JP2003282693A - Electrostatic chuck - Google Patents

Electrostatic chuck

Info

Publication number
JP2003282693A
JP2003282693A JP2002087933A JP2002087933A JP2003282693A JP 2003282693 A JP2003282693 A JP 2003282693A JP 2002087933 A JP2002087933 A JP 2002087933A JP 2002087933 A JP2002087933 A JP 2002087933A JP 2003282693 A JP2003282693 A JP 2003282693A
Authority
JP
Japan
Prior art keywords
electrostatic chuck
dielectric layer
adjusting component
resistivity
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002087933A
Other languages
Japanese (ja)
Other versions
JP4510358B2 (en
Inventor
Mamoru Ishii
守 石井
Tomoyuki Ogura
知之 小倉
Akiko Umeki
亜希子 梅木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2002087933A priority Critical patent/JP4510358B2/en
Publication of JP2003282693A publication Critical patent/JP2003282693A/en
Application granted granted Critical
Publication of JP4510358B2 publication Critical patent/JP4510358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic chuck having a stable absorbability as well as a dielectric layer capable of attaining an intended stable low volume resistivity by thermal spray in ambient atmosphere without lowering a withstand voltage thereof. <P>SOLUTION: The electrostatic chuck 1 provided with a base stand 2 the surface of which consists of at least an insulating body, an electrode layer 3 formed on the base stand 2 and the dielectric layer 4 formed on the electrode layer 3 by means of thermal spraying in the ambient atmosphere. The dielectric layer 4 comprises Al<SB>2</SB>O<SB>3</SB>that is substantially a chief ingredient, and a resistivity adjusting ingredient comprises TiO<SB>2</SB>that is substantially a chief ingredient and the metal of the group 5a in the periodic table. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、静電チャックに関
し、特に、大型の被吸着物の支持固定に適した静電チャ
ックに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic chuck, and more particularly to an electrostatic chuck suitable for supporting and fixing a large object to be attracted.

【0002】[0002]

【従来の技術】液晶ディスプレー等の製造過程における
薄膜形成またはドライエッチング工程においては、ガラ
ス基板等の平板状の被処理体に所要の成膜処理またはエ
ッチング処理を施すために、被処理体を載置する載置台
上にウエハを確実に密着させる必要がある。このような
要求を満たす保持機構として、静電作用を利用して被処
理体を載置台上に密着・保持する静電チャックが広く用
いられている。
2. Description of the Related Art In a thin film forming process or a dry etching process in a manufacturing process of a liquid crystal display or the like, an object to be processed is placed on a flat object such as a glass substrate in order to perform a required film forming process or etching process. It is necessary to securely bring the wafer into close contact with the mounting table on which it is placed. As a holding mechanism that meets such requirements, an electrostatic chuck that uses an electrostatic action to bring an object to be processed into close contact with and holding it on a mounting table is widely used.

【0003】このような液晶ディスプレーの製造プロセ
スにおいては、フッ素系ガス、塩素系ガス等のハロゲン
系腐食ガス雰囲気あるいはそのプラズマ中で使用され
る。したがって、静電チャックの誘電体層としては、従
来、耐腐食性が高いアルミナ等のセラミックスが用いら
れている。このような静電チャックは、電極および被吸
着体に誘起された電荷の間に発生する静電吸着力(クー
ロン力)を用いており、高い吸着力を得るために誘電体
層を極力薄くする必要がある。
In the manufacturing process of such a liquid crystal display, it is used in an atmosphere of a halogen-based corrosive gas such as a fluorine-based gas or a chlorine-based gas, or in its plasma. Therefore, as the dielectric layer of the electrostatic chuck, ceramics such as alumina having high corrosion resistance has been conventionally used. Such an electrostatic chuck uses an electrostatic attraction force (Coulomb force) generated between electric charges induced in an electrode and an object to be attracted, and the dielectric layer is made as thin as possible to obtain a high attraction force. There is a need.

【0004】このような静電チャックとしては、表面に
絶縁層が形成された基台上に、金属電極を形成し、その
上にアルミナ等のセラミック粉末をプラズマ溶射するこ
とによって誘電体層を被覆して構成されるものが知られ
ている。これにより、静電チャックの誘電体層を少ない
工程で薄く製造することができる。
In such an electrostatic chuck, a metal electrode is formed on a base having an insulating layer formed on the surface thereof, and a ceramic layer of alumina or the like is plasma-sprayed on the base to cover the dielectric layer. It is known that it is configured. As a result, the dielectric layer of the electrostatic chuck can be thinly manufactured in a small number of steps.

【0005】一方、誘電体層に多少導電性をもたせれ
ば、誘電体層中での電荷の移動を生じさせることにより
ジョンセンラーベック力が生じ、より高い吸着力が得ら
れることから、誘電体層として主成分のアルミナに酸化
チタンを含有させて導電性をもたせたセラミックスを用
いることが提案されている。
On the other hand, if the dielectric layer is made slightly conductive, the Johnsen-Rahbek force is generated by the movement of charges in the dielectric layer, and a higher adsorption force is obtained. It has been proposed to use, as the body layer, a ceramic obtained by adding titanium oxide to alumina as a main component to give conductivity.

【0006】このような誘電体層は、従来、減圧プラズ
マ溶射により製造することにより、安定して例えば10
10Ω・cm程度の低い体積抵抗率を得ることができ、
これにより安定して高い吸着力の静電チャックが得られ
る。
Conventionally, such a dielectric layer is stably manufactured, for example, at a pressure of 10
It is possible to obtain a low volume resistivity of about 10 Ω · cm,
As a result, an electrostatic chuck having a stable and high attraction force can be obtained.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、近時、
被処理体である液晶ディスプレー用のガラス基板が益々
大型化しており、減圧プラズマ溶射装置の減圧チャンバ
ーがガラス基板の大型化に対応することができなくなっ
ている。
However, in recent years,
The glass substrates for liquid crystal displays, which are the objects to be processed, are becoming larger and larger, and the decompression chamber of the decompression plasma spraying device cannot cope with the enlargement of the glass substrates.

【0008】このため、大気雰囲気でのプラズマ溶射に
よりAl−TiO系の誘電体層を製造すること
が試みられているが、この場合には、減圧プラズマ溶射
の場合に体積抵抗率が1010Ω・cmであったもので
も1012Ω・cm程度に上昇するという不都合が生じ
る。このような不都合を防止するため、TiOの量を
増加することが試みられているが、その場合にはリーク
電流が流れやすくなり、誘電体層の耐電圧特性が劣化す
るという問題がある。また、Al−TiO系の
誘電体層を大気雰囲気でのプラズマ溶射により製造する
場合には、体積抵抗率のばらつきが大きく、ひいては吸
着力のばらつきが大きくなるという問題点もある。
For this reason, it has been attempted to produce an Al 2 O 3 --TiO 2 system dielectric layer by plasma spraying in an air atmosphere. In this case, the volume resistivity in the case of low pressure plasma spraying is attempted. Even if the value is 10 10 Ω · cm, there is a disadvantage that the value rises to about 10 12 Ω · cm. In order to prevent such an inconvenience, it has been attempted to increase the amount of TiO 2 , but in that case, there is a problem that a leak current easily flows and the withstand voltage characteristic of the dielectric layer deteriorates. Further, when the Al 2 O 3 —TiO 2 -based dielectric layer is manufactured by plasma spraying in the air atmosphere, there is a problem that the volume resistivity varies greatly and the adsorption force also varies significantly.

【0009】本発明はかかる事情に鑑みてなされたもの
であって、大気雰囲気での溶射により、耐電圧を低下さ
せることなく所望の低い体積抵抗率を安定して得ること
ができる誘電体層を有し、安定した吸着力を有する静電
チャックを提供することを目的とする。
The present invention has been made in view of such circumstances, and provides a dielectric layer capable of stably obtaining a desired low volume resistivity without lowering a withstand voltage by thermal spraying in an air atmosphere. An object of the present invention is to provide an electrostatic chuck that has a stable adsorption force.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく鋭意研究した結果、誘電体層の抵抗率調整
成分として、TiOのみならず、さらに周期律表5a
族金属を添加することにより、大気雰囲気での溶射を行
ってもTiOを増加させることなく安定して所望の低
い体積抵抗率を得ることができ、また体積抵抗率のばら
つきも小さいことを見出し、本発明を完成させた。
The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, not only TiO 2 but also the periodic table 5a is used as a resistivity adjusting component of the dielectric layer.
It has been found that by adding a group metal, a desired low volume resistivity can be stably obtained without increasing TiO 2 even when performing thermal spraying in the air atmosphere, and variation in volume resistivity is small. The present invention has been completed.

【0011】すなわち、本発明は、少なくともその表面
が絶縁体からなる基台と、該基台の上に形成された電極
層と、大気雰囲気での溶射により前記電極層上に形成さ
れた誘電体層とを備えた静電チャックであって、前記誘
電体層は、実質的に主成分のAlと抵抗率調整成
分とからなり、前記抵抗率調整成分は、実質的に主成分
のTiOと周期律表5a族金属とからなることを特徴
とする静電チャックを提供ものである。
That is, according to the present invention, a base having at least its surface made of an insulating material, an electrode layer formed on the base, and a dielectric formed on the electrode layer by thermal spraying in an air atmosphere. An electrostatic chuck comprising a layer, wherein the dielectric layer is substantially composed of Al 2 O 3 as a main component and a resistivity adjusting component, and the resistivity adjusting component is substantially a main component. An electrostatic chuck comprising TiO 2 and a metal of Group 5a of the periodic table.

【0012】このような構成において、前記抵抗率調整
成分は、周期律表5a族金属を酸化物換算でTiO
対して0.01〜10mol%含有することが好まし
い。また、前記誘電体層の厚さが50〜500μmであ
ることが好ましい。さらに、前記誘電体層は、溶射後に
封孔処理されており、かつ、中心線表面粗さが1.0μ
m以下に研磨加工されたものであることが好ましい。さ
らにまた、前記誘電体層は、大気プラズマ溶射法により
形成されたものであることが好ましい。
In such a constitution, it is preferable that the resistivity adjusting component contains a metal of Group 5a of the periodic table in an amount of 0.01 to 10 mol% with respect to TiO 2 in terms of oxide. The thickness of the dielectric layer is preferably 50 to 500 μm. Further, the dielectric layer is subjected to sealing treatment after thermal spraying and has a center line surface roughness of 1.0 μm.
It is preferably polished to m or less. Furthermore, it is preferable that the dielectric layer is formed by an atmospheric plasma spraying method.

【0013】[0013]

【発明の実施の形態】以下、添付図面を参照して、本発
明の実施の形態について説明する。図1は、本発明の一
実施形態に係る静電チャックを示す断面図である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a sectional view showing an electrostatic chuck according to an embodiment of the present invention.

【0014】図1の静電チャックは、基台2と、基台2
の上に形成された電極層3と、電極層3の上に形成さ
れ、その表面に被吸着体10を吸着する誘電体層4とを
有している。被吸着体としては液晶ディスプレー用のガ
ラス基板や半導体ウエハが例示される。
The electrostatic chuck of FIG. 1 has a base 2 and a base 2.
And the dielectric layer 4 formed on the electrode layer 3 and adsorbing the adsorbed body 10 on the surface thereof. A glass substrate for a liquid crystal display or a semiconductor wafer is exemplified as the adherend.

【0015】基台2は、基材11と、基材11の上に形
成された下地層12と、下地層12の上に形成された絶
縁層13とを有している。基材11の材料は特に限定さ
れないが、SiC−Al等の金属−セラミックス複合材
料が好ましい。このような金属セラミックス複合材料
は、軽量かつ高強度であり、熱膨張係数が低いという利
点がある。下地層12は金属からなり、好ましくは溶射
で形成される。絶縁層13はAl等の絶縁体セラ
ミックスからなり、好ましくは大気雰囲気での溶射で形
成される。絶縁層13が薄い場合には、下地層12を省
略してもよい。
The base 2 has a base material 11, a base layer 12 formed on the base material 11, and an insulating layer 13 formed on the base layer 12. The material of the base material 11 is not particularly limited, but a metal-ceramic composite material such as SiC-Al is preferable. Such a metal-ceramic composite material is advantageous in that it is lightweight, has high strength, and has a low coefficient of thermal expansion. The underlayer 12 is made of metal and is preferably formed by thermal spraying. The insulating layer 13 is made of insulating ceramics such as Al 2 O 3 and is preferably formed by thermal spraying in an air atmosphere. When the insulating layer 13 is thin, the base layer 12 may be omitted.

【0016】電極層3は、例えばNi、Wからなり、基
台2の絶縁層13上に、好ましくは大気雰囲気での溶射
により形成される。
The electrode layer 3 is made of, for example, Ni or W, and is formed on the insulating layer 13 of the base 2 preferably by thermal spraying in an air atmosphere.

【0017】誘電体層4は、大気雰囲気での溶射により
電極層3上に形成される。この誘電体層4は、実質的に
主成分のAlと抵抗率調整成分とからなり、この
抵抗率調整成分は、実質的に主成分のTiOと周期律
表5a族金属とからなる。このように、抵抗率調整成分
として周期律表5a族金属を添加することにより、大気
雰囲気での溶射においても安定して低い体積抵抗率を得
ることができる。この抵抗率調整成分は、周期律表5a
族金属を酸化物換算でTiOに対して0.01〜10
mol%含有することが好ましい。
The dielectric layer 4 is formed on the electrode layer 3 by thermal spraying in the air atmosphere. The dielectric layer 4 is substantially composed of Al 2 O 3 as a main component and a resistivity adjusting component, and the resistivity adjusting component is substantially composed of TiO 2 as a main component and a metal of Group 5a of the periodic table. Become. Thus, by adding the metal of Group 5a of the Periodic Table as the resistivity adjusting component, a low volume resistivity can be stably obtained even in the thermal spraying in the air atmosphere. This resistivity adjusting component is the periodic table 5a.
0.01 to 10 with respect to TiO 2 in terms of oxide of group metal
It is preferable to contain it by mol%.

【0018】周期律表5a族金属としては、Nb、S
b、Taが好適であり、これらのうち少なくとも1種を
用いることができる。これらの中ではNbが特に好まし
く、Nbを単独で抵抗率調整剤として有効に機能する。
The metals in Group 5a of the periodic table include Nb and S.
b and Ta are preferable, and at least one of them can be used. Of these, Nb is particularly preferable, and Nb alone functions effectively as a resistivity adjusting agent.

【0019】抵抗率調整剤の量は、目標とする体積抵抗
率によって変化するものであり、その値に応じて適宜決
定されるが、20mass%を超えて添加すると耐電圧
特性が低下することから20mass%以下が好まし
い。
The amount of the resistivity adjusting agent varies depending on the target volume resistivity, and is appropriately determined according to the value. However, if the amount is more than 20 mass%, the withstand voltage characteristic deteriorates. It is preferably 20 mass% or less.

【0020】誘電体層4の厚さは50〜500μmが好
ましい。50μmより薄くなると耐電圧特性が低くなる
傾向にあり、500μmを超えると吸着力が低下する傾
向にある。特に、厚さが300μm付近の場合には、ク
ーロン力とジョンセン・ラーベック力の両方が有効に作
用してより大きな吸着力を得ることができる。
The thickness of the dielectric layer 4 is preferably 50 to 500 μm. When the thickness is less than 50 μm, the withstand voltage characteristic tends to deteriorate, and when it exceeds 500 μm, the adsorption force tends to decrease. In particular, when the thickness is around 300 μm, both Coulomb force and Johnsen-Rahbek force effectively act and a larger attraction force can be obtained.

【0021】この誘電体層4は、溶射後に有機材料また
は無機材料で封孔処理されることが好ましく、中心線表
面粗さが1.0μm以下に研磨加工されることが好まし
い。封孔処理することにより耐電圧をより高くすること
ができる。また、中心線表面粗さが1.0μm以下にな
るように研磨加工することにより、被吸着体の吸着力を
高く維持することができる。
The dielectric layer 4 is preferably sealed with an organic material or an inorganic material after thermal spraying, and is preferably polished to have a center line surface roughness of 1.0 μm or less. The withstand voltage can be further increased by performing the sealing treatment. Further, by performing polishing processing so that the center line surface roughness becomes 1.0 μm or less, it is possible to maintain a high suction force of the suction target.

【0022】誘電体層4を形成する際の溶射処理は、大
気雰囲気中で行う溶射処理であればその方法は問わない
が、プラズマ溶射処理が好ましい。
The thermal spraying process for forming the dielectric layer 4 may be any method as long as it is a thermal spraying process performed in an air atmosphere, but a plasma thermal spraying process is preferable.

【0023】誘電体層4を溶射により形成する際の溶射
材は、以下のように製造することが好ましい。まず、T
iO粉末に対して、好ましくは酸化物換算で0.01
〜10mol%の周期律表5a族金属、好ましくはN
b、Sb、Taの少なくとも1種(Nb、Sb
、Taのうち少なくとも1種)を加えて混
合、乾燥した後、還元雰囲気中で1000〜1400℃
で焼成することによって混合粉末を作製する。この混合
粉末を抵抗率調整成分としてAlに対して所定量
添加して溶射材とする。
The thermal spray material for forming the dielectric layer 4 by thermal spraying is preferably manufactured as follows. First, T
It is preferably 0.01 in terms of oxide based on the iO 2 powder.
10 mol% of Group 5a metal of the periodic table, preferably N
at least one of b, Sb, and Ta (Nb 2 O 5 , Sb 2
At least one of O 5 and Ta 2 O 5 is added, mixed and dried, and then 1000 to 1400 ° C. in a reducing atmosphere.
A mixed powder is prepared by firing at. A predetermined amount of this mixed powder is added to Al 2 O 3 as a resistivity adjusting component to obtain a thermal spray material.

【0024】次に、以上のように構成される静電チャッ
ク1の好ましい製造方法について説明する。まず、金属
−セラミックス複合材料からなる基材11に、大気雰囲
気中の溶射処理により金属材料からなる下地層12およ
びAl等のセラミックスからなる絶縁層13を順
に形成して基台2を作成する。
Next, a preferred method of manufacturing the electrostatic chuck 1 having the above-described structure will be described. First, an underlayer 12 made of a metal material and an insulating layer 13 made of ceramics such as Al 2 O 3 are sequentially formed on a base material 11 made of a metal-ceramic composite material by a thermal spraying treatment in an air atmosphere to form the base 2. create.

【0025】続いて、この基台2の表面、すなわち絶縁
層13の上に電極層3を大気雰囲気中の溶射により形成
する。引き続き、この電極層3の上に上記のようにして
製造された誘電体層形成用の溶射材を用いて大気雰囲気
中で溶射し誘電体層4を形成する。
Subsequently, the electrode layer 3 is formed on the surface of the base 2, that is, on the insulating layer 13 by thermal spraying in the atmosphere. Subsequently, the dielectric layer 4 is formed on the electrode layer 3 by thermal spraying in the atmosphere using the thermal spray material for forming the dielectric layer manufactured as described above.

【0026】このような静電チャック1は、誘電体層4
の抵抗率調整成分としてTiOの他に周期律表5a族
金属が適量含有されていることにより、大気雰囲気での
溶射によってもTiOを増加することなく所望の低い
体積抵抗率を安定して得ることができ、高い耐電圧を確
保しつつ安定した吸着力を得ることができる。
Such an electrostatic chuck 1 has a dielectric layer 4
Since a suitable amount of the Group 5a metal of the periodic table is contained in addition to TiO 2 as the resistivity adjusting component of, the desired low volume resistivity can be stabilized without increasing TiO 2 even by thermal spraying in the air atmosphere. It is possible to obtain a stable adsorption force while ensuring a high withstand voltage.

【0027】なお、本発明は上記実施形態に限定される
ことなく種々変形可能である。上記実施形態では、単極
型の静電チャックを例示したが、これに限らず双極型で
あっても構わない。基台として基材の上に絶縁層を形成
したものを用いたが、全体が絶縁体からなる基台を用い
てもよい。
The present invention is not limited to the above embodiment and can be variously modified. In the above embodiment, the monopolar type electrostatic chuck is illustrated, but the invention is not limited to this, and a bipolar type electrostatic chuck may be used. Although a base having an insulating layer formed on the base is used as the base, a base made entirely of an insulator may be used.

【0028】[0028]

【実施例】以下、本発明の実施例について説明する。金
属−セラミックス複合材料(70vol%SiC−30
vol%Al)からなる基材の上に、大気雰囲気でのプ
ラズマ溶射により厚さ50μmのAl下地層および厚さ
300μmのAl絶縁層を順に形成し基台を製造
した。その上に大気雰囲気でのプラズマ照射によりNi
電極層を50μmの厚さに形成し、さらにその上に大気
雰囲気でのプラズマ照射により表1に示す種々の誘電体
層を300μmの厚さに形成した。
EXAMPLES Examples of the present invention will be described below. Metal-ceramics composite material (70vol% SiC-30
A base layer was manufactured by sequentially forming an Al underlayer having a thickness of 50 μm and an Al 2 O 3 insulating layer having a thickness of 300 μm on a base material made of vol% Al) by plasma spraying in an air atmosphere. On top of that, Ni was applied by plasma irradiation in the atmosphere
An electrode layer was formed to a thickness of 50 μm, and various dielectric layers shown in Table 1 were formed thereon to a thickness of 300 μm by plasma irradiation in the air atmosphere.

【0029】誘電体層の溶射材としては、Al
末にTiOを主体とする抵抗率調整成分を混合したも
のを用いた。実施例1〜12における誘電体層の溶射材
は、以下のようにして製造した。まず、所定割合のNb
、Sb、またはTaをTiOに添
加し、これらをエタノールおよびジルコニアボールを装
入したボールミルで粉砕混合した。その後、混合試料を
ロータリーエバポレーターで乾燥し、還元雰囲気で11
00〜1400℃で焼成し、抵抗率調整成分とした。次
いで、Alに対して2.5〜10mass%の抵
抗率調整成分を添加し、これらをイオン交換水およびジ
ルコニアボールを装入したボールミルで混合してスラリ
ーとし、適量の有機バインダーを添加してモービルマイ
ナー型のスプレーを用いて造粒し、溶射材とした。一
方、比較例1,2における誘電体層の溶射材は、Al
粉末に抵抗率調整成分としてのTiOを添加し、
同様にスラリー調整および造粒を行って製造した。
As the thermal spraying material for the dielectric layer, a mixture of Al 2 O 3 powder and a resistivity adjusting component mainly composed of TiO 2 was used. The thermal spray material for the dielectric layer in Examples 1 to 12 was manufactured as follows. First, a predetermined ratio of Nb
2 O 5 , Sb 2 O 5 , or Ta 2 O 5 was added to TiO 2 and they were ground and mixed in a ball mill charged with ethanol and zirconia balls. After that, the mixed sample is dried by a rotary evaporator, and is dried in a reducing atmosphere.
It was fired at 00 to 1400 ° C and used as a resistivity adjusting component. Next, a resistivity adjusting component of 2.5 to 10 mass% is added to Al 2 O 3 , and these are mixed by a ball mill charged with ion-exchanged water and zirconia balls to form a slurry, and an appropriate amount of an organic binder is added. Then, it was granulated using a mobile minor type spray to obtain a thermal spray material. On the other hand, the thermal spray material of the dielectric layer in Comparative Examples 1 and 2 was Al 2
TiO 2 as a resistivity adjusting component was added to O 3 powder,
In the same manner, slurry preparation and granulation were performed to manufacture.

【0030】体積抵抗率は、このように製造された静電
チャック(209×157×10mm)に被吸着体であ
る裏面にITO膜を形成したガラス基板(7.5m
)を載せ、電圧を印加し、そのリーク電流から算出
した。
The volume resistivity is determined by measuring the glass substrate (7.5 m) having an ITO film formed on the back surface of the electrostatic chuck (209 × 157 × 10 mm) manufactured as described above, which is an object to be adsorbed.
m ) was placed, a voltage was applied, and the leakage current was calculated.

【0031】その際のリーク電流値、抵抗値、誘電体層
の体積抵抗率、logρ、体積抵抗率のばらつきを表1
に併記する。なお、体積抵抗率のばらつきは、10回測
定したときの最大値から最小値を引いた値を平均値で割
った値を百分率表示したものである。
Table 1 shows the variations of the leak current value, the resistance value, the volume resistivity of the dielectric layer, log ρ, and the volume resistivity at that time.
Also described in. The variation of the volume resistivity is a value obtained by dividing a value obtained by subtracting a minimum value from a maximum value of 10 times measurement by an average value and expressing it as a percentage.

【0032】表1に示すように、実施例1〜12は、誘
電体層を大気雰囲気中で製造したにも拘わらず、抵抗調
整成分の量に応じて、適切な体積抵抗率が得られ、体積
抵抗率のばらつきも小さかった。特に、抵抗率調整成分
中の周期律表5a族金属の酸化物の割合が0.10mo
l%以上で、かつ抵抗率調整成分の量が5mass%以
上の場合には、1010Ω.cmオーダー以下の低い体
積抵抗率が得られた。
As shown in Table 1, in Examples 1 to 12, although the dielectric layer was manufactured in the atmosphere, an appropriate volume resistivity was obtained according to the amount of the resistance adjusting component. The variation in volume resistivity was also small. In particular, the ratio of the metal oxide of Group 5a of the periodic table in the resistivity adjusting component is 0.10 mo.
1% or more and the amount of the resistivity adjusting component is 5 mass% or more, 10 10 Ω. A low volume resistivity on the order of cm or less was obtained.

【0033】これに対して、抵抗率調整成分としてTi
のみを添加した比較例のうち、比較例1は、抵抗率
調整成分を5mass%添加したにも拘わらず、体積抵
抗率が2.6×1012Ω・cmと高い値になり体積抵
抗率のばらつきも大きかった。また、比較例2は、Ti
のみからなる抵抗率調整成分を20mass%添加
して体積抵抗率を1010Ω・cmにしたが、体積抵抗
率のばらつきが大きいのみならず、耐電圧特性が他のも
のが5kV以上であるのに対し2kV以下と低いことが
確認された。
On the other hand, Ti is used as the resistivity adjusting component.
Among Comparative Examples in which only O 2 was added, Comparative Example 1 had a volume resistivity as high as 2.6 × 10 12 Ω · cm, even though the resistivity adjusting component was added in an amount of 5 mass%. The variation in the rate was also large. Further, in Comparative Example 2, Ti
The volume resistivity was set to 10 10 Ω · cm by adding 20 mass% of the resistivity adjusting component consisting of O 2 only. However, not only the variation in volume resistivity was large, but also the withstand voltage characteristics were 5 kV or more. However, it was confirmed to be as low as 2 kV or less.

【0034】[0034]

【表1】 [Table 1]

【0035】次に、表1の実施例3の静電チャック(誘
電体層の抵抗率調整成分が5mass%でその中のNb
が0.1mol%)と比較例1の静電チャック
(誘電体層の抵抗率調整成分が5mass%でTiO
のみ)の吸着力を比較した。
Next, the electrostatic chuck of Example 3 shown in Table 1 (where the dielectric layer has a resistivity adjusting component of 5 mass% and Nb therein)
2 O 5 is 0.1 mol% and the electrostatic chuck of Comparative Example 1 (the dielectric layer has a resistivity adjusting component of 5 mass% and TiO 2
Only) was compared.

【0036】吸着試験は以下の手順で行った。まず、静
電チャックを真空チャンバー内に設置し、静電チャック
表面に被吸着体であるガラス基板を設置する。次に、静
電チャックの電極層に電圧を印加し、チャンバー内を真
空に排気する。その後、静電チャックの裏面からHeガ
スを導入し、その圧力をキャパシタンスマノメータによ
り測定し、ガラス基板が剥離した圧力を測定し、その値
から吸着力を求めた。
The adsorption test was conducted according to the following procedure. First, an electrostatic chuck is set in a vacuum chamber, and a glass substrate, which is an object to be attracted, is set on the surface of the electrostatic chuck. Next, a voltage is applied to the electrode layer of the electrostatic chuck, and the inside of the chamber is evacuated to vacuum. Then, He gas was introduced from the back surface of the electrostatic chuck, the pressure was measured by a capacitance manometer, the pressure at which the glass substrate was peeled off was measured, and the adsorption force was determined from the value.

【0037】その結果を図2に示す。図2に示すよう
に、抵抗率調整成分としてNbを用いた実施例3
のほうが、抵抗率調整成分としてTiOのみの比較例
1よりも吸着力が高いことが確認された。また、吸着力
のばらつきも比較例1よりも実施例3のほうが小さいこ
とが確認された。
The results are shown in FIG. As shown in FIG. 2, Example 3 using Nb 2 O 5 as a resistivity adjusting component
It was confirmed that the adsorption force of the above was higher than that of Comparative Example 1 in which only TiO 2 was used as the resistivity adjusting component. It was also confirmed that the variation in the adsorption force was smaller in Example 3 than in Comparative Example 1.

【0038】[0038]

【発明の効果】以上説明したように、本発明によれば、
誘電体層を主成分のAlと抵抗率調整成分とで構
成し、抵抗率調整成分を主成分のTiOと周期律表5
a族金属とで構成することにより、大気雰囲気での溶射
によってもTiOを増加することなく所望の低い体積
抵抗率を安定して得ることができ、高い耐電圧を確保し
つつ安定した吸着力を得ることができる。
As described above, according to the present invention,
The dielectric layer is composed of Al 2 O 3 as a main component and a resistivity adjusting component, and the resistivity adjusting component is made of TiO 2 as a main component and the periodic table 5.
By using a group a metal, a desired low volume resistivity can be stably obtained without increasing TiO 2 even by thermal spraying in the air atmosphere, and a stable adsorption force can be obtained while ensuring a high withstand voltage. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係る静電チャックを示す
断面図。
FIG. 1 is a sectional view showing an electrostatic chuck according to an embodiment of the present invention.

【図2】実施例3と比較例1の静電チャックの吸着力を
比較して示すグラフ。
FIG. 2 is a graph showing a comparison of the attraction forces of the electrostatic chucks of Example 3 and Comparative Example 1.

【符号の説明】[Explanation of symbols]

1……静電チャック 2……基台 3……電極層 4……誘電体層 10……被吸着体 1 ... Electrostatic chuck 2 ... base 3 ... Electrode layer 4 ... Dielectric layer 10 ... Adsorbent

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 4/18 C23C 4/18 (72)発明者 梅木 亜希子 千葉県佐倉市大作二丁目4番2号 太平洋 セメント株式会社中央研究所内 Fターム(参考) 4K031 AA08 AB03 AB07 AB09 CB07 CB14 CB43 DA04 FA04 FA05 5F031 CA05 HA02 HA03 HA16 PA30─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C23C 4/18 C23C 4/18 (72) Inventor Akiko Umeki 2-4-2 Daisaku Sakura, Chiba Prefecture Pacific F-term in Central Research Institute of Cement Co., Ltd. (reference) 4K031 AA08 AB03 AB07 AB09 CB07 CB14 CB43 DA04 FA04 FA05 5F031 CA05 HA02 HA03 HA16 PA30

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 少なくともその表面が絶縁体からなる基
台と、該基台の上に形成された電極層と、大気雰囲気で
の溶射により前記電極層上に形成された誘電体層とを備
えた静電チャックであって、 前記誘電体層は、実質的に主成分のAlと抵抗率
調整成分とからなり、 前記抵抗率調整成分は、実質的に主成分のTiOと周
期律表5a族金属とからなることを特徴とする静電チャ
ック。
1. A base having at least a surface thereof made of an insulator, an electrode layer formed on the base, and a dielectric layer formed on the electrode layer by thermal spraying in an air atmosphere. In the electrostatic chuck, the dielectric layer is substantially composed of Al 2 O 3 as a main component and a resistivity adjusting component, and the resistivity adjusting component is substantially composed of TiO 2 as a main component and a period. An electrostatic chuck comprising a Group 5a metal of the table.
【請求項2】 前記抵抗率調整成分は、周期律表5a族
金属を酸化物換算でTiOに対して0.01〜10m
ol%含有することを特徴とする請求項1に記載の静電
チャック。
2. The resistivity adjusting component is 0.01 to 10 m with respect to TiO 2 in terms of oxide of a metal of Group 5a of the periodic table.
The electrostatic chuck according to claim 1, wherein the electrostatic chuck contains ol%.
【請求項3】 前記誘電体層の厚さが50〜500μm
であることを特徴とする請求項1または請求項2に記載
の静電チャック。
3. The thickness of the dielectric layer is 50 to 500 μm.
The electrostatic chuck according to claim 1 or 2, wherein
【請求項4】 前記誘電体層は、溶射後に封孔処理され
ており、かつ、中心線表面粗さが1.0μm以下に研磨
加工されたものであることを特徴とする請求項1から請
求項3のいずれか1項に記載の静電チャック。
4. The dielectric layer, which has been subjected to sealing treatment after thermal spraying and has been polished to have a center line surface roughness of 1.0 μm or less. Item 4. The electrostatic chuck according to any one of items 3.
【請求項5】 前記誘電体層は、大気プラズマ溶射法に
より形成されたものであることを特徴とする請求項1か
ら請求項4のいずれか1項に記載の静電チャック。
5. The electrostatic chuck according to claim 1, wherein the dielectric layer is formed by an atmospheric plasma spraying method.
JP2002087933A 2002-03-27 2002-03-27 Electrostatic chuck and manufacturing method thereof Expired - Fee Related JP4510358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087933A JP4510358B2 (en) 2002-03-27 2002-03-27 Electrostatic chuck and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002087933A JP4510358B2 (en) 2002-03-27 2002-03-27 Electrostatic chuck and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003282693A true JP2003282693A (en) 2003-10-03
JP4510358B2 JP4510358B2 (en) 2010-07-21

Family

ID=29233959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087933A Expired - Fee Related JP4510358B2 (en) 2002-03-27 2002-03-27 Electrostatic chuck and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4510358B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524247A (en) * 2002-05-01 2005-08-11 トレック・インコーポレーテッド Advanced platen for electrostatic wafer clamping equipment
JP2006032461A (en) * 2004-07-13 2006-02-02 Canon Inc Electrostatic attraction device and electron source manufacturing device
JP2010018853A (en) * 2008-07-11 2010-01-28 Taiheiyo Cement Corp Thermally sprayed ceramic film and corrosion-resistant member using the same
KR20160075725A (en) 2013-11-29 2016-06-29 가부시끼가이샤 도시바 Plasma device part and manufacturing method therefor
JPWO2015080135A1 (en) * 2013-11-29 2017-03-16 株式会社東芝 Plasma device component and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524247A (en) * 2002-05-01 2005-08-11 トレック・インコーポレーテッド Advanced platen for electrostatic wafer clamping equipment
JP2006032461A (en) * 2004-07-13 2006-02-02 Canon Inc Electrostatic attraction device and electron source manufacturing device
JP2010018853A (en) * 2008-07-11 2010-01-28 Taiheiyo Cement Corp Thermally sprayed ceramic film and corrosion-resistant member using the same
KR20160075725A (en) 2013-11-29 2016-06-29 가부시끼가이샤 도시바 Plasma device part and manufacturing method therefor
JPWO2015080134A1 (en) * 2013-11-29 2017-03-16 株式会社東芝 Plasma device component and method of manufacturing the same
JPWO2015080135A1 (en) * 2013-11-29 2017-03-16 株式会社東芝 Plasma device component and method of manufacturing the same

Also Published As

Publication number Publication date
JP4510358B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4744855B2 (en) Electrostatic chuck
JP4031732B2 (en) Electrostatic chuck
KR100793676B1 (en) Electrostatic chuck and producing method thereof
EP1801961A2 (en) Electrostatic chuck
US6641939B1 (en) Transition metal oxide doped alumina and methods of making and using
JP2001203258A (en) Electrostatic chuck member and its manufacturing method
JP5071856B2 (en) Yttrium oxide material and member for semiconductor manufacturing equipment
JP5188898B2 (en) Ceramic sprayed coating and corrosion resistant member using the same
JP4312372B2 (en) Electrostatic chuck and manufacturing method thereof
JP2003282693A (en) Electrostatic chuck
JP3586034B2 (en) Electrostatic chuck
JP4043219B2 (en) Electrostatic chuck
JP2000252351A (en) Electrostatic chuck and its manufacture
JP4939379B2 (en) Aluminum nitride sintered body for electrostatic chuck
JP2006060040A (en) Electrostatically chucking plate, and manufacturing method thereof
JP4023944B2 (en) Manufacturing method of aluminum nitride sintered body and plate heater or electrostatic chuck
JPH09283607A (en) Electrostatic chuck
JP2001308011A (en) Chamber member for semiconductor manufacturing apparatus
JP4722463B2 (en) Dielectric ceramics for electrostatic chuck and manufacturing method thereof
JP2003313078A (en) Aluminum nitride sintered compact and electrostatic chuck using the same
WO1993024925A1 (en) Ceramic substrate and its manufacture, and substrate vacuum-clamping device using ceramic vacuum-clamping board
JP2007214288A (en) Electrostatic chuck
JP2000252353A (en) Electrostatic chuck and its manufacture
JP5192221B2 (en) Ceramic sintered body and electrostatic chuck using the same
JP3369505B2 (en) Electrostatic chuck

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080811

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4510358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees