JPH05129667A - Thermoelectric semiconductor element and manufacture thereof - Google Patents

Thermoelectric semiconductor element and manufacture thereof

Info

Publication number
JPH05129667A
JPH05129667A JP3288330A JP28833091A JPH05129667A JP H05129667 A JPH05129667 A JP H05129667A JP 3288330 A JP3288330 A JP 3288330A JP 28833091 A JP28833091 A JP 28833091A JP H05129667 A JPH05129667 A JP H05129667A
Authority
JP
Japan
Prior art keywords
powder
thermoelectric semiconductor
titanium
composite oxide
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3288330A
Other languages
Japanese (ja)
Inventor
Yoichiro Yokoya
洋一郎 横谷
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3288330A priority Critical patent/JPH05129667A/en
Publication of JPH05129667A publication Critical patent/JPH05129667A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a new thermoelectric semiconductor element having the superior performance and stable characteristics by firing a mixture of composite oxide powders and reducing material powders in a non-oxidizing atmosphere, or by firing the mixture which is further mixed with specific fluoride powders in a non-oxidizing atmosphere. CONSTITUTION:Composite oxide powders containing strontium and titanium as principal components and reducing material powders are mixed together, and then fired in a non-oxidizing atmosphere. A pair of electrodes are formed on a resulting oxide ceramic semiconductor. Moreover, composite oxide powders containing strontium and titanium as principal components, reducing material powders, and metal fluoride powders are mixed together, and then fired in a non-oxidizing atmosphere. A pair of electrodes are formed on a resulting oxide ceramic semiconductor. Accordingly, there are obtained characteristics which are substantially equivalent to those of existing Bi-Te-based materials, and hence a thermoelectric semiconductor element having a stable performance can be realized by conventional ceramic processes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱電半導体素子とその
製造方法に関し、特に酸化物セラミック半導体を用いた
ものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric semiconductor device and a method for manufacturing the same, and more particularly to a device using an oxide ceramic semiconductor.

【0002】[0002]

【従来の技術】近年、地球環境問題からのフロン使用規
制や、電子機器等の局所冷却、除湿などの小型冷却装置
などに対する要求からペルチェ効果を利用した電子冷却
用電子部品に対する要求は大きい。
2. Description of the Related Art In recent years, there have been great demands for electronic components for electronic cooling utilizing the Peltier effect due to restrictions on the use of CFCs due to global environmental problems and demands for small cooling devices such as local cooling and dehumidification of electronic devices.

【0003】このうち、室温付近で用いる電子冷却用の
電子部品としては、Bi−Te系の単結晶もしくは多結
晶凝固体を熱電半導体物質として使用したものが知られ
ている。
Among these, as an electronic component for electronic cooling used near room temperature, one using a Bi-Te type single crystal or polycrystalline solidified body as a thermoelectric semiconductor material is known.

【0004】電子冷却用の熱電半導体素子の性能はゼー
ベック係数をs、電気伝導度をσ、熱伝導度をkとする
と、Z=s×s×σ/kで表わされる性能指数Zの大き
いものほど、冷却時の消費電力当りの吸収熱量や放熱側
との温度差が大きく取れる。各種半導体材料がBi−T
e系を置き換える目的で検討されてきたが特性的にこれ
を超えるものは現在のところ報告されていない。
The performance of a thermoelectric semiconductor element for electronic cooling has a large figure of merit Z represented by Z = s × s × σ / k, where the Seebeck coefficient is s, the electrical conductivity is σ, and the thermal conductivity is k. The greater the amount of absorbed heat per power consumption during cooling and the greater the temperature difference from the heat radiating side. Various semiconductor materials are Bi-T
Although it has been studied for the purpose of replacing the e-system, what has been characteristically exceeded has not been reported so far.

【0005】[0005]

【発明が解決しようとする課題】熱電半導体素子は、n
型素子とp型素子とを電気的に直列に接合して用いられ
るが、Bi−Te系素子では特性調整のためn型伝導素
子部にはSeを添加して用いられている。これらの素子
において特に添加物として加えられるSeは毒性が大き
く、また主成分のBi−Te系組成自体が高価でありこ
のため素子の使用範囲が制限されていた。
The thermoelectric semiconductor element is composed of n
The p-type element and the p-type element are electrically connected in series and used. In the Bi-Te based element, Se is added to the n-type conductive element portion for adjusting the characteristics. In these devices, Se, which is added as an additive in particular, is highly toxic, and the Bi-Te-based composition itself, which is the main component, is expensive, which limits the range of use of the device.

【0006】本発明ではかかる課題に鑑み、安価で性能
が優れ、特性的に安定した新たな熱電半導体素子とその
製造方法との提供を目的としている。
In view of the above problems, it is an object of the present invention to provide a new thermoelectric semiconductor element which is inexpensive, excellent in performance, and stable in characteristics, and a manufacturing method thereof.

【0007】[0007]

【課題を解決するための手段】ストロンチウムとチタン
とを主成分とした複合酸化物中に、互いに連続しない還
元性物質相が点在している構成、もしくは特定のフッ化
物相が還元性物質相と共に含まれている構成とした酸化
物セラミック半導体を用いた熱電半導体素子によって、
かかる従来の課題を克服した。
[Means for Solving the Problems] A structure in which reducing substance phases which are not continuous to each other are scattered in a composite oxide containing strontium and titanium as main components, or a specific fluoride phase is a reducing substance phase. With a thermoelectric semiconductor element using an oxide ceramic semiconductor having a configuration included with
The conventional problems have been overcome.

【0008】またこの製造方法については、複合酸化物
粉末と還元性物質粉末とを混合し非酸化性雰囲気中で焼
成、もしくはさらに特定のフッ化物粉末を混合し非酸化
性雰囲気で焼成するプロセスをとる。
Further, regarding this manufacturing method, a process of mixing the composite oxide powder and the reducing substance powder and firing them in a non-oxidizing atmosphere, or further mixing a specific fluoride powder and firing them in a non-oxidizing atmosphere is carried out. To take.

【0009】[0009]

【作用】本発明の熱電半導体素子は、ストロンチウムと
チタンとを主成分とした複合酸化物と還元性物質とで構
成されているため、問題の大きかったセレン等に起因す
る有毒成分を含有しなく、従来のBi−Te並の高性能
であると共に、非常に安価な熱電半導体素子が提供でき
る。また、本発明の熱電半導体素子の製造方法は、スト
ロンチウムとチタンとを主成分とした複合酸化物を、予
め粉末として添加した還元性物質と共に、非酸化性雰囲
気下で焼成するため、複合酸化物を容易に酸素欠損状態
にでき、性能が安定した熱電半導体素子が製造できると
共に、極めて容易に製造できる。
Since the thermoelectric semiconductor element of the present invention is composed of a complex oxide containing strontium and titanium as main components and a reducing substance, it does not contain a toxic component caused by selenium, which has been a serious problem. It is possible to provide a thermoelectric semiconductor element which has a performance as high as that of the conventional Bi-Te and is very inexpensive. Further, the method for producing a thermoelectric semiconductor element of the present invention, a composite oxide containing strontium and titanium as main components is fired in a non-oxidizing atmosphere together with a reducing substance added as a powder in advance. Can be easily made into an oxygen-deficient state, and a thermoelectric semiconductor element having stable performance can be manufactured, and at the same time, can be manufactured very easily.

【0010】[0010]

【実施例】本発明の複合酸化物とは、ストロンチウムと
チタンとを主成分とするペルブスカイト相構造である。
ストロンチウムを主成分とする相には、バリウム、カル
シウム、カリウム、ナトリウム、リチウム、セシウム、
ルビジウム、スカンジウム、イットリウムもしくはラン
タニド系元素等を含有していてもよい。チタンを主成分
とする相には、ジルコニウム、ハフニウム、スズ、ニオ
ブ、タンタル、タングステン、モリブデン、マンガン、
鉄、コバルト、ニッケル、銅、亜鉛、インジウム、マグ
ネシウムもしくはアンチモン等を含有していてもよい。
EXAMPLES The composite oxide of the present invention has a perovskite phase structure containing strontium and titanium as main components.
Strontium-based phases include barium, calcium, potassium, sodium, lithium, cesium,
Rubidium, scandium, yttrium, or a lanthanide element may be contained. Titanium-based phases include zirconium, hafnium, tin, niobium, tantalum, tungsten, molybdenum, manganese,
It may contain iron, cobalt, nickel, copper, zinc, indium, magnesium, antimony, or the like.

【0011】本発明の還元性物質とは、例えばチタン
(Ti)、ジルコニウム(Zr)、タンタル(Ta)も
しくはニオブ(Nb)等の金属、例えばTiC、Zr
C、NbC、TaC等の金属炭化物、またはTiN、Z
rN、NbNもしくはTaN等の金属窒化物等が挙げら
れる。これら還元性物質としては、金属と金属炭化物が
好ましい。
The reducing substance of the present invention is a metal such as titanium (Ti), zirconium (Zr), tantalum (Ta) or niobium (Nb), such as TiC or Zr.
Metal carbide such as C, NbC, TaC, or TiN, Z
Examples thereof include metal nitrides such as rN, NbN or TaN. As these reducing substances, metals and metal carbides are preferable.

【0012】本発明の熱電半導体素子には、上述した還
元性物質相以外に金属フッ化物相を含有していてもよ
い。金属フッ化物としては、リチウム、カルシウム、バ
リウム、ストロンチウムのフッ化物が挙げられる。この
ように金属フッ化物相を含有すると、酸化物粒子の粒界
の3角点付近に金属フッ化物相が選択的に存在し、本発
明の熱電半導体素子の焼結密度の向上と高電気伝導度と
が得られるため好ましい。
The thermoelectric semiconductor element of the present invention may contain a metal fluoride phase in addition to the reducing substance phase described above. Examples of metal fluorides include fluorides of lithium, calcium, barium and strontium. When the metal fluoride phase is contained in this manner, the metal fluoride phase is selectively present in the vicinity of the triangular points of the grain boundaries of the oxide particles, and the sintered density of the thermoelectric semiconductor element of the present invention is improved and the electrical conductivity is improved. It is preferable because the degree can be obtained.

【0013】本発明の熱電半導体素子は、ストロンチウ
ムとチタンとを主成分とする複合酸化物粉末と、還元性
物質粉末とを混合し、非酸化性雰囲気下で焼成した酸化
物セラミック半導体に、一対の電極を設けて製造でき
る。上記酸化物セラミックの製造工程で、上述した金属
フッ化物粉末を混合して、同様に非酸化性雰囲気下で焼
成しても良いこと勿論である。
The thermoelectric semiconductor element of the present invention comprises a composite oxide powder containing strontium and titanium as main components, and a reducing substance powder mixed together and fired in a non-oxidizing atmosphere to form an oxide ceramic semiconductor. It is possible to manufacture by providing the electrodes. It goes without saying that the above-mentioned metal fluoride powder may be mixed and fired in the same non-oxidizing atmosphere in the oxide ceramic manufacturing process.

【0014】非酸化性雰囲気下で焼成する際に、還元性
物質粉末がストロンチウムとチタンとを主成分とした絶
縁性の複合酸化物粉末を還元し酸素欠損状態にでき、ス
トロンチウムとチタンとの複合酸化物セラミック半導体
化が容易にできる。このようにして作製した酸化物セラ
ミック半導体は、特性が容易に安定化できるため、熱電
半導体素子に用いると素子としての性能も安定化でき
る。なお、本発明で言う非酸化性雰囲気とは、例えばア
ルゴン、ネオン、ヘリウム等のいわゆる希ガス雰囲気、
二酸化炭素等の不活性ガス雰囲気もしくは例えば窒素、
水素、メタン等の還元性ガス雰囲気等が挙げられる。こ
れら非酸化性雰囲気の内アルゴンガス雰囲気が、取扱と
入手とが容易であるため好ましい。本発明の熱電半導体
素子の電極を設ける工程は、通常の手法が適用でき、電
極自体も銅等の通常の材料が適用できる。
When firing in a non-oxidizing atmosphere, the reducing substance powder can reduce the insulating complex oxide powder containing strontium and titanium as the main components to an oxygen-deficient state. The oxide ceramic semiconductor can be easily formed. Since the characteristics of the oxide ceramic semiconductor thus manufactured can be easily stabilized, the performance as an element can be stabilized when used in a thermoelectric semiconductor element. The non-oxidizing atmosphere referred to in the present invention means, for example, a so-called rare gas atmosphere such as argon, neon, or helium,
Inert gas atmosphere such as carbon dioxide or nitrogen,
An atmosphere of a reducing gas such as hydrogen or methane can be used. Of these non-oxidizing atmospheres, an argon gas atmosphere is preferable because it is easy to handle and obtain. A usual method can be applied to the step of providing the electrode of the thermoelectric semiconductor element of the present invention, and a normal material such as copper can be applied to the electrode itself.

【0015】本発明の熱電半導体素子に供される酸化物
セラミック半導体の原料粉末は何れも、例えば200メ
ッシュ通過等の微小粒径が、焼結体が緻密になるととも
に性能指数Zも大きくなるため好ましい。酸化物セラミ
ック半導体に金属フッ化物を含有すると、特に焼結密度
が向上し性能指数も大きくなるため望ましい。また、酸
化物セラミック半導体の原料粉末は、例えば撹拌擂潰機
等で充分混合すると、絶縁性の複合酸化物粉末と還元性
粉末とが互いに隣合い還元性物質が有効に作用するため
好ましい。
The raw material powder of the oxide ceramic semiconductor used in the thermoelectric semiconductor element of the present invention has a fine particle size, for example, 200 mesh, because the sintered body becomes dense and the figure of merit Z becomes large. preferable. It is desirable that the oxide ceramic semiconductor contains a metal fluoride because the sintered density is improved and the figure of merit is increased. Further, when the raw material powder of the oxide ceramic semiconductor is sufficiently mixed with, for example, a stirring and crushing machine, the insulating complex oxide powder and the reducing powder are adjacent to each other, and the reducing substance effectively acts, which is preferable.

【0016】以下に、本発明の実施例について説明す
る。 (実施例1)酸化物半導体セラミック原料材料として
は、ストロンチウム(Sr)対チタン(Ti)比0.9
8の複合酸化物を用い、熱電半導体素子を作成した。
Examples of the present invention will be described below. (Example 1) As the oxide semiconductor ceramic raw material, a strontium (Sr) to titanium (Ti) ratio of 0.9
A thermoelectric semiconductor element was prepared using the composite oxide of No. 8.

【0017】酸化物半導体セラミックは、出発原料とし
てSrCO3とTiO2とを用い、所定比に秤量したの
ち、ジルコニア質玉石を混合媒体にして純水とともにボ
ールミルで混合し、乾燥した。
The oxide semiconductor ceramics were prepared by using SrCO 3 and TiO 2 as starting materials, weighing them to a predetermined ratio, mixing them with pure water using a zirconia boulder as a mixing medium in a ball mill, and then drying.

【0018】乾燥した粉体はアルミナ坩堝にいれ、電気
炉を用い空気中1100℃で12時間仮焼し、粉末X線
解析でペロブスカイト相単相の粉末を得た。
The dried powder was put into an alumina crucible and calcined in an electric furnace in air at 1100 ° C. for 12 hours to obtain a powder having a perovskite single phase by powder X-ray analysis.

【0019】こうして得た仮焼粉を、ふたたびジルコニ
ア質玉石を混合媒体とし純水とともにボールミルで湿式
粉砕し、平均粒径0.8μmの粉末とし、乾燥した。
The calcined powder thus obtained was again wet-milled with pure water using a zirconia cobblestone as a mixed medium in a ball mill to obtain a powder having an average particle size of 0.8 μm and dried.

【0020】この複合酸化物粉末に対し、所定量の金属
チタン、金属ジルコニウム、金属タンタル、金属ニオブ
粉末を加え、撹拌擂潰機を用い乾式混合した。但し、こ
の金属粉末は、何れも純度99%程度で、粒径200メ
ッシュパスのものを用いた。
Predetermined amounts of metallic titanium, metallic zirconium, metallic tantalum and metallic niobium powder were added to this composite oxide powder, and dry mixed using a stirring and crushing machine. However, the metal powder used had a purity of about 99% and a particle size of 200 mesh pass.

【0021】こうして得られた混合粉末に5wt%の水
を加えたのち造粒し、長さ30mm幅10mmの金型に
2.5gの粉末を加え、700kg/cm2でプレスし
圧粉体とした。
5 wt% of water was added to the mixed powder thus obtained, and then granulated, 2.5 g of the powder was added to a mold having a length of 30 mm and a width of 10 mm, and pressed at 700 kg / cm 2 to obtain a green compact. did.

【0022】圧粉体は磁器製さやにいれ管状炉に挿入
し、1500℃で2時間アルゴンガスを流しながら焼成
した。
The green compact was put in a porcelain pod and placed in a tubular furnace, and was fired at 1500 ° C. for 2 hours while flowing an argon gas.

【0023】焼成体の両端に金電極を蒸着し、この金電
極よりリード線を取り出し、両端を別の熱板にはさみ温
度差をつけ、両端の温度と熱起電力からゼーベック係数
Sをもとめた。
Gold electrodes were vapor-deposited on both ends of the fired body, lead wires were taken out from the gold electrodes, both ends were sandwiched by different heating plates to make a temperature difference, and the Seebeck coefficient S was obtained from the temperatures at both ends and the thermoelectromotive force. ..

【0024】さらに、熱起電力を測定した焼成体の中間
部に2点の電極を形成し、4端子法で試料に直流10m
Aを流し、初期電位差より試料の電気伝導度σをもとめ
た。
Further, two electrodes were formed in the middle of the fired body where the thermoelectromotive force was measured, and a direct current of 10 m was applied to the sample by the 4-terminal method.
A was flown, and the electrical conductivity σ of the sample was obtained from the initial potential difference.

【0025】こうして電気伝導度を求めた試料のリード
線を外し、一端にニッケルメッキを施し、銅熱板にハン
ダ付けし、10-2Pa程度の真空容器中にいれ、オング
ストローム法により熱板温度を周期的に変動させ試料両
端の温度変化をもとめ、これとは別に行ったDSC測定
より比熱をもとめ、これにより熱伝導度kをもとめた。
The lead wire of the sample for which electrical conductivity was obtained in this way was removed, one end was nickel-plated, soldered to a copper hot plate, placed in a vacuum container of about 10 -2 Pa, and the hot plate temperature was measured by the Angstrom method. Was periodically changed to determine the temperature change at both ends of the sample, and the specific heat was determined from the DSC measurement separately performed, and thereby the thermal conductivity k was determined.

【0026】これらの測定で得られたゼーベック係数
S、電気伝導度σと熱伝導度kより性能指数Zを求め
た。
The figure of merit Z was obtained from the Seebeck coefficient S, electrical conductivity σ and thermal conductivity k obtained by these measurements.

【0027】測定後の試料は薄片に研磨し光学顕微鏡に
よって相の観察をおこない、試料中に粒径200μm程
度の金属相が互いに連続せず点在していることが確認さ
れた。
After the measurement, the sample was polished into thin pieces and the phases were observed by an optical microscope. It was confirmed that metallic phases having a particle size of about 200 μm were not continuous with each other and were scattered in the sample.

【0028】また比較例として上で作成した仮焼粉末に
金属粉末を加えずに同様の形状に同様のプロセスで焼成
した試料を作成し、5%水素を含む窒素ガス中で150
0℃で所定時間還元した試料と、管状炉の試料に対し風
上の位置にスポンジチタン凝集体を配置し高温状態のス
ポンジチタン凝集体を通り抜けたアルゴンガス中で15
00℃で所定時間還元した試料を作成した。
As a comparative example, a sample was prepared by firing the calcined powder prepared above in the same shape and in the same process without adding the metal powder, and the sample was heated in nitrogen gas containing 5% hydrogen for 150 times.
The sample was reduced at 0 ° C. for a predetermined time, and the sponge titanium agglomerate was placed at a windward position with respect to the sample in the tubular furnace, and the argon gas passed through the sponge titanium agglomerate in a high temperature
A sample reduced at 00 ° C. for a predetermined time was prepared.

【0029】(表1)に金属の種類、ゼーベック係数
S、電気伝導度σ、熱伝導度k、性能指数Zを示す。
Table 1 shows the type of metal, Seebeck coefficient S, electrical conductivity σ, thermal conductivity k, and figure of merit Z.

【0030】[0030]

【表1】 [Table 1]

【0031】(表1)より酸化物セラミックよりなる熱
電半導体素子において、酸化物セラミックがストロンチ
ウムとチタンからなる複合酸化物を主成分とする酸化物
半導体よりなり、この中に互いに連続しない金属相が点
在しており、この相がチタン、ジルコニウム、タンタ
ル、ニオブよりなる群から選ばれた少なくとも1種以上
の成分を主成分とする金属相であることを特徴とする熱
電半導体素子が大きな性能指数を示すのに対し、金属相
を含まないものはゼーベック係数は大きくなるが還元の
進行が遅いため電気伝導度が小さくこのため性能指数は
大きくならない。また還元に要する時間が長時間を有す
ることもあり製造コストの上昇につながる。
As shown in Table 1, in the thermoelectric semiconductor element made of oxide ceramic, the oxide ceramic is made of an oxide semiconductor containing a complex oxide of strontium and titanium as a main component, and metal phases which are not continuous with each other are contained in the oxide semiconductor. A large figure of merit for a thermoelectric semiconductor device characterized in that this phase is a metallic phase containing as a main component at least one component selected from the group consisting of titanium, zirconium, tantalum, and niobium. On the other hand, in the case of containing no metal phase, the Seebeck coefficient increases, but the progress of reduction is slow, so the electrical conductivity is small and therefore the figure of merit does not increase. Further, the time required for the reduction may be long, which leads to an increase in manufacturing cost.

【0032】(実施例2)酸化物半導体セラミック原料
材料としては、Sr0.69Ba0.3TiO2.99の複合酸化
物を用い、熱電半導体素子を作成した。
Example 2 A thermoelectric semiconductor element was prepared by using a composite oxide of Sr 0.69 Ba 0.3 TiO 2.99 as an oxide semiconductor ceramic raw material.

【0033】酸化物半導体セラミックは出発原料として
SrCO3,BaCO3とTiO2を用い、所定比に秤量
したのちジルコニア質玉石を混合媒体にして純水ととも
にボールミルで混合し、乾燥した。
The oxide semiconductor ceramics were prepared by using SrCO 3 , BaCO 3 and TiO 2 as starting materials, weighing them to a predetermined ratio, mixing them with pure water using a zirconia boulder as a mixing medium in a ball mill, and then drying.

【0034】乾燥した粉体はアルミナ坩堝にいれ電気炉
を用い空気中1150℃で2時間仮焼し、粉末X線解析
でペロブスカイト相単相の粉末を得た。
The dried powder was put in an alumina crucible and calcined for 2 hours at 1150 ° C. in air using an electric furnace, and powder perovskite single phase powder was obtained by powder X-ray analysis.

【0035】仮焼粉はふたたびジルコニア質玉石を混合
媒体とし純水とともにボールミルで湿式粉砕し平均粒径
0.8μmの粉末とし、乾燥した。
The calcined powder was again wet-milled with pure water using a zirconia cobblestone as a mixed medium in a ball mill to obtain a powder having an average particle size of 0.8 μm, and dried.

【0036】この複合酸化物粉末に対し所定量のTi
C、ZrC、TaC、NbC粉末を加え、撹拌擂潰機を
用い乾式混合した。なお、この金属炭化物粉末は、何れ
も純度99%程度粒径50μmのものを用いた。
A predetermined amount of Ti is added to this composite oxide powder.
C, ZrC, TaC and NbC powders were added and dry mixed using a stirrer. The metal carbide powder used had a purity of about 99% and a particle size of 50 μm.

【0037】混合粉末は5wt%の水を加えたのち造粒
し、長さ30mm幅10mmの金型に2.0gの粉末を
加え、700kg/cm2でプレスし圧粉体とした。こ
うして得た圧粉体を磁器製さやにいれ管状炉に挿入し、
1450℃で2時間アルゴンガスを流しながら焼成し
た。
The mixed powder was granulated after adding 5 wt% of water, 2.0 g of the powder was added to a mold having a length of 30 mm and a width of 10 mm, and pressed at 700 kg / cm 2 to obtain a green compact. The green compact thus obtained is put into a porcelain pod and inserted into a tubular furnace.
Firing was performed at 1450 ° C. for 2 hours while flowing an argon gas.

【0038】焼成体の評価は実施例1と同様の方法をと
った。測定後の試料はX線マイクロアナライザとSEM
観察により相の観察をおこない、試料中に粒径30μm
程度の炭化物相が互いに連続せず点在していることが確
認された。
Evaluation of the fired body was performed in the same manner as in Example 1. Samples after measurement are X-ray micro analyzer and SEM
By observing the phases by observation, the particle size in the sample is 30 μm.
It was confirmed that some carbide phases were not continuous with each other and were scattered.

【0039】また、比較例として上で作成した仮焼粉末
に金属炭化粉末を加えずに、同様の形状に同様のプロセ
スで焼成した試料を作成し、5%水素を含む窒素ガス中
で1500℃で所定時間還元した試料と、管状炉の試料
に対し風上の位置にスポンジチタン凝集体を配置し高温
状態のスポンジチタン凝集体を通り抜けたアルゴンガス
中で1500℃で所定時間還元した試料を作成した。
In addition, as a comparative example, a sample obtained by firing in the same process in the same shape without adding the metal carbide powder to the calcined powder produced above was prepared in a nitrogen gas containing 5% hydrogen at 1500 ° C. A sample that has been reduced for a certain period of time and a sample that has been reduced for a certain period of time at 1500 ° C in argon gas that has passed through the sponge titanium aggregate in a high temperature state by arranging the titanium sponge aggregate at the windward position with respect to the sample of the tubular furnace did.

【0040】(表2)に金属の種類、ゼーベック係数
S、電気伝導度σ、熱伝導度k、性能指数Zを示す。
Table 2 shows the type of metal, Seebeck coefficient S, electrical conductivity σ, thermal conductivity k, and figure of merit Z.

【0041】[0041]

【表2】 [Table 2]

【0042】(表2)より酸化物セラミックよりなる熱
電半導体素子において、酸化物セラミックがストロンチ
ウムとチタンからなる複合酸化物を主成分とする酸化物
半導体よりなり、この中に互いに連続しない金属炭化物
相が点在しており、この相がチタン、ジルコニウム、タ
ンタル、ニオブよりなる群から選ばれた少なくとも1種
以上の成分を主成分とする金属炭化物相であることを特
徴とする熱電半導体素子は大きな性能指数を示すのに対
し、金属炭化物相を含まないものはゼーベック係数は大
きくなるが還元の進行が遅いため電気伝導度が小さくこ
のため性能指数は大きくならない。また還元に要する時
間が長時間を有することもあり製造コストの上昇につな
がる。
As shown in Table 2, in the thermoelectric semiconductor device made of oxide ceramic, the oxide ceramic is made of an oxide semiconductor containing a composite oxide of strontium and titanium as a main component, and the metal carbide phases are not continuous with each other. The thermoelectric semiconductor element is characterized in that this phase is a metal carbide phase containing at least one component selected from the group consisting of titanium, zirconium, tantalum, and niobium as a main component. In contrast to the figure of merit, those not containing a metal carbide phase have a large Seebeck coefficient, but the progress of reduction is slow, so the electrical conductivity is small, and therefore the figure of merit does not increase. Further, the time required for the reduction may be long, which leads to an increase in manufacturing cost.

【0043】(実施例3)酸化物半導体セラミック原料
材料としては、Sr0.9Ca0.1TiO3の複合酸化物を
用い、熱電半導体素子を作成した。
Example 3 A thermoelectric semiconductor element was prepared by using a composite oxide of Sr 0.9 Ca 0.1 TiO 3 as the oxide semiconductor ceramic raw material.

【0044】酸化物半導体セラミックは出発原料として
SrCO3,CaCO3とTiO2を用い、所定比に秤量
したのちジルコニア質玉石を混合媒体にして純水ととも
にボールミルで混合し、乾燥した。
The oxide semiconductor ceramics were prepared by using SrCO 3 , CaCO 3 and TiO 2 as starting materials, weighing them to a predetermined ratio, mixing them with pure water using a zirconia boulder as a mixing medium in a ball mill, and then drying.

【0045】乾燥した粉体はアルミナ坩堝にいれ、電気
炉を用い空気中1200℃で2時間仮焼し、粉末X線解
析でペロブスカイト相単相の粉末を得た。
The dried powder was put in an alumina crucible and calcined in an electric furnace in air at 1200 ° C. for 2 hours to obtain a perovskite single phase powder by powder X-ray analysis.

【0046】仮焼粉はふたたびジルコニア質玉石を混合
媒体とし純水とともにボールミルで湿式粉砕し平均粒径
0.8μmの粉末とし、乾燥した。
The calcined powder was again wet-milled with pure water using a zirconia cobblestone as a mixing medium in a ball mill to obtain a powder having an average particle size of 0.8 μm, which was then dried.

【0047】この複合酸化物粉末に対し0.2wt%の
TiまたはTiC粉末と、所定量のLiF,CaF2
SrF2,BaF2とを加え、撹拌擂潰機を用い乾式混合
した。なお、この金属粉末は純度99%程度粒径300
μmのものを、金属炭化物粉末は純度99%程度粒径1
20μm程度のものを用いた。
With respect to this composite oxide powder, 0.2 wt% of Ti or TiC powder and a predetermined amount of LiF, CaF 2 ,
SrF 2 and BaF 2 were added, and dry mixing was performed using a stirring and crushing machine. This metal powder has a purity of about 99% and a particle size of 300.
μm, metal carbide powder has a purity of about 99% Particle size 1
The thing of about 20 micrometers was used.

【0048】混合粉末は5wt%の水を加えたのち造粒
し、長さ30mm幅10mmの金型に2.0gの粉末を
加え、700kg/cm2でプレスし圧粉体とした。こ
うして得た圧粉体は磁器製さやにいれ管状炉に挿入し、
1300℃で2時間アルゴンガスを流しながら焼成し
た。
The mixed powder was granulated after adding 5 wt% of water, 2.0 g of the powder was added to a mold having a length of 30 mm and a width of 10 mm, and pressed at 700 kg / cm 2 to obtain a green compact. The green compact thus obtained is put into a porcelain pod and inserted into a tubular furnace.
Firing was performed at 1300 ° C. for 2 hours while flowing an argon gas.

【0049】焼成体の評価は実施例1と同様の方法をと
った。測定後の試料はX線マイクロアナライザとSEM
観察により相の観察をおこない、試料中に粒径150μ
m程度の金属相もしくは粒径50μm程度の炭化物相が
互いに連続せず点在しており、酸化物粒子の3角点付近
にフッ化物相が確認された。
Evaluation of the fired body was performed in the same manner as in Example 1. Samples after measurement are X-ray micro analyzer and SEM
By observing the phase, the particle size of 150μ in the sample
A metal phase of about m or a carbide phase having a particle size of about 50 μm was not continuous with each other and was scattered, and a fluoride phase was confirmed near the triangular points of the oxide particles.

【0050】また比較例として上で作成した仮焼粉末に
金属粉末、フッ化物粉末をどちらも加えずに同様の形状
に同様のプロセスで焼成した試料を作成し、5%水素を
含む窒素ガス中で1500℃で所定時間還元した試料
と、管状炉の試料に対し風上の位置にスポンジチタン凝
集体を配置し高温状態のスポンジチタン凝集体を通り抜
けたアルゴンガス中で1500℃で所定時間還元した試
料を作成した。
In addition, as a comparative example, a sample was prepared by firing the calcination powder prepared above in the same process in the same shape without adding any metal powder or fluoride powder, and in a nitrogen gas containing 5% hydrogen. And a sponge titanium agglomerate was placed at a windward position with respect to the sample of the tubular furnace and the sample was reduced at 1500 ° C. for a predetermined time in argon gas passing through the sponge titanium agglomerate in a high temperature state. A sample was prepared.

【0051】(表3)に金属または炭化物の種類、フッ
化物の種類、ゼーベック係数S、電気伝導度σ、熱伝導
度k、性能指数Zを示す。
Table 3 shows the type of metal or carbide, the type of fluoride, the Seebeck coefficient S, the electrical conductivity σ, the thermal conductivity k, and the figure of merit Z.

【0052】[0052]

【表3】 [Table 3]

【0053】(表3)より酸化物セラミックよりなる熱
電半導体素子において、酸化物セラミックがストロンチ
ウムとチタンからなる複合酸化物を主成分とする酸化物
半導体よりなり、この中に互いに連続しない金属相もし
くは金属炭化物相が点在しており、さらにリチウム、カ
ルシウム、バリウム、ストロンチウムよりなる群より選
ばれた少なくとも1種以上の金属フッ化物相が存在して
いることを特徴とする熱電半導体素子は大きな性能指数
を示す。
As shown in Table 3, in the thermoelectric semiconductor element made of oxide ceramic, the oxide ceramic is made of an oxide semiconductor containing a complex oxide of strontium and titanium as a main component, and the metal phase which is not continuous with each other or A thermoelectric semiconductor device having a large performance in which metal carbide phases are scattered and at least one metal fluoride phase selected from the group consisting of lithium, calcium, barium, and strontium is present. Indicates the index.

【0054】特に実施例のようなフッ化物相を含むもの
は焼結密度が上がり、電気伝導度が大きくなるかわり熱
伝導度が大きくなる傾向があるが、性能指数自体はほと
んど変わらない。
In particular, those containing a fluoride phase as in the examples tend to have a high sintering density and a high thermal conductivity instead of a high electrical conductivity, but the figure of merit itself is hardly changed.

【0055】また、本発明の熱電半導体素子の試料は、
焼結温度が低く選択できるため試料の製造が容易でかつ
安定に特性を得ることができる。
The sample of the thermoelectric semiconductor element of the present invention is
Since the sintering temperature can be selected low, the sample can be easily manufactured and the characteristics can be stably obtained.

【0056】一方、金属相または金属炭化物相とフッ化
物相とを何れも含まない試料は、ゼーベック係数は大き
くなるが、還元の進行が遅いため電気伝導度が小さくこ
のため性能指数は大きくならない。また還元に要する時
間が長時間を有することもあり製造コストの上昇につな
がる。
On the other hand, a sample containing neither a metal phase or a metal carbide phase nor a fluoride phase has a large Seebeck coefficient, but since the progress of reduction is slow, the electric conductivity is small and therefore the figure of merit does not become large. Further, the time required for the reduction may be long, which leads to an increase in manufacturing cost.

【0057】(実施例4)酸化物半導体セラミック原料
材料としては、Sr0.94La0.04TiO3の複合酸化物
を用い、熱電半導体素子を作成した。
(Example 4) A composite oxide of Sr 0.94 La 0.04 TiO 3 was used as a raw material material for an oxide semiconductor ceramic to prepare a thermoelectric semiconductor element.

【0058】酸化物半導体セラミックは出発原料として
SrCO3,La23とTiO2を用い、所定比に秤量し
たのちジルコニア質玉石を混合媒体にして純水とともに
ボールミルで混合し、乾燥した。
The oxide semiconductor ceramics were prepared by using SrCO 3 , La 2 O 3 and TiO 2 as starting materials, weighing them to a predetermined ratio, mixing them with pure water using a zirconia boulder as a mixing medium in a ball mill, and then drying.

【0059】乾燥した粉体はアルミナ坩堝にいれ、電気
炉を用い空気中1300℃で2時間仮焼し、粉末X線解
析でペロブスカイト相単相の粉末を得た。
The dried powder was put into an alumina crucible and calcined for 2 hours at 1300 ° C. in the air using an electric furnace, and powder perovskite single phase powder was obtained by powder X-ray analysis.

【0060】仮焼粉はふたたびジルコニア質玉石を混合
媒体とし純水とともにボールミルで湿式粉砕し平均粒径
0.4μmの粉末とし、乾燥した。
The calcined powder was again wet-milled with pure water using a zirconia cobblestone as a mixed medium in a ball mill to obtain a powder having an average particle size of 0.4 μm and dried.

【0061】この複合酸化物粉末に対し0.2wt%の
TiまたはZr粉末と、あるものにはさらに0.2wt
%のLiF,BaF2を加え、撹拌擂潰機を用い乾式混
合した。なお、この金属粉末は純度99%程度粒径30
0μmのものを、金属炭化物粉末は純度99%程度粒径
120μm程度のものを用いた。
0.2 wt% Ti or Zr powder with respect to this composite oxide powder, and 0.2 wt% for some.
% LiF and BaF 2 were added, and dry mixing was performed using a stirrer. This metal powder has a purity of about 99% and a particle size of 30.
The metal carbide powder having a purity of about 99% and the particle diameter of about 120 μm was used.

【0062】混合粉末は5wt%の水を加えたのち造粒
し、長さ30mm幅10mmの金型に2.0gの粉末を
加え700kg/cm2でプレスし圧粉体とした。こう
して得た圧粉体を磁器製さやにいれ管状炉に挿入し、フ
ッ化物入りは1300℃、フッ化物がないものは150
0℃で2時間アルゴンガスもしくは窒素ガスを流しなが
ら焼成した。
The mixed powder was granulated after adding 5 wt% of water, 2.0 g of the powder was added to a mold having a length of 30 mm and a width of 10 mm, and pressed at 700 kg / cm 2 to obtain a green compact. The green compact thus obtained is put into a porcelain sheath and inserted into a tubular furnace. Fluoride-containing material is 1300 ° C., fluoride-free material is 150
Firing was performed at 0 ° C. for 2 hours while flowing an argon gas or a nitrogen gas.

【0063】焼成体の評価は実施例1と同様の方法をと
った。測定後の試料はX線マイクロアナライザとSEM
観察により相の観察をおこない、アルゴン中で焼成した
ものは試料中に粒径150μm程度の金属相が互いに連
続せず点在しており、フッ化物を加えたものには酸化物
粒子の3角点付近にフッ化物相が確認された。一方窒素
中で焼成したものは一部に金属相が点在し一部には、窒
化チタン、窒化ジルコニウムの相が観察された。
Evaluation of the fired body was performed in the same manner as in Example 1. Samples after measurement are X-ray micro analyzer and SEM
By observing the phases by observation and firing in argon, the metallic phases with a particle size of about 150 μm are scattered in the sample and are not continuous with each other. A fluoride phase was confirmed near the point. On the other hand, in the one fired in nitrogen, a metal phase was partly scattered, and titanium nitride and zirconium nitride phases were partly observed.

【0064】(表4)に金属または炭化物の種類、フッ
化物の種類、ゼーベック係数S、電気伝導度σ、熱伝導
度k、性能指数Zを示す。
Table 4 shows the type of metal or carbide, the type of fluoride, the Seebeck coefficient S, the electric conductivity σ, the thermal conductivity k, and the figure of merit Z.

【0065】[0065]

【表4】 [Table 4]

【0066】以上より酸化物セラミックよりなる熱電半
導体素子の製造方法において、焼成時の非酸化性雰囲気
が窒素よりなるものは素子中の金属相が窒化物相に変化
し易く、セラミック中に点在している窒化物相は金属相
に比べ還元力が低いため、このようにして製造された熱
電半導体素子はゼーベック係数は大きくなるが電気伝導
度が小さいため、性能指数がやや低下する。
As described above, in the method of manufacturing a thermoelectric semiconductor device made of an oxide ceramic, if the non-oxidizing atmosphere at the time of firing is nitrogen, the metal phase in the device is apt to change to a nitride phase, and it is scattered in the ceramic. Since the nitride phase has a lower reducing power than the metal phase, the Seebeck coefficient of the thermoelectric semiconductor device manufactured in this way is large, but the electric conductivity is small, so that the figure of merit is slightly lowered.

【0067】一方アルゴン中で焼成された試料は金属相
が窒化せず優れた特性をしめすため、より優れた特性を
得るためにはより好ましい。
On the other hand, the sample fired in argon exhibits more excellent characteristics without nitriding of the metal phase, which is more preferable for obtaining more excellent characteristics.

【0068】[0068]

【発明の効果】本発明は、ストロンチウムとチタンとを
主成分とした複合酸化物からなり、この複合酸化物中に
互いに連続しない還元性物質相が点在した酸化物セラミ
ック半導体を用いた熱電半導体素子であるため、従来の
Bi−Te系材料にほぼ匹敵する特性が得られ、かつ材
料として毒性の問題なく、従来のセラミックプロセスを
もちいて簡単に製造でき、また原料自体が安価であるた
め総合的なコストダウンが可能であるなどの利点を有し
ており、工業的に有用である。
INDUSTRIAL APPLICABILITY The present invention is a thermoelectric semiconductor using an oxide ceramic semiconductor which is composed of a composite oxide containing strontium and titanium as main components, and in which a reducing substance phase which is not continuous with each other is scattered. Since it is an element, it has characteristics that are almost comparable to those of conventional Bi-Te-based materials, has no toxicity problem as a material, can be easily manufactured using conventional ceramic processes, and the raw materials themselves are inexpensive. It is advantageous industrially because it has the advantage of cost reduction.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ストロンチウムとチタンとを主成分とした
複合酸化物からなり、前記複合酸化物中に互いに連続し
ない還元性物質相が点在した酸化物セラミック半導体を
用いることを特徴とする熱電半導体素子。
1. A thermoelectric semiconductor comprising an oxide ceramic semiconductor which is composed of a composite oxide containing strontium and titanium as main components, and in which a reducing substance phase which is not continuous with each other is scattered in the composite oxide. element.
【請求項2】ストロンチウムとチタンとを主成分とした
複合酸化物からなり、前記複合酸化物中に互いに連続し
ない還元性物質相が点在し、さらにリチウム、カルシウ
ム、バリウム、ストロンチウムよりなる群より選ばれた
少なくとも1種以上の金属フッ化物相が存在した酸化物
セラミック半導体を用いることを特徴とする熱電半導体
素子。
2. A composite oxide comprising strontium and titanium as main components, in which reducing material phases which are not continuous with each other are scattered in the composite oxide, and further selected from the group consisting of lithium, calcium, barium and strontium. A thermoelectric semiconductor device comprising an oxide ceramic semiconductor in which at least one selected metal fluoride phase is present.
【請求項3】還元性物質相が、チタン、ジルコニウム、
タンタル、ニオブよりなる群から選ばれた少なくとも1
種以上の成分を主成分とする金属相であることを特徴と
する、請求項1または2何れかに記載の熱電半導体素
子。
3. The reducing substance phase is titanium, zirconium,
At least one selected from the group consisting of tantalum and niobium
The thermoelectric semiconductor element according to claim 1, wherein the thermoelectric semiconductor element is a metal phase containing at least one kind of component as a main component.
【請求項4】還元性物質相が、TiC、ZrC、Nb
C、TaCよりなる群から選ばれた少なくとも1種以上
の成分を主成分とした金属炭化物相であることを特徴と
する、請求項1または2何れかに記載の熱電半導体素
子。
4. The reducing substance phase is TiC, ZrC, Nb.
The thermoelectric semiconductor device according to claim 1, which is a metal carbide phase containing at least one component selected from the group consisting of C and TaC as a main component.
【請求項5】ストロンチウムとチタンとを主成分とする
複合酸化物粉末と、還元性物質粉末とを混合し、非酸化
性雰囲気下で焼成して得た酸化物セラミック半導体に、
一対の電極を設けることを特徴とする熱電半導体素子の
製造方法。
5. An oxide ceramic semiconductor obtained by mixing a composite oxide powder containing strontium and titanium as main components with a reducing substance powder and firing the mixture in a non-oxidizing atmosphere.
A method of manufacturing a thermoelectric semiconductor device, comprising providing a pair of electrodes.
【請求項6】ストロンチウムとチタンとを主成分とした
複合酸化物粉末と、還元性物質粉末と、金属フッ化物粉
末とを混合し、非酸化性雰囲気下で焼成して得た酸化物
セラミック半導体に、一対の電極を設けることを特徴と
する熱電半導体素子の製造方法。
6. An oxide ceramic semiconductor obtained by mixing a composite oxide powder containing strontium and titanium as main components, a reducing substance powder, and a metal fluoride powder, and firing the mixture in a non-oxidizing atmosphere. A method of manufacturing a thermoelectric semiconductor element, comprising the step of: providing a pair of electrodes.
【請求項7】非酸化性雰囲気が、アルゴン雰囲気である
ことを特徴とする、請求項5または6何れかに記載の熱
電半導体素子の製造方法。
7. The method of manufacturing a thermoelectric semiconductor element according to claim 5, wherein the non-oxidizing atmosphere is an argon atmosphere.
JP3288330A 1991-11-05 1991-11-05 Thermoelectric semiconductor element and manufacture thereof Pending JPH05129667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3288330A JPH05129667A (en) 1991-11-05 1991-11-05 Thermoelectric semiconductor element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3288330A JPH05129667A (en) 1991-11-05 1991-11-05 Thermoelectric semiconductor element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH05129667A true JPH05129667A (en) 1993-05-25

Family

ID=17728794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3288330A Pending JPH05129667A (en) 1991-11-05 1991-11-05 Thermoelectric semiconductor element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH05129667A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093450A (en) * 2003-09-11 2005-04-07 Japan Science & Technology Agency Oxide-based thermoelectric conversion material
JP2009047969A (en) * 2007-08-21 2009-03-05 Seiko Epson Corp Projector and display apparatus
WO2011102503A1 (en) * 2010-02-22 2011-08-25 株式会社村田製作所 Thermoelectric conversion material and method for producing thermoelectric conversion material
JP2012195518A (en) * 2011-03-18 2012-10-11 National Institute Of Advanced Industrial & Technology Titanium composite oxide and production method therefor
JPWO2017163507A1 (en) * 2016-03-25 2018-11-08 株式会社村田製作所 Multilayer thermoelectric conversion element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093450A (en) * 2003-09-11 2005-04-07 Japan Science & Technology Agency Oxide-based thermoelectric conversion material
JP2009047969A (en) * 2007-08-21 2009-03-05 Seiko Epson Corp Projector and display apparatus
WO2011102503A1 (en) * 2010-02-22 2011-08-25 株式会社村田製作所 Thermoelectric conversion material and method for producing thermoelectric conversion material
JP5447642B2 (en) * 2010-02-22 2014-03-19 株式会社村田製作所 Thermoelectric conversion material and method for producing thermoelectric conversion material
US9525118B2 (en) 2010-02-22 2016-12-20 Murata Manufacturing Co., Ltd. Thermoelectric conversion material and method for producing thermoelectric conversion material
JP2012195518A (en) * 2011-03-18 2012-10-11 National Institute Of Advanced Industrial & Technology Titanium composite oxide and production method therefor
JPWO2017163507A1 (en) * 2016-03-25 2018-11-08 株式会社村田製作所 Multilayer thermoelectric conversion element

Similar Documents

Publication Publication Date Title
US5275001A (en) Thermoelectric cooling device
KR20060125789A (en) A method of preparation for the high performance thermoelectric material indium-cobalt-antimony
JP4503704B1 (en) Thermoelectric conversion material and thermoelectric conversion element
JP2008078608A (en) Thermoelectric conversion material and method for producing the same
JP4024294B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device provided with the element
JP2006062951A (en) Thermoelectric conversion material and its manufacturing method
JPH05129667A (en) Thermoelectric semiconductor element and manufacture thereof
JP4078414B2 (en) Lanthanum sulfide sintered body and manufacturing method thereof
JP2000012915A (en) Thermoelectric conversion material
JP6865951B2 (en) P-type thermoelectric semiconductor, its manufacturing method and thermoelectric power generation element using it
JPH08231223A (en) Thermoelectric conversing material
JP3922651B2 (en) Thermoelectric conversion material, thermoelectric conversion element using the same, and electronic device and cooling device provided with the element
JP3580778B2 (en) Thermoelectric conversion element and method of manufacturing the same
KR20200124224A (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and manufacturing method of thermoelectric conversion material
EP4215633A1 (en) Thermoelectric material, method for producing same, and thermoelectric power generation element
EP4212476A1 (en) Thermoelectric material, method for proudcing same, and thermoelectric power generation element
JPH09321347A (en) Thermoelectric conversion material and manufacture thereof
JP2808580B2 (en) Thermoelectric semiconductor materials
JP3088039B2 (en) Thermoelectric semiconductor element
Mahapatra et al. Dielectric, resistive and conduction characteristics of lead-free complex perovskite electro-ceramic:(Bi1/2K1/2)(Zn1/2W1/2) O3
JPH05198847A (en) Electronic cooling element
JPH1197751A (en) Thermoelectric conversion material and its manufacturing method
JP5448942B2 (en) Thermoelectric conversion material
Park et al. Effect of Al~ 2O~ 3 Addition on the Microstructure and the Electrical Stability of MnNiCoO~ 4 NTC Thermistors
JPH08242021A (en) Manufacturing method for thermoelectricity converting material