and the electrode was energized only when the flow rate measured by the flow sensor exceeded 5 L / min.
[0031]
The constituent material of the electrolytic cell is mainly composed of PVC (polyvinyl chloride). If the temperature in the vicinity of the electrode exceeds 60 ° C, the cell may be deteriorated or damaged. The value was 60 ° C.
[0032]
The specifications of the electrolytic treatment apparatus used were as follows, the voltage was 10V, and the current value was 50A.
Figure 0003680786
[0033]
The measured values of each sensor and the presence / absence of energization of the electrodes are as shown in Table 1. During the operation period of one month, it is possible to operate safely without raising the temperature in the electrolytic cell to 60 ° C or higher. It was.
[0034]
During the operation period, the residual chlorine concentration in the electrolyzed water when the electrode is energized is 0.1 to 0.5 mg-Cl 2 / L, which can effectively prevent cooling water slime. did it.
[0035]
[Table 1]
Figure 0003680786
[0036]
Comparative Example 1
In Example 1, the electrolysis treatment was performed in exactly the same manner except that the energization to the electrodes was not controlled and the energization was always performed, and the temperature in the electrolytic cell was overheated to 70 ° C. on the second day. Since the cell turned white and deformed and water leaked, the operation could not be continued.
[0037]
【The invention's effect】
As described in detail above, according to the present invention, the generation of slime in the system is prevented by supplying the cooling water system with the electrolytically treated water containing the chlorine-based oxidizing agent generated by the electrolytic treatment of the cooling water. In the water treatment method and the water treatment apparatus of the cooling water system, abnormal heat generation of the electrode portion can be prevented, and deterioration or damage of piping or equipment due to overheating can be surely prevented. Therefore, the safe operation of the electrolytic treatment apparatus can be continued, and slimming failure of the cooling water system can be prevented for a long time by stably supplying the chlorine-based oxidizing agent to the cooling water system.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a water flow type electrolytic treatment apparatus showing an embodiment of a cooling water system water treatment apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolytic cell 3A, 3B Electrode 5 Power supply 6 Flow rate sensor 7 Temperature sensor 8 Control apparatus

Claims (4)

冷却水中に浸漬した電極に通電して、該水中に含まれる塩化物イオンから塩素系酸化剤を生成させた電解処理水を冷却水系の冷却水に含有させる冷却水系の水処理方法において、
前記電極付近の水の温度、
前記電極付近の水の流
及び
前記電極の冷却水中への浸漬の有無を監視し、
この監視結果に基いて電解処理の異常の有無を判断し、いずれか1つでも異常が検知された場合には、前記電極への通電を停止、又は通電量を低減することを特徴とする冷却水系の水処理方法。
In the cooling water-based water treatment method of energizing an electrode immersed in cooling water and containing electrolytically treated water in which a chlorine-based oxidizing agent is generated from chloride ions contained in the water, in the cooling water-based cooling water,
The temperature of the water near the electrode,
Flow rate of water in the vicinity of the electrode,
And monitoring the presence or absence of immersion of the electrode in cooling water ,
Based on this monitoring result, it is determined whether or not there is an abnormality in the electrolytic treatment. If any one of the abnormality is detected, the energization to the electrode is stopped or the energization amount is reduced. Water-based water treatment method.
請求項1において、前記電極の冷却水中への浸漬の有無を監視する手段が、電解処理装置に設けたレベルセンサであることを特徴とする冷却水系の水処理方法。2. The cooling water-based water treatment method according to claim 1, wherein the means for monitoring whether or not the electrode is immersed in the cooling water is a level sensor provided in the electrolytic treatment apparatus . 冷却水中に浸漬した電極に通電して、該水中に含まれる塩化物イオンから塩素系酸化剤を生成させた電解処理水を冷却水系の冷却水に含有させる冷却水系の水処理装置において、
前記電極付近の水の温度、
前記電極付近の水の流
及び
前記電極の冷却水中への浸漬の有無を監視する手段と、
この監視結果に基いて電解処理の異常の有無を判断し、いずれか1つでも異常が検知された場合には、前記電極への通電を停止、又は通電量を低減する制御手段とを備えたことを特徴とする冷却水系の水処理装置。
In a cooling water system water treatment apparatus that energizes an electrode immersed in cooling water and contains electrolytically treated water in which a chlorine-based oxidant is generated from chloride ions contained in the water in the cooling water system cooling water,
The temperature of the water near the electrode,
Flow rate of water in the vicinity of the electrode,
And means for monitoring the presence or absence of immersion of the electrode in cooling water ;
Based on this monitoring result, the presence or absence of an abnormality in the electrolytic treatment is determined, and when any one of the abnormality is detected, a control means for stopping energization of the electrode or reducing the energization amount is provided. A cooling water system water treatment apparatus characterized by the above.
請求項3において、前記電極の冷却水中への浸漬の有無を監視する手段が、電解処理装置に設けたレベルセンサであることを特徴とする冷却水系の水処理装置。4. The cooling water-based water treatment device according to claim 3, wherein the means for monitoring the presence or absence of immersion of the electrode in the cooling water is a level sensor provided in the electrolytic treatment device.
JP2001356298A 2001-11-21 2001-11-21 Water treatment method and water treatment apparatus for cooling water system Expired - Fee Related JP3680786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001356298A JP3680786B2 (en) 2001-11-21 2001-11-21 Water treatment method and water treatment apparatus for cooling water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001356298A JP3680786B2 (en) 2001-11-21 2001-11-21 Water treatment method and water treatment apparatus for cooling water system

Publications (2)

Publication Number Publication Date
JP2003154367A JP2003154367A (en) 2003-05-27
JP3680786B2 true JP3680786B2 (en) 2005-08-10

Family

ID=19167848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001356298A Expired - Fee Related JP3680786B2 (en) 2001-11-21 2001-11-21 Water treatment method and water treatment apparatus for cooling water system

Country Status (1)

Country Link
JP (1) JP3680786B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9944543B2 (en) 2013-06-10 2018-04-17 Morinaga Milk Industry Co., Ltd. Power control device and control method for power control device

Also Published As

Publication number Publication date
JP2003154367A (en) 2003-05-27

Similar Documents

Publication Publication Date Title
EP0755362B1 (en) Electrolytic water treatment
KR101980383B1 (en) Electrolytic on-site generator
US6627053B2 (en) Water treatment device
KR100462639B1 (en) Water treatment apparatus
JP2011522123A (en) Electrolytic cell cleaning method including electrode and electrolytic product generator
JP2012210627A (en) Detoxification treatment method for seawater stored in ballast water tank of ship, and apparatus therefor
KR20200036804A (en) Ship ballast water management system
US6235188B1 (en) Water pollution evaluating system with electrolyzer
US20020139689A1 (en) Electrode coating and method of use in a reverse polarity electrolytic cell
JP2006255653A (en) Electrolytic treatment method of water system
JP3680786B2 (en) Water treatment method and water treatment apparatus for cooling water system
AU685260B2 (en) Electrolytic water treatment
JP3925269B2 (en) Water treatment method for cooling water system
JP3530452B2 (en) Water treatment equipment
US11639300B2 (en) Water sanitation system and method
JP3685124B2 (en) Cooling water system water treatment apparatus and water treatment method
JP3757888B2 (en) Operation management method for water treatment equipment
JP4165919B2 (en) Purification method and apparatus for water or waste water
JP3398103B2 (en) Water treatment equipment
JP2004082104A (en) Electrolytic sterilizing apparatus and method
RU2702650C1 (en) Method of electrochemical treatment of water and device for its implementation
US20230064737A1 (en) Method and apparatus for removing specific contaminants from water in a recirculating or linear treatment system
CN104936906B (en) The method that electrochemical disinfection is carried out to water
JP3928455B2 (en) Water treatment method for cooling water system
JP2003285063A (en) Water treatment apparatus for cooling water system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees