JP2003282934A - Rapid response photoelectric current multiplying device formed of mixed thin film of heterologous organic semiconductor - Google Patents

Rapid response photoelectric current multiplying device formed of mixed thin film of heterologous organic semiconductor

Info

Publication number
JP2003282934A
JP2003282934A JP2002083760A JP2002083760A JP2003282934A JP 2003282934 A JP2003282934 A JP 2003282934A JP 2002083760 A JP2002083760 A JP 2002083760A JP 2002083760 A JP2002083760 A JP 2002083760A JP 2003282934 A JP2003282934 A JP 2003282934A
Authority
JP
Japan
Prior art keywords
photocurrent
organic semiconductor
layer
multiplication
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002083760A
Other languages
Japanese (ja)
Inventor
Masahiro Hiramoto
昌宏 平本
Masaaki Yokoyama
正明 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002083760A priority Critical patent/JP2003282934A/en
Publication of JP2003282934A publication Critical patent/JP2003282934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase the optical response speed of multiplied photoelectric current. <P>SOLUTION: A photoelectric current multiplying layer 1 is an codeposition film added with 30 vol.% of copper phthalocyanine which has a thickness of 500 nm. The photoelectric current multiplying layer 1 is sandwiched between a translucent gold evaporation film electrode 2 and an ITO electrode 3 which are provided on both faces of the photoelectric current multiplying layer 1. When voltage is applied from a power supply 4 via both electrodes 2 and 3 and light is irradiated on the photoelectric current multiplying layer 1 via one electrode 2, the multiplied photoelectric current is caused to flow at a rapid optical response speed between the electrodes 2 and 3. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光電流増倍デバイ
スに関し、特に、光導電性有機半導体による光電流増倍
現象を利用した光電流増倍素子、及びさらに有機電界発
光(有機EL)層を備えて光−光変換光を得る光−光変
換素子を含む光電流増倍デバイスに関するものである。
光電流増倍素子は例えばフォトセンサーに利用可能であ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocurrent multiplying device, and more particularly to a photocurrent multiplying device utilizing the photocurrent multiplying phenomenon of a photoconductive organic semiconductor, and an organic electroluminescent (organic EL) layer. The present invention relates to a photocurrent multiplying device including a light-to-light conversion element for obtaining light-to-light converted light.
The photocurrent multiplying element can be used in, for example, a photo sensor.

【0002】[0002]

【従来の技術】従来、光導電性有機半導体による光電流
増倍現象を利用した光電流増倍デバイスは、有機/金属
界面における光電流の増幅効果を利用している。一般に
は、光電流増倍デバイスは、光導電性有機半導体層又は
それに有機電界発光層を積層したものを2枚の金属電極
ではさんだサンドイッチ型セル構造を持つ。その光導電
性有機半導体層としては精製により高純度化しただだ1
種類の有機半導体から成る単独蒸着薄膜を用いていた。
2. Description of the Related Art Conventionally, a photocurrent multiplying device utilizing a photocurrent multiplying phenomenon by a photoconductive organic semiconductor utilizes a photocurrent amplifying effect at an organic / metal interface. Generally, a photocurrent multiplying device has a sandwich type cell structure in which a photoconductive organic semiconductor layer or a laminate of an organic electroluminescent layer is sandwiched between two metal electrodes. The photoconductive organic semiconductor layer is highly purified by refining.
A single vapor-deposited thin film of a class of organic semiconductors was used.

【0003】具体的な例としては、ペリレン顔料の単独
蒸着薄膜を用いた光電流増倍デバイス(例えば、M. Hir
amoto, T. Imahigashi, and M. Yokoyama, Applied Phy
sicsLetters, 64, 187 (1994). )、キナクリドン顔料
の単独蒸着薄膜を用いた光電流増倍デバイス(M. Hiram
oto, S. Kawase, and M. Yokoyama, Japanese Journal
of Applied Physics, 35, L349 (1996). )、ナフタレ
ン誘導体の単独蒸着薄膜を用いた光電流増倍デバイス
(例えば、T. Katsume, M. Hiramoto, and M. Yokoyam
a, Applied Physics Letters, 69, 3722 (1996). )な
ど、いずれも光導電性有機半導体の単独蒸着薄膜を用い
た光電流増倍デバイスが報告されている。
As a concrete example, a photocurrent multiplying device (for example, M. Hir) using a vapor-deposited thin film of perylene pigment is used.
amoto, T. Imahigashi, and M. Yokoyama, Applied Phy
sicsLetters, 64, 187 (1994).), Photocurrent multiplication device using a single vapor-deposited thin film of quinacridone pigment (M. Hiram
oto, S. Kawase, and M. Yokoyama, Japanese Journal
of Applied Physics, 35, L349 (1996).), a photocurrent multiplication device using a single vapor-deposited thin film of a naphthalene derivative (for example, T. Katsume, M. Hiramoto, and M. Yokoyam).
a, Applied Physics Letters, 69, 3722 (1996).) and the like have all reported photocurrent multiplication devices using a single vapor-deposited thin film of a photoconductive organic semiconductor.

【0004】また、光導電性有機半導体からなる光電流
増倍層に有機電界発光膜を積層一体化して、光の波長変
換と光増幅を行なう光−光変換素子も報告されている
(T.Katsume, M.Hiramoto, and M. Yokoyama, Appl. Ph
ys. Lett., 64, 2546 (1994),及び M. Hiramoto, T.Kat
sume, and M. Yokoyama, Opt. Rev., 1, 82 (1994)を参
照)。この場合も、その光電流増倍層は光導電性有機半
導体の単独蒸着薄膜である。
Further, there has been reported a light-to-light conversion element for performing wavelength conversion and light amplification of light by integrating and integrating an organic electroluminescent film with a photocurrent multiplication layer made of a photoconductive organic semiconductor (T. Katsume, M. Hiramoto, and M. Yokoyama, Appl. Ph
ys. Lett., 64, 2546 (1994), and M. Hiramoto, T. Kat.
sume, and M. Yokoyama, Opt. Rev., 1, 82 (1994)). Again, the photocurrent multiplication layer is a single vapor deposited thin film of photoconductive organic semiconductor.

【0005】[0005]

【発明が解決しようとする課題】上述した従来の単独蒸
着薄膜による光電流増倍デバイスは、増倍率(入射フォ
トン数に対する素子を流れた増倍光電流による電子数の
比)が1よりも大きくアバランシェフォトダイオードの
ような、増幅型の光センシングデバイスに応用できる可
能性を有する。しかし、増倍光電流の光照射開始(光オ
ン)と光照射停止(光オフ)に対する応答に、秒オーダ
ーの時間を要し、すなわち、増倍光電流の光応答速度が
非常に遅いという欠点があり、光電流増倍デバイスをフ
ォトセンサーとして応用する際の障害となっていた。
In the above-described conventional photocurrent multiplication device using a single vapor-deposited thin film, the multiplication factor (the ratio of the number of electrons due to the multiplication photocurrent flowing through the device to the number of incident photons) is larger than 1. It has the potential to be applied to amplification type optical sensing devices such as avalanche photodiodes. However, it takes a time of the order of seconds for the response of the photomultiplied photocurrent to light irradiation start (light on) and light irradiation stop (light off), that is, the photoresponse speed of the multiplied photocurrent is very slow. Therefore, it has been an obstacle when applying the photocurrent multiplying device as a photosensor.

【0006】単独蒸着薄膜による光導電性有機半導体を
用いた光−光変換素子においても同じ問題がある。本発
明は、素子としては光電流増倍素子と光−光変換素子の
両方を含んだ光電流増倍デバイスを対象とするものであ
り、そのような光電流増倍デバイスにおける増倍光電流
の光応答速度を速めることを目的とするものである。
The same problem occurs in a light-to-light conversion device using a photoconductive organic semiconductor with a single vapor-deposited thin film. The present invention is directed to a photocurrent multiplying device including both a photocurrent multiplying element and a photo-photo conversion element as an element. The purpose is to increase the light response speed.

【0007】[0007]

【課題を解決するための手段】本発明の高速応答光電流
増倍デバイスは、光導電性有機半導体を含む光電流増倍
層に電圧を印加した状態でその光電流増倍層に光照射す
ることにより増倍された量子収率で光照射誘起電流を得
る光電流増倍デバイスにおいて、前記光電流増倍層の光
導電性有機半導体は電子輸送性有機半導体とホール輸送
性有機半導体の混合物であり、一方の有機半導体に対す
る他方の有機半導体の割合は20vol%から50vol%の
範囲にあることを特徴とするものである。本発明によれ
ば、増幅型フォトセンサーとして実用可能な高速応答光
電流増倍デバイスが実現できる。
In the fast response photocurrent multiplying device of the present invention, a photocurrent multiplying layer containing a photoconductive organic semiconductor is irradiated with light while a voltage is applied to the photocurrent multiplying layer. In the photocurrent multiplying device that obtains photoirradiation induced current with a quantum yield multiplied by the above, the photoconductive organic semiconductor of the photocurrent multiplying layer is a mixture of an electron transporting organic semiconductor and a hole transporting organic semiconductor. And the ratio of the other organic semiconductor to the one organic semiconductor is in the range of 20 vol% to 50 vol%. According to the present invention, it is possible to realize a high-speed response photocurrent multiplication device that can be practically used as an amplification type photosensor.

【0008】[0008]

【発明の実施の形態】電子輸送性有機半導体としては、
フラーレン(C60)、ナフタレン誘導体(NTCDA
(ナフタレンテトラカルボン酸無水物)など)、C7
0、ペリレン顔料とその誘導体(窒素原子に付いている
置換基の異なる誘導体は多種知られており、例えば、t
−BuPh−PTC,PhEt−PTCなどがあり、高
い光電変換能を持つIm−PTCもある。)などを挙げ
ることができる。これらの有機半導体の主なものを図2
に示す。
BEST MODE FOR CARRYING OUT THE INVENTION As an electron transporting organic semiconductor,
Fullerene (C60), naphthalene derivative (NTCDA
(Naphthalenetetracarboxylic anhydride), etc., C7
0, perylene pigments and their derivatives (various types of derivatives having different substituents on the nitrogen atom are known, for example, t
There are -BuPh-PTC, PhEt-PTC and the like, and also Im-PTC having a high photoelectric conversion ability. ) And the like. Figure 2 shows the main ones of these organic semiconductors.
Shown in.

【0009】ホール輸送性有機半導体としては、フタロ
シアニン顔料とその誘導体(中心に種々の金属をもつ銅
フタロシアニン(CuPc)などの金属フタロシアニン
(MPc)、金属をもたないH2Pcや、周りに種々の
置換基の付いたもの)、キナクリドン顔料(DQ)の
他、アントラセン、ペリレンなどのアセン類、トリフェ
ニル・ジアミン誘導体(TPD)などのホール輸送剤を
挙げることができる。これらの有機半導体の主なものも
図2に示す。
Examples of hole transporting organic semiconductors include phthalocyanine pigments and their derivatives (metal phthalocyanines (MPc) such as copper phthalocyanine (CuPc) having various metals at the center, H 2 Pc having no metal, and various other materials around it). A quinacridone pigment (DQ), an acene such as anthracene or perylene, and a hole transporting agent such as a triphenyl diamine derivative (TPD). The main ones of these organic semiconductors are also shown in FIG.

【0010】光電流増倍現象は結晶性の有機半導体膜の
みで観測されるため、一方の有機半導体に他方の有機半
導体を大量に添加することで、一方の有機半導体の結晶
性が失われてアモルファス膜になる場合は、増倍現象自
体が起こらなくなってしまう。製造方法の一例として共
蒸着を使用することができるが、共蒸着の場合、異種材
料を高濃度で添加すると、膜のアモルファス化がかなり
の率で起こることが分っている。例えば、一実施例で示
す系においては、C60にCuPcを30%添加しても
C60がアモルファス化せず、単独のC60と同程度の
増倍率が観測できた。しかし、この系でも50%添加
(C60:CuPc=50:50)すると増倍自体が起
こらなくなる。
Since the photocurrent multiplication phenomenon is observed only in the crystalline organic semiconductor film, the crystallinity of one organic semiconductor is lost by adding a large amount of the other organic semiconductor to one organic semiconductor. In the case of an amorphous film, the multiplication phenomenon itself does not occur. Co-evaporation can be used as an example of the manufacturing method, but in the case of co-evaporation, it has been found that when a high concentration of different materials is added, amorphization of the film occurs at a considerable rate. For example, in the system shown in one example, even if 30% of CuPc was added to C60, C60 did not become amorphous, and a multiplication factor similar to that of C60 alone could be observed. However, even in this system, when 50% is added (C60: CuPc = 50: 50), multiplication itself does not occur.

【0011】また、一方の有機半導体に対する他方の有
機半導体の添加量が少ない場合は高速化効果が不十分と
なる。例えば、一実施例で示す系においては、C60に
対するCuPc添加量が10%と少ない場合は、高速化
効果が不十分であった。
Further, when the amount of addition of one organic semiconductor to the other organic semiconductor is small, the speed-up effect becomes insufficient. For example, in the system shown in one example, when the amount of CuPc added to C60 was as small as 10%, the speed-up effect was insufficient.

【0012】したがって、一方の有機半導体に添加する
他方の有機半導体は、一方の有機半導体の結晶性を破壊
することなく、20〜50%の高濃度に添加できる材料
であることが必要である。本発明の効果は、通常、ドー
ピングと称されるような数%以下の微量の添加では観測
できない。
Therefore, the other organic semiconductor added to one organic semiconductor needs to be a material that can be added at a high concentration of 20 to 50% without destroying the crystallinity of the one organic semiconductor. The effect of the present invention cannot be generally observed with a very small amount of addition of several percent or less, which is called doping.

【0013】光電流増倍層の第1の形態は蒸着膜であ
る。蒸着膜は、電子輸送性有機半導体とホール輸送性有
機半導体を同時に蒸着する共蒸着技術や、電子輸送性有
機半導体とホール輸送性有機半導体を予め混合した有機
半導体を蒸着源に使用する方法によって作製することが
できる。蒸着膜の膜厚は0.3〜5.0μmが好まし
い。膜厚がこの範囲より薄くなるとピンポールが発生し
て信頼性が低下する。
The first form of the photocurrent multiplication layer is a vapor deposition film. The vapor-deposited film is produced by a co-evaporation technique in which an electron-transporting organic semiconductor and a hole-transporting organic semiconductor are simultaneously vapor-deposited or a method in which an organic semiconductor in which an electron-transporting organic semiconductor and a hole-transporting organic semiconductor are premixed is used as a vapor deposition source. can do. The thickness of the vapor deposition film is preferably 0.3 to 5.0 μm. When the film thickness is smaller than this range, pin poles are generated and reliability deteriorates.

【0014】光−光変換素子を構成する有機電界発光層
としては、アルミ・キノリノール錯体(Alq3)、3,
4,9,10−ペリレンテトラカルボキシリック3,4:9,10−ビ
ス(フェニルエチルイミド)などの蒸着膜を挙げること
ができる。有機電界発光層の膜厚は0.05〜0.1μm
が適当である。
As the organic electroluminescent layer constituting the light-to-light conversion element, aluminum-quinolinol complex (Alq 3 ), 3,
Examples include vapor deposited films of 4,9,10-perylenetetracarboxylic 3,4: 9,10-bis (phenylethylimide). The thickness of the organic electroluminescent layer is 0.05 to 0.1 μm.
Is appropriate.

【0015】光−光変換素子では有機電界発光層と電極
との間にキャリア輸送層(ホール輸送層又は電子輸送
層)が設けられることがある。そのキャリア輸送層とし
ては、N,N−ジフェニル−N,N−ビス(4−メチルフェニ
ル)−4,4−ジアミンなどのトリフェニル・ジアミン誘
導体(TPD)、3,5−ジメチル−3,5−ジ三級ブチル−
4,4−ジフェノキノン、2−(4−ビフェニル)−5−
(4−三級ブチルフェニル)−1,3,4−オキサジアゾー
ル、N,N,N,N−テトラ−(m−トルイル)−m−フェニ
レンジアミンなどの蒸着膜を挙げることができる。キャ
リア輸送層の膜厚は0.05〜0.1μmが適当である。
In the light-to-light conversion element, a carrier transport layer (hole transport layer or electron transport layer) may be provided between the organic electroluminescent layer and the electrode. As the carrier transport layer, triphenyl diamine derivative (TPD) such as N, N-diphenyl-N, N-bis (4-methylphenyl) -4,4-diamine, 3,5-dimethyl-3,5 -Ditertiary butyl-
4,4-Diphenoquinone, 2- (4-biphenyl) -5-
Examples include vapor deposition films of (4-tertiary butylphenyl) -1,3,4-oxadiazole, N, N, N, N-tetra- (m-toluyl) -m-phenylenediamine and the like. The suitable thickness of the carrier transport layer is 0.05 to 0.1 μm.

【0016】電極として光透過性を要求される側に設け
られる電極膜としては、ITO(酸化インジウム錫)透
明電極の他、金その他の金属の蒸着膜やスパッタリング
膜を用いることができる。電極膜はガラス基板に形成し
てもよく、光電流増倍層又は有機電界発光層との積層体
に蒸着法やスパッタリング法により形成してもよい。
As the electrode film provided on the side where light transparency is required as the electrode, a vapor deposition film of gold or other metal or a sputtering film can be used in addition to an ITO (indium tin oxide) transparent electrode. The electrode film may be formed on a glass substrate, or may be formed on a laminate with a photocurrent multiplication layer or an organic electroluminescent layer by a vapor deposition method or a sputtering method.

【0017】[0017]

【実施例】次に、本発明について図面を参照して説明す
る。本実施例では、C60単独蒸着膜と、C60に銅フ
タロシアニン(CuPc)を30vol%添加したC60
−CuPc共蒸着膜(C60:CuPc=70:30)
の特性を比較した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. In this example, a single vapor-deposited film of C60 and C60 obtained by adding 30 vol% of copper phthalocyanine (CuPc) to C60.
-CuPc co-deposited film (C60: CuPc = 70: 30)
The characteristics were compared.

【0018】まず、図2に本発明が対象とする高速応答
光電流増倍デバイスのセルの断面図を示す。1は光電流
増倍層であり、この実施例ではC60に銅フタロシアニ
ンを30vol%添加した共蒸着膜である。比較例として
光電流増倍層1をC60単独蒸着膜としたものも作製し
た。光電流増倍層1の膜厚は500nmである。光電流
増倍層1はその両面に設けられた金属電極2,3でサン
ドイッチ状に挟まれされている。電極3は透明ガラス基
板5上に蒸着されたものである。電極2,3のうち少な
くとも入射側の電極膜は入射光に対して透明又は半透明
である。ここでは、電極2として透明電極として動作す
るITO(indium tin oxide)膜、電極2を半透明金蒸
着膜(膜厚20nm)とした。4はセルに電圧を印加す
るための電源である。図3にC60と銅フタロシアニン
の化学構造式を示す。
First, FIG. 2 shows a sectional view of a cell of a high-speed response photocurrent multiplying device targeted by the present invention. Reference numeral 1 is a photocurrent multiplying layer, which is a co-deposited film in which 30 vol% of copper phthalocyanine is added to C60 in this embodiment. As a comparative example, one in which the photocurrent multiplication layer 1 was a C60 single vapor deposition film was also prepared. The film thickness of the photocurrent multiplication layer 1 is 500 nm. The photocurrent multiplication layer 1 is sandwiched between the metal electrodes 2 and 3 provided on both surfaces thereof. The electrode 3 is vapor-deposited on the transparent glass substrate 5. At least the electrode film on the incident side of the electrodes 2 and 3 is transparent or semitransparent to incident light. Here, an ITO (indium tin oxide) film that operates as a transparent electrode is used as the electrode 2, and a semi-transparent gold vapor deposition film (film thickness 20 nm) is used as the electrode 2. Reference numeral 4 is a power source for applying a voltage to the cell. FIG. 3 shows the chemical structural formulas of C60 and copper phthalocyanine.

【0019】本発明を光−光変換素子に適用する場合
は、光電流増倍層1に有機電界発光層が積層一体化され
る。セル特性評価は、金電極2がITO電極3に対して
マイナスになるように電圧印加し、金電極2側から56
0nmの単色光照射を行い、増倍光電流の光応答特性、
増倍率(入射フォトン数に対するセルを流れた増倍光電
流による電子数の比)の印加電圧依存性、増倍光電流の
照射光強度依存性などを測定した。
When the present invention is applied to a light-to-light conversion element, an organic electroluminescent layer is laminated and integrated on the photocurrent multiplication layer 1. The cell characteristics are evaluated by applying a voltage so that the gold electrode 2 becomes negative with respect to the ITO electrode 3,
0nm monochromatic light irradiation, photo-response characteristics of multiplication photocurrent,
The applied voltage dependence of the multiplication factor (the ratio of the number of electrons due to the multiplied photocurrent flowing through the cell to the number of incident photons) and the dependence of the multiplied photocurrent on the irradiation light intensity were measured.

【0020】図4(a)に比較例としてC60単独蒸着
膜を用いて作製したセルにおける増倍光電流の応答プロ
ファイル、(b)に一実施例としてC60−CuPc共
蒸着膜(C60:CuPc=70:30)を用いて作製
したセルにおける増倍光電流の応答プロファイルを示
す。横軸は時間(秒)、縦軸は電流密度(Current dens
ity)である。測定条件は印加電圧10V、Au電極2
をITO電極3に対してマイナスに電圧印加、560n
mの単色光をAu電極2側から照射、光強度30μW/
cm2で、両セルにおいて等しくなるようにした。
FIG. 4A shows a response profile of a multiplication photocurrent in a cell prepared by using a C60 single vapor deposition film as a comparative example, and FIG. 4B shows a C60-CuPc co-evaporation film (C60: CuPc =) as an example. 70:30) shows a response profile of a multiplied photocurrent in a cell manufactured by using (70:30). The horizontal axis represents time (seconds) and the vertical axis represents current density (Current dens
ity). The measurement conditions were an applied voltage of 10 V and Au electrode 2
Is applied to the ITO electrode 3 with a negative voltage, 560n
m monochromatic light is radiated from the Au electrode 2 side, light intensity 30 μW /
It was made to be equal in both cells in cm 2 .

【0021】増倍率は前者では10倍、後者では15倍
であり、これはほぼ同じであるとみてよい。この条件で
増倍はAu電極2とC60の光電流増倍層1との界面で
起こっていることを確認してある。
The multiplication factor is 10 times in the former case and 15 times in the latter case, which can be considered to be almost the same. It has been confirmed that multiplication under this condition occurs at the interface between the Au electrode 2 and the photocurrent multiplication layer 1 of C60.

【0022】図4の2つの結果を比べると、光電流増倍
層1としてC60単独膜を使用した場合(a)に比べ
て、C60−CuPc共蒸着膜を使用した方が明らかに
応答が速くなっていることが分かる。
Comparing the two results of FIG. 4, the response is clearly faster when the C60-CuPc co-deposited film is used as compared with the case where the C60 single film is used as the photocurrent multiplication layer 1 (a). You can see that

【0023】光オン時の90%応答時間(増倍光電流の
飽和値の90%に達するのに要する時間)は、C60単
独膜の光電流増倍層では1秒であるのに対して、C60
−CuPc共蒸着膜の光電流増倍層では、本測定システ
ムの時間分解能の限界(応答プロファイルの各点の時間
間隔)である0.2秒以下で立ち上がっており、ミリ秒
(ms)オーダーの応答をしていることが分った。
The 90% response time (time required to reach 90% of the saturation value of the multiplication photocurrent) when the light is turned on is 1 second in the photocurrent multiplication layer of the C60 single film, whereas C60
In the photocurrent multiplication layer of the -CuPc co-deposited film, the photocurrent multiplication layer rises at the time resolution limit of this measurement system (the time interval between each point of the response profile) of 0.2 seconds or less, and is in the order of milliseconds (ms). I found that I was responding.

【0024】また、光オフ時の90%応答時間(光照射
前の電流レベルに90%まで復帰するのに要する時間)
は、C60単独膜の光電流増倍層では13秒であるのに
対して、C60−CuPc共蒸着膜の光電流増倍層で
は、本測定システムの時間分解能の限界(応答プロファ
イルの各点の時間間隔)である0.2秒以下である。以
上のように、増倍光電流の光オン、光オフ双方の応答
を、今回初めてミリ秒オーダーにすることに成功した。
90% response time when light is off (time required to return to 90% of current level before light irradiation)
Is 13 seconds in the photocurrent multiplication layer of the C60 single film, whereas in the photocurrent multiplication layer of the C60-CuPc co-deposited film, the time resolution limit of the measurement system (at each point of the response profile The time interval is 0.2 seconds or less. As described above, we succeeded in making the response of the photomultiplied photocurrent both on and off for the first time to the millisecond order.

【0025】図5の(a)に、C60−CuPc共蒸着
膜(C60:CuPc=70:30)を用いたセルの応
答速度を、オシロスコープを用いて、より高い時間分解
能で測定した結果を示す。光源には、波長560nmの
LEDを用い、光のオン/オフをファンクションジェネ
レーターで制御している。なお、図5中の(b)は、照
射した周期光パルス(パルス幅:100ms)の形を示
している。印加電圧14V、照射光強度250μW/c
2である。増倍率は15倍である。立ち上がり応答速
度は8ms、立ち下がり応答速度は15msの高速であ
ることが分った。よって、40Hz以上の光パルスを用
いた動作が可能である。
FIG. 5A shows the result of measuring the response speed of a cell using a C60-CuPc co-deposited film (C60: CuPc = 70: 30) with a higher time resolution using an oscilloscope. . An LED having a wavelength of 560 nm is used as a light source, and ON / OFF of light is controlled by a function generator. Note that (b) in FIG. 5 shows the shape of the irradiated periodic optical pulse (pulse width: 100 ms). Applied voltage 14V, irradiation light intensity 250μW / c
m 2 . The multiplication factor is 15 times. It was found that the rising response speed was 8 ms and the falling response speed was 15 ms. Therefore, an operation using an optical pulse of 40 Hz or higher is possible.

【0026】応答プロファイルは非常に再現性がよく、
光をオフすると、光照射前の暗電流レベルに再現良く復
帰している。なお、この測定の分解能(プロファイルの
各点の時間間隔)は100μsであるが、増倍光電流は
LEDの立ち上がり応答に完全に追随して、100μs
(1点の時間間隔)以内で立ち上がっていることが分か
る。以上のようにC60にCuPcを30%添加するこ
とで、増倍率を低下させることなく、増倍光電流の応答
速度を約1000倍高速化することができた。
The response profile is very reproducible,
When the light was turned off, it returned to the dark current level before light irradiation with good reproduction. The resolution of this measurement (time interval of each point of the profile) is 100 μs, but the multiplied photocurrent completely follows the rising response of the LED and is 100 μs.
It can be seen that it has started within (one time interval). As described above, by adding 30% of CuPc to C60, the response speed of the multiplication photocurrent could be increased about 1000 times without lowering the multiplication factor.

【0027】図6に、C60−CuPc共蒸着膜(C6
0:CuPc=70:30)を用いたセルの応答速度の
90%立ち上がり応答速度(Rise time(ミリ秒))と
増倍率(Multiplication rate)の印加電圧(Applied v
oltage(V))依存性を示す。白丸が応答速度、黒角が
増倍率を表す。光強度は250μW/cm2である。印
加電圧が高くなると、増倍率は増加して30倍近くにな
り、同時に応答速度も急激に速くなっていくことが分か
る。印加電圧20Vにおいて、90%応答速度3ミリ秒
という過去最速の応答を観測することができた。
FIG. 6 shows a C60-CuPc co-deposited film (C6
0: CuPc = 70: 30) 90% of the response speed of the cell using Rise time (Rise time (milliseconds)) and the applied voltage (Applied v) of the multiplication rate
oltage (V)) dependence is shown. White circles represent the response speed, and black corners represent the multiplication factor. The light intensity is 250 μW / cm 2 . It can be seen that as the applied voltage increases, the multiplication factor increases to nearly 30 times, and at the same time, the response speed also rapidly increases. At an applied voltage of 20 V, the fastest response of 90% response speed of 3 milliseconds could be observed.

【0028】この印加電圧20Vのときの応答プロファ
イルを図7に示す。横軸は時間(ミリ秒)、縦軸は電流
(μA)である。90%応答速度が3ミリ秒であること
が明瞭に読み取れる。図8に、印加電圧11Vにおい
て、照射光強度を15から250μW/cm2まで変化
させたときの立ち上がり応答プロファイルを示す。横軸
は時間(ミリ秒)、縦軸は電流(μA)である。
The response profile when the applied voltage is 20 V is shown in FIG. The horizontal axis represents time (milliseconds), and the vertical axis represents current (μA). It can be clearly read that the 90% response speed is 3 milliseconds. FIG. 8 shows a rising response profile when the irradiation light intensity is changed from 15 to 250 μW / cm 2 at an applied voltage of 11V. The horizontal axis represents time (milliseconds), and the vertical axis represents current (μA).

【0029】図9に、図8の結果を、90%立ち上がり
応答速度と増倍光電流量の照射光強度依存性としてまと
めた。横軸は照射光強度(Light intensity(μW/c
2))、左側の縦軸は立ち上がり応答速度(Rise time
(ミリ秒))、右側の縦軸は増倍光電流量(Multiplied
photocurrent(μA))である。白丸が立ち上がり応
答速度、黒角が増倍光電流量を表す。照射光強度を25
0から15μW/cm 2まで弱くしても、90%応答速
度は10から15msになっただけでほとんど遅くなら
なかった。また、増倍光電流量は光強度に対してほぼ比
例関係であることが分った。
In FIG. 9, the result of FIG. 8 is increased by 90%.
The dependence of the response speed and the multiplication photoelectric flow rate on the irradiation light intensity is summarized as follows.
I have The horizontal axis is the light intensity (μW / c
m2)), The vertical axis on the left is the rise response speed (Rise time
(Milliseconds)), the vertical axis on the right is the multiplication photoelectric flow rate (Multiplied
 photocurrent (μA)). White circle stands up
The response speed and the black angle represent the multiplication photoelectric flow rate. Irradiation light intensity is 25
0 to 15 μW / cm 290% response speed even if weakened
If it ’s almost 10 to 15 ms and it ’s almost late,
There wasn't. Also, the multiplication photoelectric flow rate is almost proportional to the light intensity.
I found that it was an example relationship.

【0030】本実施例のC60−CuPc共蒸着膜(C
60:CuPc=70:30)を用いたセルは、光オン
と光オフの両方に対するミリ秒に達する応答速度、光強
度に対して増倍光電流量が比例関係にあること、暗電流
レベルが安定で増倍光電流応答が非常に再現性が良いこ
となど、光センシングに非常に適した性能を有してい
る。この素子性能は、光電流増倍現象を利用した増幅型
フォトセンサーの可能性を実証したものといえる。
The C60-CuPc co-deposited film (C
The cell using (60: CuPc = 70: 30) has a response speed reaching millisecond for both light-on and light-off, the multiplication photoelectric flow is proportional to the light intensity, and the dark current level is stable. Therefore, the photocurrent response has very good reproducibility and is very suitable for optical sensing. It can be said that this element performance demonstrates the possibility of an amplification type photo sensor utilizing the photocurrent multiplication phenomenon.

【0031】なお、現在の増倍率は30倍程度である
が、C60単独蒸着膜を用いたセルにおいては、光電流
増倍層の膜厚を現在の500nmから350nmに減ら
すことで、1000倍程度に増大できることを確認して
おり、C60−CuPc共蒸着膜を用いたセルの場合も
1000倍程度の増倍率は実現できる。
The multiplication factor at present is about 30 times, but in the cell using the C60 single vapor deposition film, by reducing the film thickness of the photocurrent multiplication layer from the current 500 nm to 350 nm, about 1000 times. It has been confirmed that the multiplication factor can be increased, and a multiplication factor of about 1000 times can be realized even in the case of a cell using a C60-CuPc co-deposited film.

【0032】図10に、増倍時のC60/Au界面のエ
ネルギー構造を示す。増倍光電流は、C60/Au界面
に光生成ホールが蓄積して界面に高電界が集中すること
で、Au電極からC60層へ電子が大量にトンネル注入
されることで起こる。
FIG. 10 shows the energy structure of the C60 / Au interface during multiplication. The multiplying photocurrent is caused by a large amount of electrons being tunnel-injected from the Au electrode into the C60 layer by accumulating photogenerated holes at the C60 / Au interface and concentrating a high electric field at the interface.

【0033】図11に、C60−CuPc/Au界面の
模式図を示す。蒸着Au電極は、20nmの超微粒子の
集合体であることが分かっており、C60−CuPc共
蒸着膜とAu粒子との間に空隙がある場所に光生成ホー
ルが蓄積して、界面に電界集中し、電極からの電子注入
を引き起こす(構造トラップモデル)。ここで、CuP
cが30%というような高濃度で添加された場合、C6
0膜内にCuPcのつながったルートができる。
FIG. 11 shows a schematic view of the C60-CuPc / Au interface. It is known that the vapor-deposited Au electrode is an aggregate of ultra-fine particles of 20 nm, and photo-generated holes are accumulated in a space between the C60-CuPc co-deposited film and the Au particles to concentrate the electric field on the interface. And cause electron injection from the electrode (structure trap model). Where CuP
When c is added at a high concentration such as 30%, C6
A CuPc connected route is formed in the 0 film.

【0034】図10、図11に基づいて、高速応答化の
原因について述べる。まず、光オン時の立ち上がりにつ
いては、光キャリア生成量子収率(2次的な増倍電子注
入が起こる前の、通常の(1次)光電流の量子収率)
は、図12に示されるように、C60とCuPcを混合
することで著しく増感されており、印加電圧6Vにおい
て、単独C60では20%であるのに対して、C60−
CuPc共蒸着膜(C60:CuPc=70:30)で
は60%に達していることが実測できている。なお、図
12で、横軸は印加電圧(V)、縦軸は1次光電流の量
子収率(Quantumefficiency of primary photocurrent
(%))である。そのため、実施例の素子を動作させて
いる20Vに近い高電圧領域では100%の上限に近い
と推定できる。また、ホール輸送性のCuPcは、光生
成したホールを効率よくC60−CuPc共蒸着膜/A
u界面まで輸送するルートを提供する(図11)。これ
ら2つの効果によって、C60−CuPc共蒸着膜/A
u界面に供給される光生成ホールの数が増えたため、電
子注入を引き起こすに充分なホールが非常に速く蓄積
し、その結果、図5に示したように、増倍光電流は10
0μs以内で立ち上がったと考えられる。
The cause of the high-speed response will be described with reference to FIGS. First, regarding the rise at the time of turning on the light, the photocarrier generation quantum yield (the normal (primary) photocurrent quantum yield before secondary multiplication electron injection occurs)
12 is remarkably sensitized by mixing C60 and CuPc as shown in FIG. 12, and is 20% with C60 alone at an applied voltage of 6 V, whereas C60-
It has been actually measured that the CuPc co-deposited film (C60: CuPc = 70: 30) has reached 60%. In FIG. 12, the horizontal axis represents applied voltage (V), and the vertical axis represents Quantum efficiency of primary photocurrent.
(%)). Therefore, it can be estimated that it is close to the upper limit of 100% in the high voltage region close to 20 V in which the device of the example is operated. Also, CuPc, which has a hole-transporting property, can efficiently generate photogenerated holes in a C60-CuPc co-deposited film / A.
Provide a route to transport to the u interface (Figure 11). Due to these two effects, C60-CuPc co-deposited film / A
Due to the increased number of photogenerated holes supplied to the u interface, enough holes accumulate enough to cause electron injection, resulting in a multiplication photocurrent of 10 as shown in FIG.
It is considered that it started up within 0 μs.

【0035】一方、光オフ時の立ち下がりの高速化を説
明するには、C60−CuPc共蒸着膜/Au界面に蓄
積したホールが、30%程度のCuPc添加によって新
たにできたCuPcルートを通って素早くAu電極に解
放されるようになった、と考えることができる(図1
1)。
On the other hand, to explain the speeding up of the fall at the time of turning off the light, the holes accumulated at the C60-CuPc co-deposited film / Au interface pass through the CuPc route newly formed by adding about 30% CuPc. It can be considered that the Au electrode was quickly released to the Au electrode (Fig. 1
1).

【0036】以上のことから、3msに達する立ち上が
りの高速化は、CuPc添加によって、界面の構造トラ
ップへのホールの蓄積速度と、構造トラップからのホー
ルの解放速度の両方が大きくなったため、両者の平衡が
非常に速く(ミリ秒のオーダーで)達成されるようにな
り、界面のホールの蓄積量がミリ秒のオーダーで一定の
値となったため、(ホール蓄積プロセスと解放プロセス
との間で平衡が達成されればトラップに存在するホール
数は一定の値となる)、界面のホール数で決まる増倍光
電流がミリ秒のオーダーで飽和値に達した、と考えれば
合理的に説明できる。逆に、これまでの光応答速度の非
常に遅いデバイスにおいては、有機/金属界面の構造ト
ラップへのホール供給速度及び解放速度の両方が非常に
遅かったために、増倍光電流が飽和一定値に達するのに
数十秒もかかっていたと云える。
From the above, the speeding up of the rising up to 3 ms increases both the accumulation rate of holes in the structure trap at the interface and the release rate of holes from the structure trap due to the addition of CuPc. Equilibrium is now achieved very quickly (on the order of milliseconds), and the amount of hole accumulation at the interface is constant on the order of milliseconds, so (equilibrium between hole accumulation and release processes is If the above condition is achieved, the number of holes existing in the trap will be constant), and it can be rationalized if the multiplication photocurrent determined by the number of holes at the interface reaches a saturation value in the order of milliseconds. On the contrary, in the device with a very slow photo-response speed, the multiplication photocurrent reaches a constant saturation value because both the hole supply rate and the release rate to the structure trap at the organic / metal interface are very slow. It can be said that it took tens of seconds to reach it.

【0037】[0037]

【発明の効果】以上説明したように本発明は、光導電性
有機半導体を含む光電流増倍層に電圧を印加した状態で
その光電流増倍層に光照射することにより増倍された量
子収率で光照射誘起電流を得る光電流増倍デバイスにお
いて、光電流増倍層の光導電性有機半導体は電子輸送性
有機半導体とホール輸送性有機半導体の混合物であり、
一方の有機半導体に対する他方の有機半導体の割合は2
0vol%から50vol%の範囲にあるようにしたので、増
倍光電流の光応答速度を向上させることができ、実用的
な増幅型フォトセンサーとして応用可能な光電流増倍デ
バイスが実現できる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a quantum is multiplied by irradiating a photocurrent multiplication layer containing a photoconductive organic semiconductor with light while applying a voltage to the photocurrent multiplication layer. In a photocurrent multiplication device that obtains photoirradiation-induced current at a yield, the photoconductive organic semiconductor of the photocurrent multiplication layer is a mixture of an electron transporting organic semiconductor and a hole transporting organic semiconductor,
The ratio of one organic semiconductor to the other organic semiconductor is 2
Since it is set in the range of 0 vol% to 50 vol%, the photoresponse speed of the multiplied photocurrent can be improved, and a photocurrent multiplication device applicable as a practical amplification type photosensor can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明で使用する有機半導体のいくつを示す化
学式である。
FIG. 1 is a chemical formula showing some of the organic semiconductors used in the present invention.

【図2】本発明の高速応答光電流増倍デバイスの一実施
例を示す断面図である。
FIG. 2 is a cross-sectional view showing one embodiment of the fast response photocurrent multiplying device of the present invention.

【図3】C60とCuPcの化学式である。FIG. 3 is a chemical formula of C60 and CuPc.

【図4】(a)は比較例としてC60単独蒸着膜を用い
て作製したセルにおける増倍光電流の応答プロファイ
ル、(b)はC60−CuPc共蒸着膜(C60:Cu
Pc=70:30)を用いて作製した一実施例のセルに
おける増倍光電流の応答プロファイルを示す図である。
4A is a response profile of a multiplication photocurrent in a cell prepared by using a C60 single vapor deposition film as a comparative example, and FIG. 4B is a C60-CuPc co-evaporation film (C60: Cu).
It is a figure which shows the response profile of the multiplication photocurrent in the cell of one Example produced using Pc = 70: 30.

【図5】(a)はC60−CuPc共蒸着膜(C60:
CuPc=70:30)を用いて作製した同実施例のセ
ルのより高い時間分解能で測定した応答プロファイル、
(b)は照射した周期光パルス光の波形である。
FIG. 5A is a C60-CuPc co-deposited film (C60:
CuPc = 70: 30), the response profile of the cell of the same example manufactured with higher time resolution,
(B) is the waveform of the irradiated periodic light pulse light.

【図6】同実施例のセルの90%立ち上がり応答速度と
増倍率の印加電圧依存性を示す図である。
FIG. 6 is a diagram showing applied voltage dependency of 90% rising response speed and multiplication factor of the cell of the example.

【図7】同実施例のセルで印加電圧20Vで観測された
90%応答の応答プロファイルを示す図である。
FIG. 7 is a diagram showing a response profile of 90% response observed at an applied voltage of 20 V in the cell of the example.

【図8】同実施例のセルで照射光強度を15から250
μW/cm2まで変化させたときの立ち上がり応答プロ
ファイルを示す図である。
FIG. 8 shows an irradiation light intensity of 15 to 250 in the cell of the embodiment.
It is a figure which shows the rising response profile when changing to (micro | micron | mu) W / cm < 2 >.

【図9】同実施例のセルで立ち上がり応答速度と増倍光
電流量の照射光強度依存性を示す図である。
FIG. 9 is a diagram showing irradiation light intensity dependence of rising response speed and multiplication photoelectric flow rate in the cell of the example.

【図10】同実施例における増倍時のC60/Au界面
のエネルギー構造図である。
FIG. 10 is an energy structure diagram of a C60 / Au interface at the time of multiplication in the example.

【図11】同実施例におけるC60−CuPc共蒸着膜
/Au界面の模式図である。
FIG. 11 is a schematic view of a C60-CuPc co-deposited film / Au interface in the example.

【図12】C60−CuPc共蒸着膜を用いて作製した
セルとC60単独蒸着膜を用いて作製したセルにおける
1次光キャリア生成量子収率の印加電圧依存性を示す図
である。
FIG. 12 is a diagram showing an applied voltage dependency of a primary photocarrier generation quantum yield in a cell manufactured using a C60-CuPc co-deposited film and a cell manufactured using a C60 single-deposited film.

【符号の説明】[Explanation of symbols]

1 光電流増倍層 2 金蒸着膜電極 3 ITO電極 4 電源 1 Photocurrent multiplication layer 2 Gold evaporated film electrode 3 ITO electrode 4 power supply

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光導電性有機半導体を含む光電流増倍層
に電圧を印加した状態でその光電流増倍層に光照射する
ことにより増倍された量子収率で光照射誘起電流を得る
光電流増倍デバイスにおいて、 前記光電流増倍層の光導電性有機半導体は電子輸送性有
機半導体とホール輸送性有機半導体の混合物であり、一
方の有機半導体に対する他方の有機半導体の割合は20
vol%から50vol%の範囲にあることを特徴とする高速
応答光電流増倍デハイス。
1. A photoirradiation induced current is obtained with a multiplied quantum yield by irradiating the photocurrent multiplication layer with light while applying a voltage to the photocurrent multiplication layer containing a photoconductive organic semiconductor. In the photocurrent multiplying device, the photoconductive organic semiconductor of the photocurrent multiplying layer is a mixture of an electron transporting organic semiconductor and a hole transporting organic semiconductor, and the ratio of one organic semiconductor to the other organic semiconductor is 20.
High-speed response photocurrent multiplication deheiss characterized by being in the range of vol% to 50 vol%.
【請求項2】 前記光電流増倍層には有機電界発光層が
積層一体化されており、前記光電流増倍層に光照射する
ことにより、前記有機電界発光層から光−光変換光を得
る請求項1に記載の高速応答光電流増倍デハイス。
2. An organic electroluminescent layer is integrally laminated on the photocurrent multiplying layer, and the photoelectron multiplying layer is irradiated with light to emit light-to-light converted light from the organic electroluminescent layer. A high-speed response photocurrent multiplication device according to claim 1.
【請求項3】 前記光電流増倍層は前記電子輸送性有機
半導体と前記ホール輸送性有機半導体の共蒸着膜である
請求項1又は2に記載の高速応答光電流増倍デバイス。
3. The fast response photocurrent multiplying device according to claim 1, wherein the photocurrent multiplying layer is a co-deposited film of the electron transporting organic semiconductor and the hole transporting organic semiconductor.
【請求項4】 前記電子輸送性有機半導体はフラーレ
ン、ナフタレン誘導体、C70、並びにペリレン顔料及
びその誘導体からなる群から選ばれた少なくとも1種で
ある請求項1から3のいずれかに記載の高速応答光電流
増倍デバイス。
4. The fast response according to claim 1, wherein the electron transporting organic semiconductor is at least one selected from the group consisting of fullerenes, naphthalene derivatives, C70, and perylene pigments and their derivatives. Photocurrent multiplication device.
【請求項5】 前記ホール輸送性有機半導体はフタロシ
アニン顔料及びその誘導体、キナクリドン顔料、アセン
類、並びにホール輸送剤からなる群から選ばれた少なく
とも1種である請求項1から4のいずれかに記載の高速
応答光電流増倍デバイス。
5. The hole transporting organic semiconductor is at least one selected from the group consisting of a phthalocyanine pigment and its derivative, a quinacridone pigment, an acene, and a hole transporting agent. Fast response photocurrent multiplication device.
【請求項6】 前記光電流増倍層はフラーレンと銅フタ
ロシアニンとの共蒸着薄膜であり、フラーレンに対して
銅フタロシアニンを20vol%から50vol%の範囲で添
加している請求項1又は2に記載の高速応答光電流増倍
デバイス。
6. The photocurrent multiplication layer is a co-deposited thin film of fullerene and copper phthalocyanine, and copper phthalocyanine is added to fullerene in a range of 20 vol% to 50 vol%. Fast response photocurrent multiplication device.
JP2002083760A 2002-03-25 2002-03-25 Rapid response photoelectric current multiplying device formed of mixed thin film of heterologous organic semiconductor Pending JP2003282934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002083760A JP2003282934A (en) 2002-03-25 2002-03-25 Rapid response photoelectric current multiplying device formed of mixed thin film of heterologous organic semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002083760A JP2003282934A (en) 2002-03-25 2002-03-25 Rapid response photoelectric current multiplying device formed of mixed thin film of heterologous organic semiconductor

Publications (1)

Publication Number Publication Date
JP2003282934A true JP2003282934A (en) 2003-10-03

Family

ID=29231394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002083760A Pending JP2003282934A (en) 2002-03-25 2002-03-25 Rapid response photoelectric current multiplying device formed of mixed thin film of heterologous organic semiconductor

Country Status (1)

Country Link
JP (1) JP2003282934A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060012A1 (en) * 2003-12-17 2005-06-30 Sumitomo Chemical Company, Limited Organic light-light conversion device
KR100769586B1 (en) 2006-04-14 2007-10-23 한양대학교 산학협력단 Organic electroluminescent element and method for manufacturing the same
JP4835158B2 (en) * 2003-12-18 2011-12-14 富士電機株式会社 Switching element
US8226854B2 (en) 2007-11-30 2012-07-24 Fujifilm Corporation Photoelectric conversion device, imaging device and photosensor
JP2012219355A (en) * 2011-04-12 2012-11-12 National Institutes Of Natural Sciences Film formation method by vacuum deposition, film formation system by vacuum deposition, and crystalline vacuum deposition film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222668A (en) * 1986-03-25 1987-09-30 Toshiba Corp Organic thin-film element
JPH05129643A (en) * 1991-10-30 1993-05-25 Ricoh Co Ltd Organic photovoltaic device
JPH05335614A (en) * 1992-06-03 1993-12-17 Idemitsu Kosan Co Ltd Photoelectric conversion element
JPH06275864A (en) * 1993-03-24 1994-09-30 Mitsui Toatsu Chem Inc Light-to-light conversion element
JPH06326338A (en) * 1993-05-13 1994-11-25 Matsushita Electric Ind Co Ltd Photoelectric conversion element and its manufacture
JPH09508504A (en) * 1994-11-23 1997-08-26 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Light-responsive device
JP2002502129A (en) * 1998-02-02 2002-01-22 ユニアックス コーポレイション Organic diodes with switchable photoelectric sensitivity
JP2002071638A (en) * 2000-09-01 2002-03-12 Japan Science & Technology Corp Gas detecting method and gas sensor, using photoelectric current amplification phenomenon and the like
JP2002508599A (en) * 1998-03-20 2002-03-19 ケンブリッジ ディスプレイ テクノロジー リミテッド Multilayer photovoltaic element or photoconductive element and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222668A (en) * 1986-03-25 1987-09-30 Toshiba Corp Organic thin-film element
JPH05129643A (en) * 1991-10-30 1993-05-25 Ricoh Co Ltd Organic photovoltaic device
JPH05335614A (en) * 1992-06-03 1993-12-17 Idemitsu Kosan Co Ltd Photoelectric conversion element
JPH06275864A (en) * 1993-03-24 1994-09-30 Mitsui Toatsu Chem Inc Light-to-light conversion element
JPH06326338A (en) * 1993-05-13 1994-11-25 Matsushita Electric Ind Co Ltd Photoelectric conversion element and its manufacture
JPH09508504A (en) * 1994-11-23 1997-08-26 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Light-responsive device
JP2002502129A (en) * 1998-02-02 2002-01-22 ユニアックス コーポレイション Organic diodes with switchable photoelectric sensitivity
JP2002508599A (en) * 1998-03-20 2002-03-19 ケンブリッジ ディスプレイ テクノロジー リミテッド Multilayer photovoltaic element or photoconductive element and method for manufacturing the same
JP2002071638A (en) * 2000-09-01 2002-03-12 Japan Science & Technology Corp Gas detecting method and gas sensor, using photoelectric current amplification phenomenon and the like

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
J. ROSTALSKI ET AL.: "Monochromatic versus solar efficiencies of organic solar cells", SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 61, JPNX006013678, 2000, DE, pages 87 - 95, ISSN: 0000726759 *
J. ROSTALSKI ET AL.: "Monochromatic versus solar efficiencies of organic solar cells", SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 61, JPNX006038121, 2000, DE, pages 87 - 95, ISSN: 0000765763 *
J. ROSTALSKI ET AL.: "Monochromatic versus solar efficiencies of organic solar cells", SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 61, JPNX006059533, 2000, DE, pages 87 - 95, ISSN: 0000797210 *
J. ROSTALSKI ET AL.: "Monochromatic versus solar efficiencies of organic solar cells", SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 61, JPNX006059535, 2000, DE, pages 87 - 95, ISSN: 0000797212 *
M. HIRAMOTO ET AL.: "Three-layered organic solar cell with a photoactive interlayer of codeposited pigments", APPL. PHYS. LETT., vol. 58 (10), 11, JPNX006013679, March 1991 (1991-03-01), US, pages 1062 - 1064, ISSN: 0000726760 *
M. HIRAMOTO ET AL.: "Three-layered organic solar cell with a photoactive interlayer of codeposited pigments", APPL. PHYS. LETT., vol. 58 (10), 11, JPNX006038122, March 1991 (1991-03-01), US, pages 1062 - 1064, ISSN: 0000765764 *
M. HIRAMOTO ET AL.: "Three-layered organic solar cell with a photoactive interlayer of codeposited pigments", APPL. PHYS. LETT., vol. 58 (10), 11, JPNX006059534, March 1991 (1991-03-01), US, pages 1062 - 1064, ISSN: 0000797211 *
M. HIRAMOTO ET AL.: "Three-layered organic solar cell with a photoactive interlayer of codeposited pigments", APPL. PHYS. LETT., vol. 58 (10), 11, JPNX006059536, March 1991 (1991-03-01), US, pages 1062 - 1064, ISSN: 0000797213 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005060012A1 (en) * 2003-12-17 2005-06-30 Sumitomo Chemical Company, Limited Organic light-light conversion device
GB2427308A (en) * 2003-12-17 2006-12-20 Sumitomo Chemical Co Organic light-light conversion device
GB2427308B (en) * 2003-12-17 2009-02-25 Sumitomo Chemical Co Organic light-light conversion device
US8003976B2 (en) 2003-12-17 2011-08-23 Sumitomo Chemical Company, Limited Organic light-light conversion device
KR101085343B1 (en) 2003-12-17 2011-11-23 스미또모 가가꾸 가부시키가이샤 Organic light-light conversion device
KR101133872B1 (en) 2003-12-17 2012-04-06 스미또모 가가꾸 가부시키가이샤 Organic light-light conversion device
JP4835158B2 (en) * 2003-12-18 2011-12-14 富士電機株式会社 Switching element
KR100769586B1 (en) 2006-04-14 2007-10-23 한양대학교 산학협력단 Organic electroluminescent element and method for manufacturing the same
US8226854B2 (en) 2007-11-30 2012-07-24 Fujifilm Corporation Photoelectric conversion device, imaging device and photosensor
JP2012219355A (en) * 2011-04-12 2012-11-12 National Institutes Of Natural Sciences Film formation method by vacuum deposition, film formation system by vacuum deposition, and crystalline vacuum deposition film

Similar Documents

Publication Publication Date Title
JP6310014B2 (en) Photoactive components containing organic layers
Brabec et al. Plastic solar cells
US6995445B2 (en) Thin film organic position sensitive detectors
US20170149000A1 (en) Organic compound, photovoltaic layer and organic photovoltaic device
Nelson et al. Factors limiting the efficiency of molecular photovoltaic devices
KR101131711B1 (en) High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions
KR101333875B1 (en) Organic double-heterostructure photovoltaic cells having reciprocal-carrier exciton blocking layer
US9461193B2 (en) Focusing luminescent and thermal radiation concentrators
JP2019054256A (en) Organic semiconductor device
JP5449772B2 (en) Organic photosensitive device with increased open circuit voltage
JP2004523129A (en) Organic photovoltaic device
Hiramoto et al. Conduction type control from n to p type for organic pigment films purified by reactive sublimation
JP3426211B2 (en) High-speed response photocurrent multiplier
Matsunobu et al. High-speed multiplication-type photodetecting device using organic codeposited films
JP2003282934A (en) Rapid response photoelectric current multiplying device formed of mixed thin film of heterologous organic semiconductor
WO2011052781A1 (en) Photoelectric conversion element and photoelectric conversion device
Hiramoto et al. Photocurrent multiplication phenomenon at organic/organic heterojunction and application to optical computing device combining with organic electroluminescence
JP4878712B2 (en) Fast response photocurrent multiplier
JP3946484B2 (en) Photocurrent multiplication device and multiplication factor control method thereof
Hammond Design and fabrication of organic semiconductor photodiodes
Xue et al. High efficiency organic photovoltaic cells employing hybridized mixed-planar heterojunctions
Hiramoto High-Speed Response Devices
Schroeder et al. Optoelectronic properties of thin film organic/inorganic hybrid devices
Yu et al. Polymer-C60 charge-transfer blends: enhanced photosensitivity via a bicontinuous network of donor/acceptor heterojunctions
Peumans et al. Solar cells

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031210

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219