JP2003282963A - Thermoelectric conversion material made of palladium oxide and its manufacturing method - Google Patents

Thermoelectric conversion material made of palladium oxide and its manufacturing method

Info

Publication number
JP2003282963A
JP2003282963A JP2002079817A JP2002079817A JP2003282963A JP 2003282963 A JP2003282963 A JP 2003282963A JP 2002079817 A JP2002079817 A JP 2002079817A JP 2002079817 A JP2002079817 A JP 2002079817A JP 2003282963 A JP2003282963 A JP 2003282963A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type
conversion material
temperature
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002079817A
Other languages
Japanese (ja)
Other versions
JP4124420B2 (en
Inventor
Ichiro Terasaki
一郎 寺崎
Shigeru Ichikawa
茂 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002079817A priority Critical patent/JP4124420B2/en
Publication of JP2003282963A publication Critical patent/JP2003282963A/en
Application granted granted Critical
Publication of JP4124420B2 publication Critical patent/JP4124420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion material which can easily control a type and a concentration of a carrier and thermoelectric characteristics in association with the type and the concentration by an element replacement and which can form both a P-type material and an N-type material without unstable element such as Na in the material usable in a wide temperature range of a liquid nitrogen temperature (-196°C) to about 300°C. <P>SOLUTION: The thermoelectric conversion material contains a palladium oxide represented by the formula: A<SB>1-x</SB>B<SB>x</SB>Pd<SB>3</SB>O<SB>4</SB>(wherein A is Ca, Sr or Ba, B is Li, Na, K, Sc, Y, La, And, Sm, Eu, Gd, Dy, Er, Ho or Yb, and x is 0<x≤1). The material is different from ACo<SB>x</SB>O<SB>y</SB>which can form only a P-type, and can separately form an N-type and the P-type according to the type of the component B of the formula. Excellent thermoelectric characteristics in which an absolute value of a thermoelectromotive force at the ambient temperature is 50 μV/K or more or a power factor of 0.5 μW/cmK<SP>2</SP>or more can be obtained by selecting the components A and B and a value of x. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、パラジウム金属酸
化物を用いた熱電変換材料及びその製造方法に関し、さ
らに詳しくは、液体窒素温度(−196℃)以上から3
00℃程度までの広い温度領域に亘って使用可能なパラ
ジウム金属酸化物からなる熱電変換材料及びその製造方
法に関する。
TECHNICAL FIELD The present invention relates to a thermoelectric conversion material using a palladium metal oxide and a method for producing the same, and more specifically, to a liquid nitrogen temperature (−196 ° C.) or higher to 3 or higher.
The present invention relates to a thermoelectric conversion material composed of a palladium metal oxide that can be used over a wide temperature range up to about 00 ° C., and a method for producing the thermoelectric conversion material.

【0002】[0002]

【従来の技術】熱電変換材料を用いた熱電発電(熱電気
発電)は、ゼーベック効果、すなわち相異なる二種の金
属やp型半導体とn型半導体等の相異なる熱電変換材料
を熱的に並列に置き、電気的に直列に接続して、接合部
間に温度差を与えると両端に熱起電力が発生する熱電効
果を利用して、熱エネルギーを直接電力に変換する技術
であり、外部に負荷を接続して閉回路を構成することに
より回路に電流が流れ、電力を取り出すことができるこ
とから、僻地用電源、宇宙用電源、軍事用電源等として
一部で実用化されている。
2. Description of the Related Art Thermoelectric power generation using a thermoelectric conversion material (thermoelectric power generation) is a Seebeck effect, that is, two different metals or different thermoelectric conversion materials such as a p-type semiconductor and an n-type semiconductor are thermally arranged in parallel. It is a technology that directly converts thermal energy into electric power by utilizing the thermoelectric effect in which thermoelectromotive force is generated at both ends when they are electrically connected in series and a temperature difference is applied between the joints. Since a current flows through the circuit by connecting a load to form a closed circuit and electric power can be taken out, it is partially put to practical use as a remote power source, a space power source, a military power source, and the like.

【0003】これまで、様々な材料が熱電変換材料の候
補として合成されてきたが、無次元性能指数ZT=1を
大きく上回るものは未だ発見されていない。特に、低温
度領域、すなわち室温付近の温度領域で有効な熱電変換
材料は、何れも性能指数の温度依存性が大きいという問
題点があった。例えば、p−Bi2Te3(55)+Sb
2Te3(45)は優秀な熱電変換材料であるが、良好な
特性を示す温度範囲は300K前後と非常に狭い。
Up to now, various materials have been synthesized as candidates for thermoelectric conversion materials, but none have been found that greatly exceeds the dimensionless figure of merit ZT = 1. In particular, any thermoelectric conversion material effective in a low temperature region, that is, a temperature region near room temperature has a problem that the performance index has a large temperature dependency. For example, p-Bi 2 Te 3 (55) + Sb
2 Te 3 (45) is an excellent thermoelectric conversion material, but the temperature range showing good characteristics is very narrow, around 300K.

【0004】これまで、Z値が最大であり、産業用に用
いられている代表的な熱電変換材料はBi2Te3系のも
のであるが、この材料は融点が低く、有効温度領域は3
00K前後であるので、300℃以上の高温域で用いる
ことはできない。このため、ゼーベック効果を引き起こ
す原動力である温度差を大きくとることはできず、熱電
変換効率が5〜6%にとどまってしまうという問題点が
ある。
So far, the Z value is the maximum, and a typical thermoelectric conversion material used for industrial applications is a Bi 2 Te 3 system material, but this material has a low melting point and an effective temperature range of 3
Since it is around 00K, it cannot be used in a high temperature range of 300 ° C or higher. For this reason, there is a problem that the temperature difference, which is the driving force that causes the Seebeck effect, cannot be made large, and the thermoelectric conversion efficiency is limited to 5 to 6%.

【0005】また、構成元素であるTeの価格がやや高
価であり、さらには、そのドーパントとしてSb等の有
毒な元素を必要とするため、その製造上及び使用上、毒
性に関する注意が必要であるばかりか、製品が使用終了
後に廃棄された場合における環境への影響の点からして
も好ましいものではないという問題点がある。
Further, the price of Te, which is a constituent element, is rather high, and moreover, a toxic element such as Sb is required as a dopant thereof, so that attention must be paid to toxicity in production and use thereof. In addition, there is a problem that it is not preferable from the point of view of environmental impact when the product is discarded after use.

【0006】そこで、本発明者等は、従来技術における
以上のような人体に対する毒性やコスト的な問題を解消
し、Z値を向上させた熱電変換材料として、元素組成式
ACoxy(式中、Aは、Li、Na又はKであり、x
は、1≦x≦2、yは2≦y≦4である)で表わされる
物質からなる熱電変換材料、及び、元素組成式(A Z
1-Z)Coxy〔式中、Aは、Li、Na又はK、B
は、Mg、Ca、Sr、Ba、Sc、Y、Bi又はTe
であり、zは0<z<1の範囲であり、xは1≦x≦
2、yは2≦y≦4である〕で表わされる物質からなる
熱電変換材料を開発した(特開平9−321346号公
報)。
[0006] Therefore, the present inventors have
Eliminates the human toxicity and cost problems described above
As a thermoelectric conversion material having an improved Z value,
ACoxOy(In the formula, A is Li, Na or K, and x
Is 1 ≦ x ≦ 2, and y is 2 ≦ y ≦ 4)
Thermoelectric conversion material consisting of substance and elemental composition formula (A ZB
1-Z) CoxOy[In the formula, A is Li, Na or K, B
Is Mg, Ca, Sr, Ba, Sc, Y, Bi or Te
Where z is in the range 0 <z <1, and x is 1 ≦ x ≦
2, y is 2 ≦ y ≦ 4]
A thermoelectric conversion material was developed (JP-A-9-321346)
News).

【0007】[0007]

【発明が解決しようとする課題】上記特開平9−321
346号公報に記載された熱電変換材料は、性能指数Z
値が比較的高く、しかも、液体窒素温度から650℃以
上に及ぶ広い温度範囲に亘って高い熱電変換特性を有
し、安定に使用することができ、また、その温度範囲で
の諸物性値もほぼ一定で優れた物性を有するが、元素置
換などでその熱電特性を制御することが難しく、Na層
でのNa不均一や他元素との固溶が電気伝導を阻害し熱
電特性を劣化させてしまう。また、上記材料は正の熱起
電力を示すP型材料であり、この系を用いてもN型材料
を作ることができない。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The thermoelectric conversion material described in Japanese Patent No. 346 has a performance index Z
It has a relatively high value, and has high thermoelectric conversion characteristics over a wide temperature range from liquid nitrogen temperature to 650 ° C or higher, and it can be used stably, and the physical property values in that temperature range are also high. Although it is almost constant and has excellent physical properties, it is difficult to control its thermoelectric properties by element substitution, etc., and non-uniformity of Na in the Na layer and solid solution with other elements impede electrical conduction and deteriorate thermoelectric properties. I will end up. Further, the above-mentioned material is a P-type material showing a positive thermoelectromotive force, and an N-type material cannot be made even by using this system.

【0008】したがって、本発明は、液体窒素温度(−
196℃)以上から300℃程度までの広い温度領域に
亘って使用可能な熱電変換材料であって、元素置換によ
って容易にキャリアの種類と濃度、それに伴う熱電特性
を制御でき、Naのような不安定な要素を持たず、P型
材料、N型材料の両方を作成できる材料を提供すること
を目的とする。
Therefore, the present invention is based on the liquid nitrogen temperature (-
It is a thermoelectric conversion material that can be used over a wide temperature range from 196 ° C.) to about 300 ° C., and the type and concentration of carriers and the thermoelectric properties associated therewith can be easily controlled by element substitution, and it is possible to use such materials as Na It is an object of the present invention to provide a material which does not have a stable element and which can be made into both a P-type material and an N-type material.

【0009】[0009]

【課題を解決するための手段】P型材料、N型材料の両
方を作成するためには、従来の熱電変換材料と同じよう
に、バンドギャップが0.2電子ボルト以下のエネルギ
ーギャップを持つ縮退半導体を酸化物で実現しなければ
ならない。また、Pキャリアが伝導する価電子バンドと
Nキャリアが伝導する伝導バンドがともに比較的広いこ
とが必要である。本発明者らは、そのような材料を実現
すべく、さまざまな試行錯誤の結果、式CaPd
,SrPd,またはBaPdで示さ
れる複合パラジウム酸化物がそのような条件に合致する
材料であることをつきとめた。
In order to produce both a P-type material and an N-type material, a degeneration having an energy gap with a band gap of 0.2 electron volt or less, as in conventional thermoelectric conversion materials. Semiconductors must be realized with oxides. Further, it is necessary that both the valence band in which P carriers conduct and the conduction band in which N carriers conduct are relatively wide. As a result of various trial and error, the inventors of the present invention have tried to realize such a material by the formula CaPd.
It was found that a complex palladium oxide represented by 3 O 4 , SrPd 3 O 4 , or BaPd 3 O 4 is a material that meets such conditions.

【0010】すなわち、本発明は、組成式A1−x
Pd(ただし、Aは、Ca,Sr,またはBa、
Bは、Li,Na,K,Sc,Y,La,Nd,Sm,
Eu,Gd,Dy,Er,Ho,またはYbであり、x
は、0<x≦1)で表されるパラジウム酸化物からなる
ことを特徴とする熱電変換材料である。
That is, the present invention relates to the composition formula A 1-x B x
Pd 3 O 4 (A is Ca, Sr, or Ba,
B is Li, Na, K, Sc, Y, La, Nd, Sm,
Eu, Gd, Dy, Er, Ho, or Yb, and x
Is a palladium oxide represented by 0 <x ≦ 1), which is a thermoelectric conversion material.

【0011】また、本発明は、組成式A1−xPd
(ただし、xは、0<x≦1)において、AがC
aまたはSr、BがLi,Na,またはKであり、P型
材料であることを特徴とする熱電変換材料である。ま
た、本発明は、組成式A1−xPd(ただ
し、xは、0<x≦1)において、AがCaまたはS
r、BがSc,Y,La,Nd,Sm,Eu,Gd,D
y,Er,Ho,またはYbであり、N型材料であるこ
とを特徴とする熱電変換材料である。
The present invention also provides a composition formula A 1-x B x Pd.
In 3 O 4 (where x is 0 <x ≦ 1), A is C
a or Sr, B is Li, Na, or K, and is a P-type material, which is a thermoelectric conversion material. Further, the present invention is a composition formula A 1-x B x Pd 3 O 4 ( here, x is, 0 <x ≦ 1) in, A is Ca or S
r, B are Sc, Y, La, Nd, Sm, Eu, Gd, D
The thermoelectric conversion material is y, Er, Ho, or Yb, and is an N-type material.

【0012】さらに、本発明は、焼成により組成式A
1−xPd(ただし、Aは、Ca,Sr,ま
たはBa、Bは、Li,Na,K,Sc,Y,La,N
d,Sm,Eu,Gd,Dy,Er,Ho,またはYb
であり、xは、0<x≦1)となるように成分を配合し
た原料に、フラックスを混合して仮焼し、その後フラッ
クスを除去し、830℃以上900℃以下で焼成するこ
とを特徴とするP型熱電変換材料の製造方法である。ま
た、本発明は、フラックスがアルカリハライドであり、
仮焼温度が800〜830℃であることを特徴とする上
記の熱電変換材料の製造方法である。
Further, the present invention provides the compositional formula A by firing.
1-x B x Pd 3 O 4 ( provided that, A is, Ca, Sr or Ba,, B is, Li, Na, K, Sc , Y, La, N
d, Sm, Eu, Gd, Dy, Er, Ho, or Yb
Where x is a raw material in which components are mixed so that 0 <x ≦ 1), the flux is mixed and calcined, then the flux is removed, and firing is performed at 830 ° C. to 900 ° C. And a method for producing a P-type thermoelectric conversion material. Further, in the present invention, the flux is an alkali halide,
The method for producing a thermoelectric conversion material is characterized in that the calcination temperature is 800 to 830 ° C.

【0013】[0013]

【発明の実施の形態】本発明の複合酸化物からなる熱電
変換材料は、組成式A1−xPd(ただし、
Aは、Ca,Sr,またはBa、Bは、Li,Na,
K,Sc,Y,La,Nd,Sm,Eu,Gd,Dy,
Er,Ho,またはYbであり、xは、0<x≦1)で
表される。この複合酸化物は、NaPt型結晶構
造を有する。
BEST MODE FOR CARRYING OUT THE INVENTION A thermoelectric conversion material comprising a composite oxide of the present invention has a composition formula A 1-x B x Pd 3 O 4 (provided that
A is Ca, Sr, or Ba, B is Li, Na,
K, Sc, Y, La, Nd, Sm, Eu, Gd, Dy,
Er, Ho, or Yb, and x is represented by 0 <x ≦ 1). This composite oxide has a NaPt 3 O 4 type crystal structure.

【0014】組成式のA成分をB成分の内のLi,N
a,またはKで置換することによってP型材料を作製で
きる。また、A成分をB成分の内のSc,Y,La,N
d,Sm,Eu,Gd,Dy,Er,Ho,またはYb
で置換することでN型材料を作製できる。上記一般式に
おいて、xの価は1以下であるが、xの値が大きくなる
につれて抵抗率と熱起電力はともに減少するので、xは
0.2以上0.5以下がより好ましい。
In the composition formula, A component is replaced with Li and N of B component.
A P-type material can be made by substituting a or K. In addition, the A component is Sc, Y, La, N of the B component.
d, Sm, Eu, Gd, Dy, Er, Ho, or Yb
An N-type material can be produced by substituting with. In the above general formula, the value of x is 1 or less, but both the resistivity and the thermoelectromotive force decrease as the value of x increases, so x is more preferably 0.2 or more and 0.5 or less.

【0015】本発明の熱電変換材料は、原料物質を所定
の配合比率で混合し、酸化性雰囲気中で焼成することに
よって得ることができる。原料物質は焼成により目的と
する複合酸化物を形成し得るものであれば特に限定され
ず、金属単体、酸化物、炭酸塩などの各種化合物を使用
できる。Pd源としては酸化物または焼成によりPd酸
化物を形成可能な硝酸塩、塩化物、水酸化物、有機金属
化合物などを使用できる。A成分およびB成分について
も、酸化物、水酸化物、塩化物、炭酸塩、硝酸塩、有機
金属塩などを使用できる。
The thermoelectric conversion material of the present invention can be obtained by mixing the raw materials in a predetermined mixing ratio and firing in an oxidizing atmosphere. The raw material is not particularly limited as long as it can form the target complex oxide by firing, and various compounds such as simple metal, oxide, and carbonate can be used. As the Pd source, oxides, nitrates, chlorides, hydroxides, organometallic compounds, etc. that can form Pd oxides by firing can be used. Also for the components A and B, oxides, hydroxides, chlorides, carbonates, nitrates, organic metal salts and the like can be used.

【0016】焼成手段は特に限定されず、電気加熱炉、
ガス加熱炉等により酸素気流中、空気中などの酸化性雰
囲気中で焼成する。焼成温度及び焼成時間については、
N型材料では、通常900〜1100℃程度で24時間
〜48時間程度焼成すればよい。
The firing means is not particularly limited, and an electric heating furnace,
Firing is performed in an oxidizing atmosphere such as an oxygen stream or air in a gas heating furnace or the like. For firing temperature and firing time,
For the N-type material, it may be normally fired at about 900 to 1100 ° C. for about 24 to 48 hours.

【0017】しかしながら、この組成式A1−x
において、Ca,Sr,またはBaサイトにL
i,Na,またはKを置換することによってP型材料を
作製しようとすると、原料を焼成する900℃を超える
温度では、原料のPdOまたは原料から生成されるPd
Oが還元されPdが析出し、Li,Naがほとんど固溶
しなくなるなどの現象が生じて目的の組成の物質が得ら
れなくなる。また、金属Pdが不純物として析出するた
めに抵抗率が増大する。これを防ぐために、反応温度を
下げながら焼成性を維持する必要がある。
However, this composition formula A 1-x B x P
In d 3 O 4 , L at Ca, Sr, or Ba site
If a P-type material is produced by substituting i, Na, or K, PdO of the raw material or Pd generated from the raw material is heated at a temperature higher than 900 ° C. for firing the raw material.
O is reduced, Pd is deposited, and Li and Na are hardly solid-dissolved, so that a substance having a desired composition cannot be obtained. In addition, the resistivity increases because the metal Pd is precipitated as an impurity. In order to prevent this, it is necessary to maintain the calcinability while lowering the reaction temperature.

【0018】本発明者は、フラックスを原料に混合して
仮焼することによって焼成温度を低くして所望の材料を
焼成できることを見出した。すなわち、フラックスとし
てNaClやKClといったアルカリハライドを水溶性
のフラックスして用いて原料とフラックスを重量比で
1:2程度の割合で混合し、これを好ましくは800℃
〜830℃で仮焼する。800℃より低い場合は原料の
反応が進まない。特に、原料として炭酸塩を用いた場
合、炭酸が離脱しない。また、上限温度を超えるとフラ
ックスが蒸発し、反応が進まない。仮焼後に残るフラッ
クスは本焼成の前にフラックスだけを溶解する溶剤中で
除去する。例えば、溶剤として水を用いて、湯煎するな
どの手段によりフラックスを容易に取り除くことができ
る。
The present inventor has found that a desired material can be fired by lowering the firing temperature by mixing the flux with the raw material and calcining. That is, as a flux, an alkali halide such as NaCl or KCl is used as a water-soluble flux, and the raw material and the flux are mixed at a weight ratio of about 1: 2.
Calcination at ~ 830 ° C. If the temperature is lower than 800 ° C, the reaction of the raw materials does not proceed. Particularly, when carbonate is used as a raw material, carbonic acid is not released. If the temperature exceeds the upper limit, the flux will evaporate and the reaction will not proceed. The flux remaining after the calcination is removed in a solvent that dissolves only the flux before the main firing. For example, the flux can be easily removed by using water as a solvent and roasting with water.

【0019】この後の本焼成温度は830℃〜900℃
が好ましい。下限温度より低い場合は、焼結が十分に進
まず、焼結体の機械的強度が低下し、また、粒界抵抗が
増大し、特性が劣化する。上限温度を超えると金属Pd
が析出する。このように、アルカリハライドをフラック
スに用いた固相反応法によって不純物である金属Pdの
析出を防ぐことにより、高品質なP型材料を作製するこ
とができる。そして、作製されたP型材料は、これまで
最高の性能を示す酸化物熱電変換材料ACoxOyに匹
敵する熱電性能を示す。
The subsequent main firing temperature is 830 ° C to 900 ° C.
Is preferred. When the temperature is lower than the lower limit temperature, the sintering does not proceed sufficiently, the mechanical strength of the sintered body decreases, the grain boundary resistance increases, and the characteristics deteriorate. Metal Pd when the upper limit temperature is exceeded
Is deposited. Thus, by preventing the precipitation of the metal Pd, which is an impurity, by the solid-phase reaction method using an alkali halide as a flux, a high-quality P-type material can be manufactured. The produced P-type material exhibits thermoelectric performance comparable to that of the oxide thermoelectric conversion material ACoxOy, which has the highest performance so far.

【0020】本発明の熱電変換材料は、従来のP型しか
作成できないACoxOyと異なり、組成式A1−x
Pdにおいて、B成分の種類によりN型、P型
が作り分けられる新規な材料であり、またA成分、B成
分の選択およびxの値の選択により室温での熱起電力の
絶対値が50μV/K以上または電力因子が0.5μW
/cmK以上の優れた熱電特性を得ることができる。
The thermoelectric conversion material of the present invention has a composition formula A 1-x B, unlike ACoxOy, which can only produce conventional P-type materials.
In x Pd 3 O 4 , it is a new material in which N type and P type are made different depending on the type of B component, and the absolute value of the thermoelectromotive force at room temperature is selected by selecting A component and B component and the value of x. Value is 50μV / K or more or power factor is 0.5μW
It is possible to obtain excellent thermoelectric properties of / cmK 2 or more.

【0021】[0021]

【実施例】(実施例1)原料として3Nの純度のCaCO3、L
i2CO3、PdOを、フラックスとして5NのNaClを用い、原料
を組成比に合うように全体で4gとなるように秤量し、そ
の2倍の質量のフラックスとともに30分以上乳鉢と乳棒
で混ぜ合わせた。その後、800℃で24時間仮焼した。仮
焼した試料を純水の中に入れ、湯煎してフラックスを除
去した。この後、プレス機で整形してペレットにした。
最後に本焼成を行なった。このときの焼成条件はx=0の
試料は950℃で48時間とし、その他の試料は830℃ で12
時間とした。
[Example] (Example 1) CaCO 3 , L having a purity of 3N as a raw material
i 2 CO 3 and PdO were mixed with a mortar and a pestle for 30 minutes or more together with 5N NaCl as a flux and the raw materials were weighed so that the total weight was 4 g to match the composition ratio. I matched it. Then, it was calcined at 800 ° C for 24 hours. The calcined sample was put into pure water and roasted in hot water to remove the flux. Then, it was shaped into pellets by a pressing machine.
Finally, the main firing was performed. The firing conditions at this time were 48 hours at 950 ° C for the sample with x = 0, and 12 hours at 830 ° C for the other samples.
It was time.

【0022】粉末X 線回折では、X 線源としてFe 管球
を用い、発散スリット、散乱スリットとも0.5 degと
し、受光スリットは0.15 mm 、スキャンスピードは8 de
g/minとして2θが10degから120degの範囲で測定した。
電気測定の前に、出来あがった試料を測定するサンプル
ホルダーに合うように整形した。具体的には、円盤状の
焼結体試料の形状を、カッター、紙やすりを用い幅1.5
mm 、長さ10 mm 、厚み0.5 mm 程度の直方体に加工し
た。
In powder X-ray diffraction, an Fe tube was used as the X-ray source, the divergence slit and the scattering slit were both 0.5 deg, the light receiving slit was 0.15 mm, and the scan speed was 8 de.
The measurement was performed in the range of 2θ of 10 deg to 120 deg as g / min.
Prior to electrical measurement, the finished sample was shaped to fit a sample holder for measurement. Specifically, the shape of the disk-shaped sintered body sample was cut with a cutter and sandpaper to a width of 1.5.
mm, length 10 mm, thickness 0.5 mm.

【0023】抵抗率測定には、接触抵抗、計測線の抵抗
などが実測の抵抗に重畳しないように4 端子法を用い
た。端子には銅線を用いた。そのとき端子と試料の電気
的接触は銀ペーストを用いた。測定は4.2 K 〜300 K ま
で行なった。実験は専用サンプルホルダーに取り付けた
試料を、液体ヘリウムクライオスタット中で試料を冷却
した。そのとき定電流源より試料に1 mA の電流を流
し、このときの電圧をナノボルトメータで読み、電流の
向きを反転させて再び電圧を読んだ。試料の温度測定に
は、セルノックス温度計を用い、温度間隔0.5 Kで測定
を行った。
For the resistivity measurement, the 4-terminal method was used so that the contact resistance, the resistance of the measurement line, etc. would not be superimposed on the measured resistance. Copper wires were used for the terminals. At that time, silver paste was used for electrical contact between the terminal and the sample. The measurement was performed from 4.2 K to 300 K. In the experiment, the sample mounted on a dedicated sample holder was cooled in a liquid helium cryostat. At that time, a current of 1 mA was passed from the constant current source to the sample, the voltage at this time was read with a nanovolt meter, the direction of the current was reversed, and the voltage was read again. A cell Knox thermometer was used to measure the temperature of the sample, and the measurement was performed at a temperature interval of 0.5 K.

【0024】熱起電力は、定常法により、4.2から300K
まで測定した。直方体に整形した試料を、対向した2枚
の銅版の間に銀ペースト(Dupont 4922N)で取り付け、一
方の銅版をシート抵抗を加熱することで温度差0.5-1Kを
つけた。温度差は銅ーコンスタンタン示差熱電対を用い
て測定し、試料の温度測定には、セルノックス 温度計
を用い、温度間隔2-3 Kで測定を行った。熱電対の出力
電圧および試料の熱起電力はナノボルトメータで読ん
だ。
The thermoelectromotive force is 4.2 to 300 K according to the stationary method.
Was measured up to. A rectangular parallelepiped sample was attached between two copper plates facing each other with silver paste (Dupont 4922N), and one of the copper plates was heated to a sheet resistance to give a temperature difference of 0.5-1K. The temperature difference was measured using a copper-constantan differential thermocouple, and the temperature of the sample was measured using a Cellnox thermometer at a temperature interval of 2-3 K. The output voltage of the thermocouple and the thermoelectromotive force of the sample were read with a nanovoltmeter.

【0025】図1に、得られたCa1-xLixPd3O4の抵抗率
ρと熱起電力(ゼーベック係数)Sの温度依存性を示す。
xの値の増大とともにSおよびρが減少し、Liとともに
キャリアが注入されていることが分かる。図2に、得ら
れたCa1-xLixPd3O4の電力因子の温度依存性を示す。電
力因子S2/ρは室温で1μW/cmK2に達し、Na-Co-Oに
匹敵する大きさを示す。図3は、得られたCa1-xLixPd3O
4熱電材料のX線回折パターン(B)を後述の比較例1に
示す通常の固相反応法で作成したCa1-xLixPd3O4(A)
と比較して示すグラフである。図3(B)に示すよう
に、フラックスを用いた試料では不純物である金属Pd
(図3(A)中の*で示される)が減少している。
FIG. 1 shows the temperature dependence of the resistivity ρ and the thermoelectromotive force (Seebeck coefficient) S of the obtained Ca 1-x Li x Pd 3 O 4 .
It can be seen that S and ρ decrease as the value of x increases, and carriers are injected together with Li. FIG. 2 shows the temperature dependence of the power factor of the obtained Ca 1-x Li x Pd 3 O 4 . The power factor S 2 / ρ reaches 1 μW / cmK 2 at room temperature, which is comparable to that of Na-Co-O. Figure 3 shows the obtained Ca 1-x Li x Pd 3 O.
4 The X-ray diffraction pattern (B) of the thermoelectric material was prepared by the usual solid-phase reaction method shown in Comparative Example 1 below, and was Ca 1-x Li x Pd 3 O 4 (A).
It is a graph shown in comparison with. As shown in FIG. 3B, in the sample using the flux, metal Pd which is an impurity
(Indicated by * in FIG. 3A) is decreasing.

【0026】比較例1 実施例1において、フラックスを使わず、仮焼条件を95
0℃で36時間、本焼成を950℃で36時間として合成した。
図4に得られたCa1-xLixPd3O4の抵抗率の温度変化を示
す。金属Pdが析出し抵抗率が増大したことが分かる。
Comparative Example 1 In Example 1, the flux was not used and the calcination conditions were set to 95.
The synthesis was carried out at 0 ° C for 36 hours and main firing at 950 ° C for 36 hours.
FIG. 4 shows the temperature change of the resistivity of the obtained Ca 1-x Li x Pd 3 O 4 . It can be seen that the metal Pd was deposited and the resistivity increased.

【0027】(実施例2)実施例1の原料のLi2CO3に代
えてNa2CO3用いること以外は、実施例1と同じ条件で焼
成した。図5に、得られたCa1-xNaxPd3O4の抵抗率ρと
熱起電力(ゼーベック係数)Sの温度依存性を示す。Liの
代わりにNaを用いても同様の特性が得られることが分か
る。
Example 2 Firing was carried out under the same conditions as in Example 1 except that Na 2 CO 3 was used instead of Li 2 CO 3 which was the raw material of Example 1. FIG. 5 shows the temperature dependence of the resistivity ρ and the thermoelectromotive force (Seebeck coefficient) S of the obtained Ca 1-x Na x Pd 3 O 4 . It can be seen that similar characteristics can be obtained by using Na instead of Li.

【0028】(実施例3)CaCO3の代わりにSrの原料と
してSrCO3を用いたこと以外は、実施例1と同じ条件で
焼成した。図6に、得られたCa0.8Sr0.2Pd3O4の熱起電
力(ゼーベック係数)Sの温度依存性をCaPd3O4と比較して
示す。CaのかわりにSrを用いても基本的に同様の特性が
得られた。
Example 3 Firing was carried out under the same conditions as in Example 1 except that SrCO 3 was used as a raw material for Sr instead of CaCO 3 . FIG. 6 shows the temperature dependence of the thermoelectromotive force (Seebeck coefficient) S of the obtained Ca 0.8 Sr 0.2 Pd 3 O 4 in comparison with CaPd 3 O 4 . Basically similar characteristics were obtained even when Sr was used instead of Ca.

【0029】(実施例4)実施例1の原料のLi2CO3に代
えてSc2O3,Y2O3,またはLa2O3を用いること以外は、実
施例1と同じ条件で焼成した。図7に、得られたCa0.8X
0.2Pd3O4の抵抗率の温度変化を示す。Sc,Y,またはLa
などの3価数のイオンの置換によって抵抗率の温度変化
が抑えられ、電子がドープされていることが分かる。
Example 4 Firing was carried out under the same conditions as in Example 1 except that Sc 2 O 3 , Y 2 O 3 or La 2 O 3 was used in place of Li 2 CO 3 which was the raw material of Example 1. did. Fig. 7 shows the obtained Ca 0.8 X.
The temperature change of the resistivity of 0.2 Pd 3 O 4 is shown. Sc, Y, or La
It can be seen that the temperature change of the resistivity is suppressed by the substitution of trivalent ions such as and electrons are doped.

【0030】(実施例5)実施例4において、フラック
スを使わず、仮焼を温度950℃で36時間行い、本焼成を9
50℃で36時間行った。他の条件は実施例4と同じとし
た。図8に、得られたCa0.8X0.2Pd3O4の熱起電力の温度
依存性を示す。特に、X=Laの組成では、室温で−50μV
/K以上の熱起電力を有していることが分かり、熱起電力
の絶対値が50μV/K以上のN型材料が得られた。
(Example 5) In Example 4, calcination was performed for 36 hours at a temperature of 950 ° C without using flux, and main firing was performed for 9 hours.
It was carried out at 50 ° C for 36 hours. Other conditions were the same as in Example 4. FIG. 8 shows the temperature dependence of the thermoelectromotive force of the obtained Ca 0.8 X 0.2 Pd 3 O 4 . Especially for the composition of X = La, it is −50 μV at room temperature.
It was found to have a thermoelectromotive force of / K or more, and an N-type material with an absolute value of thermoelectromotive force of 50 μV / K or more was obtained.

【0031】[0031]

【発明の効果】本発明の組成式A1−xPd
で示される複合パラジウム酸化物によれば、元素置換に
よって容易にキャリアの種類と濃度、それに伴う熱電特
性を制御でき、Naのような不安定な要素を持たず、P
型材料、N型材料の両方を作成できる材料を提供すこと
ができ、また、液体窒素温度(−196℃)以上から3
00℃程度までの広い温度領域に亘って使用可能な熱電
変換材料を提供できる。
The composition formula of the present invention A 1-x B x Pd 3 O 4
According to the composite palladium oxide represented by, it is possible to easily control the type and concentration of the carrier and the thermoelectric characteristics associated therewith by element substitution, do not have an unstable element such as Na, and
It is possible to provide a material that can be used as both a mold material and an N-type material, and the liquid nitrogen temperature (-196 ° C) or higher to 3
It is possible to provide a thermoelectric conversion material that can be used over a wide temperature range up to about 00 ° C.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1で得られたCa1-xLixPd3O4熱電変換材
料の抵抗率ρと熱起電力(ゼーベック係数)Sの温度依存
性を示すグラフである。
FIG. 1 is a graph showing the temperature dependence of resistivity ρ and thermoelectromotive force (Seebeck coefficient) S of the Ca 1-x Li x Pd 3 O 4 thermoelectric conversion material obtained in Example 1.

【図2】実施例1で得られたCa1-xLixPd3O4熱電変換材
料の電力因子の温度依存性を示すグラフである。
FIG. 2 is a graph showing the temperature dependence of the power factor of the Ca 1-x Li x Pd 3 O 4 thermoelectric conversion material obtained in Example 1.

【図3】実施例1で得られたCa1-xLixPd3O4熱電変換材
料のX線回折パターン(B)を通常の固相反応法で作成
した試料(A)と比較して示すグラフである。
FIG. 3 compares the X-ray diffraction pattern (B) of the Ca 1-x Li x Pd 3 O 4 thermoelectric conversion material obtained in Example 1 with a sample (A) prepared by a usual solid-phase reaction method. It is a graph shown.

【図4】比較例1で得られたCa1-xLixPd3O4の抵抗率の
温度変化を示すグラフである。
FIG. 4 is a graph showing the temperature change of the resistivity of Ca 1-x Li x Pd 3 O 4 obtained in Comparative Example 1.

【図5】実施例2で得られたCa1-xNaxPd3O4熱電変換材
料の抵抗率ρと熱起電力(ゼーベック係数)Sの温度依存
性を示すグラフである。
5 is a graph showing the temperature dependence of the resistivity ρ and thermoelectromotive force (Seebeck coefficient) S of the Ca 1-x Na x Pd 3 O 4 thermoelectric conversion material obtained in Example 2. FIG.

【図6】実施例3で得られたCa0.8Sr0.2Pd3O4および実
施例1で得られたCaPd3O4の熱電変換材料の熱起電力の
温度依存性を示すグラフである。
FIG. 6 is a graph showing temperature dependence of thermoelectromotive force of thermoelectric conversion materials of Ca 0.8 Sr 0.2 Pd 3 O 4 obtained in Example 3 and CaPd 3 O 4 obtained in Example 1.

【図7】実施例4で得られたCa0.8X0.2Pd3O4の熱電変換
材料の抵抗率の温度変化を示すグラフである。
FIG. 7 is a graph showing the temperature change of the resistivity of the thermoelectric conversion material of Ca 0.8 X 0.2 Pd 3 O 4 obtained in Example 4.

【図8】実施例5で得られたCa0.8X0.2Pd3O4の熱電変換
材料の熱起電力(ゼーベック係数)Sの温度依存性を示す
グラフである。
FIG. 8 is a graph showing the temperature dependence of the thermoelectromotive force (Seebeck coefficient) S of the Ca 0.8 X 0.2 Pd 3 O 4 thermoelectric conversion material obtained in Example 5.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 組成式A1−xPd(ただ
し、Aは、Ca,Sr,またはBa、Bは、Li,N
a,K,Sc,Y,La,Nd,Sm,Eu,Gd,D
y,Er,Ho,またはYbであり、xは、0<x≦
1)で表されるパラジウム酸化物からなることを特徴と
する熱電変換材料。
1. A composition formula A 1-x B x Pd 3 O 4 (where A is Ca, Sr, or Ba, and B is Li, N).
a, K, Sc, Y, La, Nd, Sm, Eu, Gd, D
y, Er, Ho, or Yb, and x is 0 <x ≦
A thermoelectric conversion material comprising a palladium oxide represented by 1).
【請求項2】 AがCaまたはSr、BがLi,Na,
またはKであり、P型材料であることを特徴とする請求
項1記載の熱電変換材料。
2. A is Ca or Sr, B is Li, Na,
The thermoelectric conversion material according to claim 1, wherein the thermoelectric conversion material is K or P-type material.
【請求項3】 AがCaまたはSr、BがSc,Y,L
a,Nd,Sm,Eu,Gd,Dy,Er,Ho,また
はYbであり、N型材料であることを特徴とする請求項
1記載の熱電変換材料。
3. A is Ca or Sr, B is Sc, Y, L
The thermoelectric conversion material according to claim 1, wherein the thermoelectric conversion material is a, Nd, Sm, Eu, Gd, Dy, Er, Ho, or Yb and is an N-type material.
【請求項4】 焼成により組成式A1−xPd
(ただし、Aは、Ca,Sr,またはBa、Bは、L
i,Na,K,Sc,Y,La,Nd,Sm,Eu,G
d,Dy,Er,Ho,またはYbであり、xは、0<
x≦1)となるように成分を配合した原料に、フラック
スを混合して仮焼し、その後フラックスを除去し、83
0℃以上900℃以下で焼成することを特徴とする請求
項2記載の熱電変換材料の製造方法。
4. The composition formula A 1-x B x Pd 3 O is obtained by firing.
4 (However, A is Ca, Sr, or Ba, B is L
i, Na, K, Sc, Y, La, Nd, Sm, Eu, G
d, Dy, Er, Ho, or Yb, and x is 0 <
x is mixed with a raw material in which the components are mixed so that x ≦ 1), and the mixture is calcined and then the flux is removed.
The method for producing a thermoelectric conversion material according to claim 2, wherein the firing is performed at 0 ° C or higher and 900 ° C or lower.
【請求項5】 フラックスがアルカリハライドであり、
仮焼温度が800〜830℃であることを特徴とする請
求項4記載の熱電変換材料の製造方法。
5. The flux is an alkali halide,
The method for producing a thermoelectric conversion material according to claim 4, wherein the calcination temperature is 800 to 830 ° C.
JP2002079817A 2002-03-20 2002-03-20 Thermoelectric conversion material comprising palladium oxide and method for producing the same Expired - Fee Related JP4124420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002079817A JP4124420B2 (en) 2002-03-20 2002-03-20 Thermoelectric conversion material comprising palladium oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002079817A JP4124420B2 (en) 2002-03-20 2002-03-20 Thermoelectric conversion material comprising palladium oxide and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003282963A true JP2003282963A (en) 2003-10-03
JP4124420B2 JP4124420B2 (en) 2008-07-23

Family

ID=29229102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002079817A Expired - Fee Related JP4124420B2 (en) 2002-03-20 2002-03-20 Thermoelectric conversion material comprising palladium oxide and method for producing the same

Country Status (1)

Country Link
JP (1) JP4124420B2 (en)

Also Published As

Publication number Publication date
JP4124420B2 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
He et al. Thermoelectric properties of La1− xAxCoO3 (A= Pb, Na)
WO2005083808A1 (en) Thermoelectric conversion device, cooling method using same, and power generating method
WO2005036661A1 (en) Conductive paste for connecting thermoelectric conversion material
JP3472813B2 (en) Composite oxides with high Seebeck coefficient and high electrical conductivity
EP1895603A1 (en) Thermoelectric conversion material, method for production thereof and thermoelectric conversion element
US8088989B2 (en) Thermoelectric conversion material and thermoelectric conversion element
US6777609B2 (en) Thermoelectric conversion material and thermoelectric conversion device
JP4024294B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device provided with the element
Dura et al. The effect of nanostructure on the thermoelectric figure-of-merit of La0. 875Sr0. 125CoO3
JP3069701B1 (en) Composite oxide with high Seebeck coefficient and high electrical conductivity
JP3922651B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device provided with the element
JP2000012915A (en) Thermoelectric conversion material
JP5206510B2 (en) N-type thermoelectric conversion material, n-type thermoelectric conversion element, and thermoelectric conversion module
US7959833B2 (en) Thermoelectric conversion material, method for producing the same and thermoelectric conversion device
JP2007335504A (en) Thermoelectric conversion material and its manufacturing method
JP2005217310A (en) Clathrate compound, thermoelectric conversion element, and its manufacturing method
JP4124420B2 (en) Thermoelectric conversion material comprising palladium oxide and method for producing the same
JP2009111357A (en) Thermoelectric material and its manufacturing method
JP2003008086A (en) Composite oxide and thermoelectric converter using the same
JP3585696B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JPH0617225B2 (en) Thermoelectric conversion material
JP2006032624A (en) Thermoelectric transformation material consisting of rhodium oxide
JPH05129667A (en) Thermoelectric semiconductor element and manufacture thereof
Sotojima et al. Thermoelectric properties and phase transition of (ZnxCu2− x) V2O7
JP2010228927A (en) Cobalt-manganese compound oxide

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees