JP2003282151A - Control method for non-aqueous secondary battery module - Google Patents

Control method for non-aqueous secondary battery module

Info

Publication number
JP2003282151A
JP2003282151A JP2002080129A JP2002080129A JP2003282151A JP 2003282151 A JP2003282151 A JP 2003282151A JP 2002080129 A JP2002080129 A JP 2002080129A JP 2002080129 A JP2002080129 A JP 2002080129A JP 2003282151 A JP2003282151 A JP 2003282151A
Authority
JP
Japan
Prior art keywords
secondary battery
aqueous secondary
battery module
battery
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002080129A
Other languages
Japanese (ja)
Other versions
JP4022726B2 (en
Inventor
Akihito Hayano
彰人 早野
Kazushige Maeda
和茂 前田
Hiroyuki Tajiri
博幸 田尻
Kazuya Kuriyama
和哉 栗山
Shiro Kato
史朗 加藤
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002080129A priority Critical patent/JP4022726B2/en
Publication of JP2003282151A publication Critical patent/JP2003282151A/en
Application granted granted Critical
Publication of JP4022726B2 publication Critical patent/JP4022726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control method for a non-aqueous secondary battery module constituted by connecting a plurality of cells of non-aqueous secondary battery (cell) for early detecting unevenness of cells and the executing control determined in advance. <P>SOLUTION: In this control method for the non-aqueous secondary battery module constituted by connecting a plurality of cells of non-aqueous secondary battery (cell) provided with non-aqueous electrolyte containing a positive electrode, a negative electrode, a separator, and lithium salt, a voltage of each cell is monitored to execute the control determined in advance when a difference in voltage between the minimum voltage and the maximum voltage of the cell exceeds a set value in a state of depth of discharge of the non-aqueous secondary battery module 80% or more. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水系二次電池の
充放電方法に関し、特に、蓄電システム用非水系二次電
池モジュールの制御法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for charging / discharging a non-aqueous secondary battery, and more particularly to a method for controlling a non-aqueous secondary battery module for a power storage system.

【0002】[0002]

【従来の技術】近年、省資源を目指したエネルギーの有
効利用及び地球環境問題の観点から、深夜電力貯蔵及び
太陽光発電の電力貯蔵を目的とした家庭用分散型蓄電シ
ステム、電気自動車のための蓄電システム等が注目を集
めている。例えば、特開平6−86463号公報には、
エネルギー需要者に最適条件でエネルギーを供給できる
システムとして、発電所から供給される電気、ガスコー
ジェネレーション、燃料電池、蓄電池等を組み合わせた
トータルシステムが提案されている。このような蓄電シ
ステムに用いられる二次電池は、エネルギー容量が10
Wh以下の携帯機器用小型二次電池と異なり、容量が大
きい大型のものが必要とされる。このため、上記の蓄電
システムでは、複数の二次電池を直列に積層し、電圧が
例えば50〜400Vの組電池として用いるのが常であ
り、ほとんどの場合、鉛電池を用いていた。
2. Description of the Related Art In recent years, from the viewpoint of effective use of energy and resource saving for the purpose of resource saving and global environmental problems, a distributed power storage system for home use for electric power storage of late night electric power storage and solar power generation Power storage systems are attracting attention. For example, in Japanese Patent Laid-Open No. 6-86463,
As a system capable of supplying energy to energy consumers under optimum conditions, a total system combining electricity supplied from a power plant, gas cogeneration, a fuel cell, a storage battery, etc. has been proposed. The secondary battery used in such a power storage system has an energy capacity of 10
Unlike a small secondary battery for mobile devices of Wh or less, a large one having a large capacity is required. Therefore, in the above-described power storage system, a plurality of secondary batteries are usually stacked in series and used as an assembled battery having a voltage of, for example, 50 to 400 V. In most cases, lead batteries have been used.

【0003】一方、携帯機器用小型二次電池の分野で
は、小型及び高容量のニーズに応えるべく、新型電池と
してニッケル水素電池、リチウム二次電池の開発が進展
し、180Wh/l以上の体積エネルギー密度を有する
電池が市販されている。特に、リチウムイオン電池は、
350Wh/lを超える体積エネルギー密度の可能性を
有すること、及び、安全性、サイクル特性等の信頼性が
金属リチウムを負極に用いたリチウム二次電池に比べ優
れることから、その市場を飛躍的に延ばしている。
On the other hand, in the field of small secondary batteries for portable equipment, nickel hydrogen batteries and lithium secondary batteries have been developed as new type batteries to meet the needs of small size and high capacity, and volume energy of 180 Wh / l or more has been developed. Batteries having a density are commercially available. Especially, the lithium-ion battery
Since it has a volume energy density of more than 350 Wh / l, and is superior in reliability such as safety and cycle characteristics to a lithium secondary battery using metallic lithium as a negative electrode, its market is dramatically increased. It has been postponed.

【0004】これを受け、蓄電システム用大型電池の分
野においても、高エネルギー密度電池の候補として、リ
チウムイオン電池をターゲットとし、リチウム電池電力
貯蔵技術研究組合(LIBES)等で精力的に開発が進
められている。
In response to this, even in the field of large batteries for power storage systems, lithium ion batteries are targeted as a candidate for high energy density batteries, and vigorous development is underway at the lithium battery power storage technology research association (LIBES) and the like. Has been.

【0005】これら大型リチウムイオン電池のエネルギ
ー容量は、100Whから400Wh程度であり、体積
エネルギー密度は、200〜300Wh/lと携帯機器
用小型二次電池並のレベルに達している。その形状は、
直径50mm〜70mm、長さ250mm〜450mm
の円筒型、厚さ35mm〜50mmの角形又は長円角形
等の扁平角柱形が代表的なものである。
The energy capacity of these large-sized lithium ion batteries is about 100 Wh to 400 Wh, and the volume energy density is 200 to 300 Wh / l, which is about the same level as small secondary batteries for portable devices. Its shape is
Diameter 50mm-70mm, Length 250mm-450mm
The cylindrical type, the flat type having a thickness of 35 mm to 50 mm, the oblong rectangular type, or the like having a thickness of 35 mm to 50 mm is typical.

【0006】しかし、これら大型リチウムイオン電池
は、高エネルギー密度が得られるものの、その電池設計
が携帯機器用小型電池の延長にあることから、直径又は
厚さが携帯機器用小型電池の3倍以上の円筒型、角型等
の電池形状とされる。この場合には、充放電時の電池の
内部抵抗によるジュール発熱、或いはリチウムイオンの
出入りによって活物質のエントロピーが変化することに
よる電池の内部発熱により、電池内部に熱が蓄積されや
すい。このため、電池内部の温度と電池表面付近の温度
差が大きく、これに伴って内部抵抗が異なる。その結
果、充電量、電圧のバラツキを生じ易い。また、この種
の電池は複数個を組電池にして用いるため、システム内
での電池の設置位置によっても蓄熱されやすさが異なっ
て各電池間のバラツキが生じ、組電池全体の正確な制御
が困難になる。
However, although these large-sized lithium-ion batteries can obtain high energy density, their battery design is an extension of small batteries for portable devices, so that the diameter or thickness is more than three times that of small batteries for portable devices. The battery has a cylindrical shape, a rectangular shape, or the like. In this case, heat is likely to be accumulated inside the battery due to Joule heat generation due to internal resistance of the battery during charging / discharging, or internal heat generation of the battery due to change in entropy of the active material due to entry and exit of lithium ions. Therefore, there is a large difference between the temperature inside the battery and the temperature near the battery surface, and the internal resistance varies accordingly. As a result, variations in charge amount and voltage are likely to occur. Further, since a plurality of batteries of this type are used as an assembled battery, the easiness of heat storage also varies depending on the installation position of the batteries in the system, which causes variations among the batteries, and accurate control of the entire assembled battery is possible. It will be difficult.

【0007】上記問題を解決する目的でW099/60
652号、特開2000-251940号、特開200
0-251941号、特開2000-260478号、特
開2000-260477号の各公報には、正極、負
極、セパレータ、及びリチウム塩を含む非水系電解質を
電池容器内に収容した扁平形状の非水系二次電池であっ
て、前記非水系二次電池は、その厚さが12mm未満の
扁平形状であり、そのエネルギー容量が30Wh以上且
つ体積エネルギー密度が180Wh/l以上の非水系二
次電池が開示されている。該電池は独特の電池形状(扁
平形状)により、これら電池を複数セル接続した非水系
二次電池モジュールにおいては、モジュール内の各単電
池間の温度ばらつきは小さい。
In order to solve the above problem, W099 / 60
No. 652, JP 2000-251940 A, JP 200
No. 0-251941, JP-A-2000-260478, and JP-A-2000-260477 disclose flat-shaped non-aqueous electrolytes containing a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt in a battery container. A secondary battery, wherein the non-aqueous secondary battery has a flat shape with a thickness of less than 12 mm, and has an energy capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more. Has been done. Due to the unique battery shape (flat shape) of the battery, in a non-aqueous secondary battery module in which a plurality of cells of these batteries are connected, the temperature variation among the individual cells in the module is small.

【0008】蓄電システム用大型電池においては、例え
ば、3500サイクルを超える優れたサイクル寿命(小
型二次電池の場合数百サイクル〜1000サイクル)が
要求され、当然の事ながら単電池を複数セル接続した電
池モジュールにおいてサイクル寿命を確保する必要があ
る。一般に単電池の特性がモジュールにそのまま反映さ
れる事はなく、特に単電池のばらつきによるモジュール
特性の低下が問題となっている。
A large battery for a power storage system is required to have an excellent cycle life of, for example, more than 3500 cycles (several hundred cycles to 1000 cycles in the case of a small secondary battery), and naturally, a plurality of cells are connected. It is necessary to secure cycle life in the battery module. Generally, the characteristics of the unit cell are not directly reflected on the module, and in particular, the deterioration of the module characteristic due to the dispersion of the unit cell poses a problem.

【0009】リチウムイオン電池をモジュール化する場
合、過充電、過放電を防止する安全性の目的から、通常
単電池の電圧を監視する単セル制御が行われる。また、
単電池のばらつきが生じ、内部抵抗の高い電池が先に充
電規制電圧に到達した場合、バイパス回路により該当単
電池のみの充電停止あるいは充電電流を下げる制御を実
施する等、単電池の状態に応じて制御を実施し、単電池
を複数セル接続したモジュールの特性を単電池に近づけ
る様々な工夫がなされている。しかし、単電池を監視す
るICの精度は、年々良くなる傾向はあるが、コストを考
慮した場合、25mV程度が限界であり、電池のばらつきを
判断する為には、少なくとも単電池の電圧ばらつきが25
mV〜50mV程度以上必要となる。現状、電池のばらつき
は上述の様に充電時の単電池電圧で制御されており、充
電電位カーブが比較的平坦なリチウムイオン電池、特に
マンガンを正極、負極に黒鉛を用いたリチウムイオン電
池では、25mVの電圧差が生じた場合、単電池間では相
当大きなばらつき(例えば、充電状態で10%程度)とな
っている。単電池間のばらつきはモジュールサイクル寿
命を低下させる原因であり、より早い時期での単電池間
のばらつきを感知し、制御する必要があった。
When the lithium ion battery is modularized, single cell control for monitoring the voltage of the single battery is usually performed for the purpose of safety to prevent overcharge and overdischarge. Also,
When the cells with high internal resistance reach the charge regulation voltage first due to the variation of the cells, the bypass circuit controls the charging of only the cells concerned or the control to reduce the charging current is performed. Various controls have been made to bring the characteristics of a module in which a plurality of cells are connected together closer to the characteristics of a single cell. However, the accuracy of ICs that monitor single cells tends to improve year by year, but considering cost, the limit is about 25 mV, and in order to judge battery variations, at least the voltage variations of the single cells must be considered. twenty five
mV to 50 mV or more is required. At present, the battery variation is controlled by the cell voltage during charging as described above, and the lithium-ion battery having a relatively flat charging potential curve, particularly the manganese positive electrode and the lithium-ion battery using graphite for the negative electrode, When a voltage difference of 25 mV occurs, there is a considerable variation (for example, about 10% in the charged state) among the single cells. The variation between the cells is a cause of shortening the module cycle life, and it is necessary to detect and control the variation between the cells at an earlier stage.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、非水
系二次電池(単電池)を複数セル接続した非水系二次電
池モジュールにおいて、単電池のばらつきを早期に感知
し、あらかじめ決定された制御を実行できる非水系二次
電池モジュールの制御法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to determine in advance a non-aqueous secondary battery module in which a plurality of non-aqueous secondary batteries (single cells) are connected, by detecting variations in the single cells at an early stage. Another object of the present invention is to provide a control method of a non-aqueous secondary battery module capable of executing such control.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するため、下記の非水系二次電池モジュールの制御法
を提供するものである。
In order to achieve the above object, the present invention provides the following method for controlling a non-aqueous secondary battery module.

【0012】項1.正極、負極、セパレータ、及びリチ
ウム塩を含む非水系電解質を備えた非水系二次電池(単
電池)を複数セル接続した非水系二次電池モジュールに
おいて、各単電池の電圧を監視し、非水系二次電池モジ
ュールの放電深度が80%以上の状態において単電池の最
小電圧と最大電圧の電圧差が設定値以上となった場合
に、あらかじめ決定された制御を実行する事を特徴とす
る非水系二次電池モジュールの制御法。
Item 1. In a non-aqueous secondary battery module in which a plurality of non-aqueous secondary batteries (single cells) having a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt are connected, the voltage of each single cell is monitored to A non-aqueous system characterized by executing a predetermined control when the voltage difference between the minimum voltage and the maximum voltage of a single battery exceeds a set value when the depth of discharge of the secondary battery module is 80% or more. Rechargeable battery module control method.

【0013】項2.前記非水系二次電池モジュールの放
電深度が80%〜100%であり、単電池の最小電圧と最大電
圧の電圧差の設定値が25mV〜500mV程度であり、あらか
じめ決定された制御が単電池の充放電状態のばらつきを
平準化する制御である請求項1に記載の非水系二次電池
モジュールの制御法。
Item 2. The depth of discharge of the non-aqueous secondary battery module is 80% to 100%, the set value of the voltage difference between the minimum voltage and the maximum voltage of the unit cell is about 25 mV to 500 mV, and the predetermined control is for the unit cell. The control method for a non-aqueous secondary battery module according to claim 1, wherein the control is for leveling out variations in charge / discharge states.

【0014】項3.前記非水系二次電池の厚さが12m
m未満の扁平形状であり、エネルギー容量が30Wh以
上且つ体積エネルギー密度が180Wh/l以上である
項1又は2に記載の非水系二次電池モジュールの制御
法。
Item 3. The thickness of the non-aqueous secondary battery is 12 m
Item 3. The method for controlling a non-aqueous secondary battery module according to Item 1 or 2, which has a flat shape of less than m and has an energy capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more.

【0015】項4.前記正極がマンガン酸化物を主体と
する項1又は2に記載の非水系二次電池モジュールの制
御法。
Item 4. Item 3. The method for controlling a non-aqueous secondary battery module according to Item 1 or 2, wherein the positive electrode is mainly composed of manganese oxide.

【0016】項5.前記負極がリチウムをドープ及び脱
ドープ可能な物質を含む項1又は2に記載の非水系二次
電池モジュールの制御法。
Item 5. Item 3. The method for controlling a non-aqueous secondary battery module according to Item 1 or 2, wherein the negative electrode contains a substance capable of doping and dedoping lithium.

【0017】項6.前記負極が黒鉛系物質を主体とする
項5に記載の非水系二次電池モジュールの制御法。
Item 6. Item 6. The method for controlling a non-aqueous secondary battery module according to Item 5, wherein the negative electrode is mainly composed of a graphite material.

【0018】項7.前記扁平形状の表裏面の形状が矩形
である項1から6のいずれかに記載の非水系二次電池モ
ジュールの制御法。
Item 7. Item 7. The method for controlling a non-aqueous secondary battery module according to any one of Items 1 to 6, wherein the front and back surfaces of the flat shape are rectangular.

【0019】項8.前記電池容器の板厚が0.2mm以
上1mm以下である項1から7のいずれかに記載の非水
系二次電池モジュールの制御法。
Item 8. Item 8. The method for controlling a non-aqueous secondary battery module according to any one of Items 1 to 7, wherein the battery container has a plate thickness of 0.2 mm or more and 1 mm or less.

【0020】[0020]

【発明の実施の形態】以下、本発明の非水系二次電池モ
ジュールに用いる扁平型非水系電池(単電池)の一実施
形態について説明する。図1は、扁平な矩形(ノート
型)の蓄電システム用非水系二次電池の平面図及び側面
図であり、図2は、図1に示す電池の内部に収納される
電極積層体の構成を示す側面図である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a flat non-aqueous battery (unit cell) used in the non-aqueous secondary battery module of the present invention will be described below. FIG. 1 is a plan view and a side view of a flat rectangular (notebook type) non-aqueous secondary battery for a power storage system, and FIG. 2 shows a configuration of an electrode laminate housed inside the battery shown in FIG. It is a side view shown.

【0021】図1及び図2に示すように、非水系二次電
池は、上蓋1及び底容器2からなる電池容器と、該電池
容器の中に収納されている複数の正極101a、負極1
01b、101c、及びセパレータ104からなる電極
積層体とを備えている。該実施の形態のような扁平型非
水系二次電池の場合、正極101a、負極101b(又
は積層体の両外側に配置された負極101c)は、例え
ば、図2に示すように、セパレータ104を介して交互
に配置されて積層されるが、この配置に特に限定され
ず、積層数等は、必要とされる容量等に応じて種々の変
更が可能である。また、図1及び図2に示す非水系二次
電池の形状は、例えば縦300mm×横210mm×厚
さ6mmであり、正極101aにLiMn24、負極1
01b、101cに炭素材料を用いるリチウム二次電池
の場合、例えば、蓄電システムに用いることができる。
As shown in FIGS. 1 and 2, the non-aqueous secondary battery includes a battery container including an upper lid 1 and a bottom container 2, and a plurality of positive electrodes 101a and negative electrodes 1 housed in the battery container.
01b and 101c, and the electrode laminated body which consists of the separator 104. In the case of the flat non-aqueous secondary battery as in the embodiment, the positive electrode 101a and the negative electrode 101b (or the negative electrodes 101c arranged on both outer sides of the laminated body) may have a separator 104, for example, as shown in FIG. The layers are alternately arranged through the layers to be laminated, but the arrangement is not particularly limited, and the number of layers and the like can be variously changed according to the required capacity and the like. The shape of the non-aqueous secondary battery shown in FIGS. 1 and 2 is, for example, 300 mm in length × 210 mm in width × 6 mm in thickness, and LiMn 2 O 4 is used as the positive electrode 101 a and negative electrode 1 is used as the negative electrode 1.
In the case of a lithium secondary battery using a carbon material for 01b and 101c, it can be used, for example, in a power storage system.

【0022】各正極101aの正極集電体105aは、
正極端子3に電気的に接続され、同様に、各負極101
b、101cの負極集電体105bは、負極端子4に電
気的に接続されている。正極端子3及び負極端子4は、
電池容器すなわち上蓋1と絶縁された状態で取り付けら
れている。
The positive electrode current collector 105a of each positive electrode 101a is
It is electrically connected to the positive electrode terminal 3, and similarly, each negative electrode 101
The negative electrode current collectors 105b of b and 101c are electrically connected to the negative electrode terminal 4. The positive electrode terminal 3 and the negative electrode terminal 4 are
It is attached in a state of being insulated from the battery container, that is, the upper lid 1.

【0023】上蓋1及び底容器2は、図1中の拡大図に
示したA点で全周の上蓋を溶かし込み、溶接されてい
る。上蓋1には、電解液の注液口5が開けられており、
電解液注液後、例えば、アルミニウム−変成ポリプロピ
レンラミネートフィルムからなる封口フィルム6を用い
て封口される。最終封口工程は、少なくとも一回の充電
操作の後に行うことがより好ましい。封口フィルム6に
よる最終封口工程後の電池容器内の圧力は、大気圧未満
であることが好ましく、更に好ましくは8.66×10
4Pa(650Torr)以下、特に好ましくは7.33
×104(550Torr)以下である。これは、内圧
が大気圧以上の場合、電池が設計厚みより大きくなり易
く、或いは電池の厚みのばらつきが大きくなり易く、更
には電池の内部抵抗及び容量がばらつきやすくなるから
である。この圧力は、使用するセパレータ、電解液の種
類、電池容器の材質及び厚み、電池の形状等を加味して
決定されるものである。
The upper lid 1 and the bottom container 2 are welded together by melting the upper lid around the entire circumference at point A shown in the enlarged view of FIG. An electrolyte injection port 5 is opened in the upper lid 1,
After injecting the electrolytic solution, for example, the sealing film 6 made of an aluminum-modified polypropylene laminate film is used for sealing. The final sealing step is more preferably performed after at least one charging operation. The pressure in the battery container after the final sealing step with the sealing film 6 is preferably less than atmospheric pressure, more preferably 8.66 × 10.
4 Pa (650 Torr) or less, particularly preferably 7.33
It is not more than × 10 4 (550 Torr). This is because when the internal pressure is equal to or higher than the atmospheric pressure, the battery tends to be larger than the designed thickness, or the thickness of the battery tends to vary greatly, and further, the internal resistance and capacity of the battery tend to vary. This pressure is determined in consideration of the separator used, the type of electrolyte, the material and thickness of the battery container, the shape of the battery, and the like.

【0024】正極101aに用いられる正極活物質とし
ては、リチウム系の正極材料であれば、特に限定され
ず、リチウム複合コバルト酸化物、リチウム複合ニッケ
ル酸化物、リチウム複合マンガン酸化物、或いはこれら
の混合物、更にはこれら複合酸化物に異種金属元素を一
種以上添加した系等を用いることができ、高電圧、高容
量の電池が得られることから、好ましい。また、大型リ
チウム系二次電池の実用化において最重点課題である安
全性を重視する場合、熱分解温度が高いマンガン酸化物
が好ましい。このマンガン酸化物としてはLiMn24
に代表されるリチウム複合マンガン酸化物、更にはこれ
ら複合酸化物に異種金属元素を一種以上添加した系、さ
らにはリチウムを量論比よりも過剰にしたLi1+xMn
2-y4等が挙げられる。特に、上記マンガン酸化物を主
体とする正極を用いる場合、その効果が大きい。
The positive electrode active material used for the positive electrode 101a is not particularly limited as long as it is a lithium-based positive electrode material, and lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or a mixture thereof. Further, a system in which one or more different metal elements are added to these composite oxides can be used, and a high-voltage, high-capacity battery can be obtained, which is preferable. Further, when importance is placed on safety, which is the most important issue in the practical application of large-sized lithium secondary batteries, manganese oxide having a high thermal decomposition temperature is preferable. This manganese oxide is LiMn 2 O 4
Lithium complex manganese oxide represented by, and a system in which one or more dissimilar metal elements are added to these complex oxides, and Li 1 + x Mn containing lithium in excess of the stoichiometric ratio.
2-yO 4 and the like can be mentioned. In particular, the effect is great when the positive electrode mainly containing the manganese oxide is used.

【0025】負極101b、101cに用いられる負極
活物質としては、リチウム系の負極材料であれば、特に
限定されず、リチウムをドープ及び脱ドープ可能な材料
であることが、安全性、サイクル寿命などの信頼性が向
上し好ましい。リチウムをドープ及び脱ドープ可能な材
料としては、公知のリチウムイオン電池の負極材として
使用されている黒鉛系物質、炭素系物質、錫酸化物系、
ケイ素酸化物系等の金属酸化物、或いはポリアセン系有
機半導体に代表される導電性高分子等が挙げられる。特
に、上記黒鉛系物質を主体とする負極を用いる場合、そ
の効果が大きい。
The negative electrode active material used for the negative electrodes 101b and 101c is not particularly limited as long as it is a lithium-based negative electrode material, and it is a material capable of doping and dedoping lithium, such as safety and cycle life. This is preferable because it improves reliability. As a material capable of doping and dedoping lithium, a graphite-based material, a carbon-based material, a tin oxide-based material used as a negative electrode material of a known lithium-ion battery,
Examples thereof include metal oxides such as silicon oxides, and conductive polymers represented by polyacene organic semiconductors. In particular, when the negative electrode mainly composed of the above-mentioned graphite material is used, its effect is great.

【0026】セパレータ104の構成は、特に限定され
るものではないが、単層又は複層のセパレータを用いる
ことができ、少なくとも1枚は不織布を用いることが好
ましく、この場合、サイクル特性が向上する。また、セ
パレータ104の材質も、特に限定されるものではない
が、例えばポリエチレン、ポリプロピレンなどのポリオ
レフィン、ポリアミド、クラフト紙、ガラス、セルロー
ス系材料等が挙げられ、電池の耐熱性、安全性設計に応
じ適宜決定される。
The structure of the separator 104 is not particularly limited, but a single-layer or multi-layer separator can be used, and it is preferable to use at least one nonwoven fabric. In this case, cycle characteristics are improved. . The material of the separator 104 is not particularly limited, and examples thereof include polyolefins such as polyethylene and polypropylene, polyamide, kraft paper, glass, and cellulosic materials, and the like, depending on the heat resistance and safety design of the battery. It is decided as appropriate.

【0027】非水系二次電池の電解質としては、公知の
リチウム塩を含む非水系電解質を使用することができ、
正極材料、負極材料、充電電圧等の使用条件により適宜
決定され、より具体的にはLiPF6、LiBF4、Li
ClO4等のリチウム塩を、プロピレンカーボネート、
エチレンカーボネート、ジエチルカーボネート、ジメチ
ルカーボネート、メチルエチルカーボネート、ジメトキ
シエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチ
ル、或いはこれら2種以上の混合溶媒等の有機溶媒に溶
解したもの等が例示される。また、電解液の濃度は特に
限定されるものではないが、一般的に0.5mol/l
から2mol/lが実用的であり、該電解液は当然のこ
とながら、水分が100ppm以下のものを用いること
が好ましい。なお、本明細書で使用する非水系電解質と
は、非水系電解液、有機電解液を含む概念を意味するも
のであり、また、ゲル状又は固体の電解質も含む概念を
意味するものである。
As the electrolyte of the non-aqueous secondary battery, a known non-aqueous electrolyte containing a lithium salt can be used,
It is appropriately determined depending on the use conditions such as the positive electrode material, the negative electrode material, the charging voltage, and more specifically, LiPF 6 , LiBF 4 , Li
Lithium salt such as ClO 4 , propylene carbonate,
Examples thereof include ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, methyl acetate, methyl formate, and those dissolved in an organic solvent such as a mixed solvent of two or more of these. The concentration of the electrolytic solution is not particularly limited, but is generally 0.5 mol / l.
Is practically 2 mol / l, and as a matter of course, it is preferable to use an electrolytic solution having a water content of 100 ppm or less. The non-aqueous electrolyte used in the present specification means a concept including a non-aqueous electrolyte solution and an organic electrolyte solution, and also a concept including a gel or solid electrolyte.

【0028】上記のように構成された非水系二次電池の
エネルギー容量は、好ましくは30Wh以上、より好ま
しくは50Wh以上であり、且つエネルギー密度は、好
ましくは180Wh/l以上、より好ましくは200W
h/lである。エネルギー容量が30Wh未満の場合、
或いは、体積エネルギー密度が180Wh/l未満の場
合は、蓄電システムに用いるには容量が小さく、充分な
システム容量を得るために電池の直並列数を増やす必要
があること、また、コンパクトな設計が困難となること
から蓄電システム用としては好ましくない。
The energy capacity of the non-aqueous secondary battery constructed as described above is preferably 30 Wh or more, more preferably 50 Wh or more, and the energy density is preferably 180 Wh / l or more, more preferably 200 W.
h / l. If the energy capacity is less than 30 Wh,
Alternatively, when the volume energy density is less than 180 Wh / l, the capacity is small for use in an electricity storage system, and it is necessary to increase the number of series-parallel batteries to obtain sufficient system capacity, and a compact design is required. It is difficult to use for a power storage system because it becomes difficult.

【0029】非水系二次電池は、扁平形状をしており、
その厚さは12mm未満、より好ましくは10mm未満
である。厚さの下限については電極の充填率、電池サイ
ズ(薄くなれば同容量を得るためには面積が大きくな
る)を考慮した場合、2mm以上が実用的である。電池
の厚さが12mm以上になると、電池内部の発熱を充分
に外部に放熱することが難しくなり、或いは電池内部と
電池表面付近での温度差が大きくなり、内部抵抗が異な
る結果、電池内での充電量、電圧のバラツキが大きくな
る。なお、具体的な厚さは、電池容量、エネルギー密度
に応じて適宜決定されるが、期待する放熱特性が得られ
る最大厚さで設計するのが、好ましい。
The non-aqueous secondary battery has a flat shape,
Its thickness is less than 12 mm, more preferably less than 10 mm. The lower limit of the thickness is practically 2 mm or more in consideration of the filling rate of the electrodes and the battery size (the smaller the area, the larger the area for obtaining the same capacity). When the thickness of the battery is 12 mm or more, it becomes difficult to sufficiently dissipate the heat generated inside the battery to the outside, or the temperature difference between the inside of the battery and the surface of the battery becomes large, resulting in a difference in internal resistance. The variations in the charge amount and voltage of the battery become large. The specific thickness is appropriately determined depending on the battery capacity and the energy density, but it is preferable to design the thickness with the maximum thickness at which the expected heat dissipation characteristics can be obtained.

【0030】また、非水系二次電池の形状としては、例
えば、扁平形状の表裏面が角形、円形、長円形等の種々
の形状とすることができ、角形の場合は、一般に矩形で
あるが、三角形、六角形等の多角形とすることもでき
る。さらに、肉厚の薄い円筒等の筒形にすることもでき
る。筒形の場合は、筒の肉厚がここでいう厚さとなる。
また、製造の容易性の観点から、電池の扁平形状の表裏
面が矩形であり、図1に示すようなノート型の形状が好
ましい。
As the shape of the non-aqueous secondary battery, for example, the flat surface can have various shapes such as square, circular, and oval, and the square is generally rectangular. It can also be a polygon such as a triangle or a hexagon. Further, it may be formed in a tubular shape such as a thin cylinder. In the case of a cylinder, the thickness of the cylinder is the thickness here.
Further, from the viewpoint of ease of manufacturing, the flat shape of the battery has a rectangular front and back surfaces, and a notebook shape as shown in FIG. 1 is preferable.

【0031】電池容器となる上蓋1及び底容器2に用い
られる材質は、電池の用途、形状により適宜選択され、
特に限定されるものではなく、鉄、ステンレス鋼、アル
ミニウム等が一般的であり、実用的である。また、電池
容器の厚さも電池の用途、形状或いは電池ケースの材質
により適宜決定され、特に限定されるものではない。好
ましくは、その電池表面積の80%以上の部分の厚さ
(電池容器を構成する一番面積が広い部分の厚さ)が
0.2mm以上である。上記厚さが0.2mm未満で
は、電池の製造に必要な強度が得られないことから望ま
しくなく、この観点から、より好ましくは0.3mm以
上である。また、同部分の厚さは、1mm以下であるこ
とが望ましい。この厚さが1mmを超えると、電極面を
押さえ込む力は大きくなるが、電池の内容積が減少し充
分な容量が得られないこと、或いは、重量が重くなるこ
とから望ましくなく、この観点からより好ましくは0.
7mm以下である。
The materials used for the upper lid 1 and the bottom container 2 which are the battery container are appropriately selected depending on the use and shape of the battery,
The material is not particularly limited, and iron, stainless steel, aluminum, etc. are common and practical. The thickness of the battery container is also appropriately determined depending on the use and shape of the battery or the material of the battery case, and is not particularly limited. Preferably, the thickness of 80% or more of the surface area of the battery (the thickness of the widest part of the battery container) is 0.2 mm or more. If the thickness is less than 0.2 mm, the strength required for battery production cannot be obtained, which is not desirable. From this viewpoint, the thickness is more preferably 0.3 mm or more. The thickness of the same portion is preferably 1 mm or less. If this thickness exceeds 1 mm, the force to press down the electrode surface becomes large, but it is not desirable because the internal volume of the battery decreases and a sufficient capacity cannot be obtained, or the weight becomes heavy. Preferably 0.
It is 7 mm or less.

【0032】上記のように、非水系二次電池の厚さを1
2mm未満に設計することにより、例えば、該電池が3
0Wh以上の大容量且つ180Wh/lの高エネルギー
密度を有する場合、高率充放電時等においても、優れた
放熱特性を実現し、電池温度の上昇を抑制することがで
きる。従って、内部発熱による電池の蓄熱が低減され、
結果として電池の熱暴走も抑止することが可能となり信
頼性、安全性に優れた非水系二次電池を提供することが
できる。
As described above, the thickness of the non-aqueous secondary battery is 1
By designing it to be less than 2 mm, for example, the battery is
When the battery has a large capacity of 0 Wh or more and a high energy density of 180 Wh / l, excellent heat dissipation characteristics can be realized and a rise in battery temperature can be suppressed even during high-rate charging / discharging. Therefore, the heat storage of the battery due to internal heat generation is reduced,
As a result, thermal runaway of the battery can be suppressed, and a non-aqueous secondary battery excellent in reliability and safety can be provided.

【0033】上記のように構成された非水系二次電池
(単電池)は、複数セル接続され非水系電池モジュール
とし、家庭用蓄電システム(夜間電力貯蔵、コージェネ
レ-ション、太陽光発電等)、電気自動車等の蓄電シス
テム等に用いることができる。
The non-aqueous secondary battery (single battery) configured as described above is a non-aqueous battery module in which a plurality of cells are connected to each other, and is used as a household power storage system (night power storage, cogeneration, solar power generation, etc.). It can be used for a power storage system of an electric vehicle or the like.

【0034】以下に、本発明に係る非水系電池モジュー
ルについて説明する。本発明における非水系電池モジュ
ールは、例えば、上記扁平型非水系二次電池電池(単電
池)を直列に複数枚接続したものであり、蓄電システム
に用いる場合、その数は一般に4セル以上であり、最大1
00セル程度である。例えば、単電池(4.2V-3.0Vで充放
電できる様に設計)を8枚直列接続した場合、モジュー
ルの充放電は33.6V-24Vで制御される。しかしながら、
単電池にばらつきがある場合、充放電時ある単電池は4.
2V以上で充電され、ある単電池は4.2V以下で充電される
場合がある。リチウムイオン電池において、規定上限電
圧を超えた場合や規定下限電圧より低下した場合のよう
に極度の単電池のばらつきが生じた場合(例えば、上記
の例で1つの単電池が4.5Vで充電されたり、2.5Vまで放
電された場合)、安全の理由から各電池電圧を監視し、
モジュールの充放電を停止する。この場合、電圧監視精
度は25mVあれば充分であり、特に、大きな問題とならな
い。しかし、電池のばらつきを感知して単電池ばらつき
を抑止あるいはばらつきに対応した制御(例えば、ばら
つきが生じた場合、各単電池を平準化する、劣化の大き
い電池の充電規電圧を上昇させる)を実施する場合、よ
り精度良く電池のばらつきを感知する必要がある。
The non-aqueous battery module according to the present invention will be described below. The non-aqueous battery module in the present invention is, for example, one in which a plurality of the flat type non-aqueous secondary battery batteries (unit cells) are connected in series, and when used in an electricity storage system, the number is generally 4 cells or more. , Up to 1
It is about 00 cells. For example, when eight cells (designed so that they can be charged / discharged at 4.2V-3.0V) are connected in series, the charging / discharging of the module is controlled at 33.6V-24V. However,
If there are variations in the unit cells, the unit cells that are charged and discharged are 4.
It may be charged above 2V and some cells may be charged below 4.2V. In a lithium-ion battery, when there is extreme cell variation such as when the voltage exceeds the specified upper limit voltage or drops below the specified lower limit voltage (for example, one cell is charged at 4.5V in the above example). Or when discharged to 2.5V), monitor each battery voltage for safety reasons,
Stop charging and discharging the module. In this case, the voltage monitoring accuracy of 25 mV is sufficient, and there is no particular problem. However, it is possible to detect the variation of the battery and suppress the variation of the single cell or to control in response to the variation (for example, when the variation occurs, level each cell, increase the charging reference voltage of the battery with large deterioration). If implemented, it is necessary to detect battery variations more accurately.

【0035】本発明の制御法は非水系二次電池モジュー
ルの放電深度が80%以上の状態において単電池の最小電
圧と最大電圧の電圧差が設定値以上となった場合、あら
かじめ決定された制御を実行する。すなわち、モジュー
ルの容量が100Ahの時、80%以上放電した放電末期の単
電池の電圧を比較して、単電池のばらつきを判断する。
放電深度は、好ましくは80%〜100%であり、より好ま
しくは90%〜100%である。この制御法によれば従来の
充電時電圧で制御する方法に比べ、早い時期に電池ばら
つきを感知でき、単電池ばらつきを抑止あるいはばらつ
きに対応した制御が可能となり、ばらつきによるモジュ
ール劣化を最小限に留める事が可能となる。単電池の最
小電圧と最大電圧の電圧差は、単電池及びモジュールの
種類により適宜選択できるが、例えば、25mV〜500mV程
度、好ましくはは、50mV〜250mV程度に設定することが
できる。設定値が低い場合、その電位差の測定、演算部
が煩雑になり、実用的でなく、また、上限を超える場
合、単電池のばらつきが進行しており、適切な時期に制
御するという観点から好ましくない。
According to the control method of the present invention, a predetermined control is performed when the voltage difference between the minimum voltage and the maximum voltage of the unit cell is equal to or more than the set value in the state where the depth of discharge of the non-aqueous secondary battery module is 80% or more. To execute. That is, when the capacity of the module is 100 Ah, the voltage of the cells at the end of discharge, which is discharged by 80% or more, is compared to determine the variation of the cells.
The depth of discharge is preferably 80% to 100%, more preferably 90% to 100%. According to this control method, compared to the conventional method of controlling the voltage during charging, it is possible to detect the battery variation earlier, and it is possible to suppress the cell variation or perform control corresponding to the variation, and minimize the module deterioration due to the variation. It is possible to stop. The voltage difference between the minimum voltage and the maximum voltage of the unit cell can be appropriately selected depending on the types of the unit cell and the module, but can be set to, for example, about 25 mV to 500 mV, preferably about 50 mV to 250 mV. When the set value is low, the measurement of the potential difference and the calculation unit become complicated, which is not practical, and when the set value exceeds the upper limit, the dispersion of the unit cells is progressing, and it is preferable from the viewpoint of controlling at an appropriate time. Absent.

【0036】あらかじめ決定された制御とは、単電池の
充放電状態のばらつきを平準化する制御であり、例え
ば、充放電電流を特定のセルだけバイパスし充放電状態
を平準化する制御、全電池を並列接続し充放電状態を平
準化する制御等が挙げられる。この平準化制御に関して
は、最小電圧と最大電圧差が設定値になると同時に実行
する必要はなく、例えば、設定値に到達した後、次回の
充電時、あるいは放電時に実施する事も可能であり、ま
た、ユーザーに警告し、ユーザーが都合の良い時期に平
準化制御を実行する事も可能である。
The predetermined control is a control for leveling the variations in the charge / discharge states of the unit cells, for example, a control for leveling the charge / discharge state by bypassing the charge / discharge current of only a specific cell, all batteries. And the like, which are connected in parallel to level the charge / discharge state. Regarding this leveling control, it is not necessary to execute it at the same time when the difference between the minimum voltage and the maximum voltage reaches the set value, and for example, after reaching the set value, it is possible to carry out the next charging or discharging. It is also possible to warn the user and execute the leveling control at a time convenient for the user.

【0037】[0037]

【実施例】以下、本発明の実施例を示し、本発明をさら
に具体的に説明する。
EXAMPLES The present invention will now be described more specifically by showing examples of the present invention.

【0038】(1)まず、リチウムマンガン複合酸化物
としてのLiMn2O4とリチウムニッケル複合酸化物として
のLiNi0.8Co0.2O2と導電材であるアセチレンブラックと
を乾式混合し、得られた混合物をバインダーであるポリ
フッ化ビニリデン(PVDF)を溶解させたN-メチル-2-ピロ
リドン(NMP)中に均一に分散させて、スラリー-1を調製
した。この時、正極中の固形分比率(重量比)を、リチウ
ムマンガン酸リチウム:リチウムニッケル酸リチウム:
アセチレンブラック:PVDF=74:18:3:5とした。次い
て、スラリー-1を集電体となるアルミニウム箔の両面に
塗布し、乾燥した後、プレスを行い、正極を得た。
(1) First, LiMn 2 O 4 as a lithium manganese composite oxide, LiNi 0.8 Co 0.2 O 2 as a lithium nickel composite oxide and acetylene black as a conductive material were dry-mixed to obtain a mixture. Was uniformly dispersed in N-methyl-2-pyrrolidone (NMP) in which polyvinylidene fluoride (PVDF) as a binder was dissolved to prepare slurry-1. At this time, the solid content ratio (weight ratio) in the positive electrode was calculated as follows: lithium lithium manganate: lithium lithium nickel oxide:
Acetylene black: PVDF = 74: 18: 3: 5. Next, Slurry-1 was applied on both sides of an aluminum foil serving as a current collector, dried and then pressed to obtain a positive electrode.

【0039】図3-(a)は、正極の説明図である。本実施
例において、正極101aの塗布面積(W1×W2)は、130
×177mm2である。また、電極の短辺側には、電極が塗布
されていない集電部106aが設けられ、その中央に直
径3mmの穴が開けられている。
FIG. 3A is an explanatory view of the positive electrode. In this embodiment, the coating area (W1 × W2) of the positive electrode 101a is 130
× 177 mm 2 . Further, on the short side of the electrode, a current collecting portion 106a to which no electrode is applied is provided, and a hole having a diameter of 3 mm is opened in the center thereof.

【0040】(2)一方、二重構造黒鉛粒子(商品名
“OPCG-K"、大阪ガスケミカル製;黒鉛粒子コアの(002)
面の面間隔(d002)=0.34nm未満、被覆層の(002)面の面間
隔(d002)=0.34nm以上)、黒鉛化メソカーボンマイクロ
ビーズ(MCMB、大阪ガスケミカル製、品番“25-28";(00
2)面の面間隔(d002)=0.34nm未満)および導電材である
アセチレンブラックを乾式混合した後、バインダーであ
るPVDFを溶解させたNMP中に均一に分散させ、スラリー-
2を調製した。負極中の固形分比率(重量比)は、二重構
造黒鉛粒子:黒鉛化メソカーボンマイクロビーズ:アセチ
レンブラック:PVDF=64:28:2:6とした。次いで、スラリ
ー-2を集電体となる銅箔の両面に塗布し、乾燥した後、
プレスを行い、負極を得た。得られた負極の密度は1.45
g/ccであった。
(2) On the other hand, double structure graphite particles (trade name "OPCG-K", manufactured by Osaka Gas Chemicals; graphite particle core (002)
Surface spacing (d002) = less than 0.34 nm, coating layer (002) surface spacing (d002) = 0.34 nm or more), graphitized mesocarbon microbeads (MCMB, Osaka Gas Chemicals, product number "25-28""; (00
2) The interplanar spacing (d002) = less than 0.34 nm) and the conductive material acetylene black are dry-mixed, and then uniformly dispersed in NMP in which PVDF, which is the binder, is dissolved to form a slurry-
2 was prepared. The solid content ratio (weight ratio) in the negative electrode was double structure graphite particles: graphitized mesocarbon microbeads: acetylene black: PVDF = 64: 28: 2: 6. Then, slurry-2 is applied to both sides of a copper foil serving as a current collector, and after drying,
It pressed and the negative electrode was obtained. The density of the obtained negative electrode is 1.45.
It was g / cc.

【0041】図3-(b)は、負極の説明図である。負極1
01bの塗布面積(W1×W2)は、133×181.5mm2である。
また、電極の短辺側には、電極が塗布されていない集電
部106bが設けられ、その中央に直径3mmの穴が開け
られている。
FIG. 3- (b) is an explanatory view of the negative electrode. Negative electrode 1
The application area (W1 × W2) of 01b is 133 × 181.5 mm 2 .
Further, on the short side of the electrode, a current collecting portion 106b to which no electrode is applied is provided, and a hole having a diameter of 3 mm is formed in the center thereof.

【0042】さらに、上記と同様の手法により片面だけ
にスラリー-2を塗布し、片面電極を作製した。片面電極
は、後述の(3)項の電極積層体において外側に配置さ
れる(図2中101c)。
Further, the slurry-2 was applied to only one surface by the same method as described above to prepare a single-sided electrode. The single-sided electrode is arranged outside in the electrode laminate of item (3) described later (101c in FIG. 2).

【0043】(3)図3に示すように、上記(1)項で
得られた正極9枚と上記(2)項で得られた負極10枚(内
片面2枚)とを、セパレータ材A(レーヨン系不織布、目
付12.6g/m2)とセパレータ材B(ポリエチレン製微孔膜;
目付13.3g/m2)とを合わせたセパレータ104を介して
交互に積層し、さらに、電池容器との絶縁のために外側
の負極101cのさらに外側にセパレータ材Bを配置し
て、電極積層体を作成した。なお、セパレータ104
は、セパレータ材Aが正極側に位置し、セパレータ材Bが
負極側に位置するように配置した。
(3) As shown in FIG. 3, 9 sheets of the positive electrode obtained in the above (1) and 10 sheets of the negative electrode obtained in the above (2) (2 sheets on one side of the inside) were used as a separator material A. (Rayon non-woven fabric, basis weight 12.6 g / m 2 ) and separator material B (polyethylene microporous membrane;
Alternately laminated through a basis weight 13.3 g / m 2) and the separator 104 of the combined, further, place the further separator material B on the outside of the anode 101c of the outer for insulation between the battery container, electrode stack It was created. Note that the separator 104
Was placed so that the separator material A was located on the positive electrode side and the separator material B was located on the negative electrode side.

【0044】(4)図4に示す様に、厚さ0.5mmのSUS30
4製薄板を深さ5mmに絞り、底容器2を作成し、上蓋1も
厚さ0.5mmのSUS304製薄板により作製した。次いで、上
蓋1にアルミニウム製の正極端子3および銅製の負極端
子4(頭部直径6mm、先端M3のねじ部)を取り付けた。
正極および負極端子3、4は、ポリプロピレン製ガスケ
ットにより上蓋1と絶縁した。
(4) As shown in FIG. 4, SUS30 having a thickness of 0.5 mm
The thin plate made of 4 was squeezed to a depth of 5 mm to make a bottom container 2, and the upper lid 1 was also made of a thin plate made of SUS304 having a thickness of 0.5 mm. Next, the positive electrode terminal 3 made of aluminum and the negative electrode terminal 4 made of copper (head diameter 6 mm, screw part of tip M3) were attached to the upper lid 1.
The positive electrode and negative electrode terminals 3 and 4 were insulated from the upper lid 1 by a polypropylene gasket.

【0045】(5)上記(3)項で作成した電極積層体
の各正極集電部106aの穴を正極端子3に、また各負
極集電部106bの穴を負極端子4に入れ、それぞれア
ルミニウム製および銅製のボルトで接続した後、接続さ
れた電極積層体を絶縁テープで固定し、図1の角部Aを
全周に亘りレーザー溶接した。次いで、電池内を真空ポ
ンプで減圧した後、注液口5(直径6mm)から、70gのエ
チレンカーボネート、及びジメチルカーボネートを体積
比30:70に混合した溶媒に1mol/lの濃度にLiPF6を溶解し
た電解液(3%の添加剤)を注液し、その時間を測定し
た。次いで、大気圧下で仮止め用のボルトを用いて注液
口5を一旦封口し、電池の初期充電を実施した。
(5) The holes of the positive electrode current collectors 106a of the electrode laminate prepared in the above item (3) are inserted in the positive electrode terminal 3 and the holes of the negative electrode current collectors 106b are inserted in the negative electrode terminal 4, respectively. After connecting with bolts made of copper and copper, the connected electrode laminate was fixed with an insulating tape, and the corner portion A in FIG. 1 was laser-welded over the entire circumference. Next, after decompressing the inside of the battery with a vacuum pump, from a liquid injection port 5 (diameter 6 mm), 70 g of ethylene carbonate and dimethyl carbonate were mixed in a volume ratio of 30:70, and LiPF 6 was added to a concentration of 1 mol / l. The dissolved electrolytic solution (3% additive) was injected, and the time was measured. Next, the liquid injection port 5 was once sealed under atmospheric pressure using a temporary fixing bolt, and the battery was initially charged.

【0046】(6)この電池の定格容量は11.5Ahであ
り、10時間率の電流とは1.15Aである。初期充電電流を
0.5A、1A、2Aとし、4.2Vまで充電した後、4.2Vの定電圧
を印加する定電流定電圧充電を合計8時間行い、続いて2
Aの定電流で2.5Vまで放電した。
(6) The rated capacity of this battery is 11.5 Ah, and the current at 10-hour rate is 1.15 A. Initial charging current
After charging up to 4.2V with 0.5A, 1A, 2A, constant current constant voltage charging with constant voltage of 4.2V for 8 hours in total, followed by 2
It was discharged to 2.5V with a constant current of A.

【0047】(7)次に、電池の仮止め用ボルトを取り
外した後、4×104Pa(300Torr)の減圧下に、直径12mmに
打ち抜いた厚さ0.08mmのアルミニウム箔-変性ポリプロ
ピレンラミネートフィルムからなる封口フィルム6を、
温度250〜350℃、圧力1〜3kg/cm2、加圧時間5〜10秒の
条件で熱融着することにより、注液口5を最終封口し
て、幅148mm×高さ210mm×厚さ6.4mmの扁平形状のノー
ト型電池を得た。
(7) Next, after removing the temporary fixing bolts of the battery, under reduced pressure of 4 × 10 4 Pa (300 Torr), a 0.08 mm thick aluminum foil-modified polypropylene laminated film punched out to a diameter of 12 mm Sealing film 6 consisting of
Final sealing of injection port 5 by heat fusion under conditions of temperature 250-350 ° C, pressure 1-3 kg / cm 2 , pressurization time 5-10 seconds, width 148 mm x height 210 mm x thickness A 6.4 mm flat notebook battery was obtained.

【0048】該電池を8枚直列に接続した電池モジュー
ルを作成し、このモジュールを2Aの電流で33.2Vまで充
電し、2Aの定電流で26.4Vまで放電するサイクルを繰
り返した。各単電池の電圧をモニターし単電池の最大電
圧と最小電圧差が50mVとなるサイクル数を測定した。
モジュール電圧が33.2V(放電深度0%)で監視した場
合、1サイクル目8mVであった電位差は250サイクルにお
いても25mV以下であったが、モジュール電圧が26.4V
(放電深度100%)で監視した場合、1サイクル目15mV
であった電位差は50サイクルで電圧差50mVとなり、そ
のばらつきを早期に感知する事が可能であった。
A battery module in which eight of the batteries were connected in series was prepared, the module was charged to 33.2 V at a current of 2 A, and discharged to 26.4 V at a constant current of 2 A was repeated. The voltage of each unit cell was monitored, and the number of cycles at which the maximum voltage and the minimum voltage difference of the unit cell were 50 mV was measured.
When the module voltage was monitored at 33.2V (depth of discharge 0%), the potential difference that was 8 mV in the first cycle was 25 mV or less in 250 cycles, but the module voltage was 26.4V.
When monitored at a discharge depth of 100%, the first cycle is 15 mV
The potential difference was 50 mV after 50 cycles, and it was possible to detect the variation early.

【0049】(8)ばらつきを感知した後、8セルを並
列接続し、12時間放置し各単電池の電圧ばらつきを平準
化した。平準化後、再度8セルを直列接続し充放電を5回
繰り返し、モジュール電圧が26.4Vとなった時の単電池
の最小電圧と最大電圧差は20mVであり、ばらつきが50
サイクル目に比べ小さかった。
(8) After sensing the variation, 8 cells were connected in parallel and left for 12 hours to level the voltage variation of each unit cell. After leveling, 8 cells are connected again in series and charging / discharging is repeated 5 times. When the module voltage becomes 26.4V, the minimum and maximum voltage difference of the unit cell is 20mV, and the variation is 50
It was smaller than the cycle eye.

【0050】[0050]

【発明の効果】本発明の非水系二次電池モジュールの制
御法によれば、早期に単電池のばらつきを感知すること
ができ、より早い時期から単電池ばらつきの抑止あるい
は該ばらつきに対応した制御が可能な為、電池ばらつき
によるモジュール劣化対策が早期に実施可能となる。
According to the control method of the non-aqueous secondary battery module of the present invention, it is possible to detect the variation of the single cell at an early stage, and to suppress the variation of the single cell from an earlier stage or perform the control corresponding to the variation. As a result, it is possible to take measures against module deterioration due to battery variations at an early stage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態である蓄電システム用非水
系二次電池の平面図及び側面図を示す図である。
FIG. 1 is a diagram showing a plan view and a side view of a non-aqueous secondary battery for a power storage system according to an embodiment of the present invention.

【図2】図1に示す電池の内部に収納される電極積層体
の構成を示す側面図である。
FIG. 2 is a side view showing a configuration of an electrode laminated body housed inside the battery shown in FIG.

【図3】図2に示す積層体を構成する正極、負極、及び
セパレータの平面図である。
FIG. 3 is a plan view of a positive electrode, a negative electrode, and a separator that form the laminated body shown in FIG.

【図4】図1に示す電池の上蓋及び底容器を分離した状
態で示す断面図である。
FIG. 4 is a cross-sectional view showing a state in which an upper lid and a bottom container of the battery shown in FIG. 1 are separated.

【符号の説明】[Explanation of symbols]

1 上蓋 2 底容器 3 正極端子 4 負極端子 5 注液口 6 封口フィルム 101a 正極(両面) 101b 負極(両面) 101c 負極(片面) 104 セパレータ 105a 正極集電体 105b 負極集電体 106a 正極集電片 106b 負極集電片 1 Top cover 2 bottom containers 3 Positive terminal 4 Negative electrode terminal 5 Injection port 6 sealing film 101a Positive electrode (both sides) 101b Negative electrode (both sides) 101c Negative electrode (one side) 104 separator 105a Positive electrode current collector 105b Negative electrode current collector 106a Positive electrode current collector piece 106b Negative electrode current collector piece

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田尻 博幸 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 栗山 和哉 大阪府大阪市中央区平野町四丁目1番2号 株式会社関西新技術研究所内 (72)発明者 加藤 史朗 大阪府大阪市中央区平野町四丁目1番2号 株式会社関西新技術研究所内 (72)発明者 矢田 静邦 大阪府大阪市中央区平野町四丁目1番2号 株式会社関西新技術研究所内 Fターム(参考) 5H011 AA06 BB05 CC06 DD01 KK01 5H030 AA01 AS01 AS06 BB01 BB21 FF41 FF44    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroyuki Tajiri             4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture               Within Osaka Gas Co., Ltd. (72) Inventor Kazuya Kuriyama             4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture               Kansai Research Institute of Technology (72) Inventor Shiro Kato             4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture               Kansai Research Institute of Technology (72) Inventor Shizukuni Yada             4-1-2 Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture               Kansai Research Institute of Technology F term (reference) 5H011 AA06 BB05 CC06 DD01 KK01                 5H030 AA01 AS01 AS06 BB01 BB21                       FF41 FF44

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 正極、負極、セパレータ、及びリチウム
塩を含む非水系電解質を備えた非水系二次電池(単電
池)を複数セル接続した非水系二次電池モジュールにお
いて、各単電池の電圧を監視し、非水系二次電池モジュ
ールの放電深度が80%以上の状態において単電池の最小
電圧と最大電圧の電圧差が設定値以上となった場合に、
あらかじめ決定された制御を実行する事を特徴とする非
水系二次電池モジュールの制御法。
1. A non-aqueous secondary battery module in which a plurality of non-aqueous secondary batteries (single batteries) each including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt are connected to each other. If the voltage difference between the minimum voltage and the maximum voltage of the single cell is more than the set value when the depth of discharge of the non-aqueous secondary battery module is 80% or more,
A control method for a non-aqueous secondary battery module, which is characterized by executing a predetermined control.
【請求項2】 前記非水系二次電池モジュールの放電深
度が80%〜100%であり、単電池の最小電圧と最大電圧の
電圧差の設定値が25mV〜500mV程度であり、あらかじめ
決定された制御が単電池の充放電状態のばらつきを平準
化する制御である請求項1に記載の非水系二次電池モジ
ュールの制御法。
2. The depth of discharge of the non-aqueous secondary battery module is 80% to 100%, the set value of the voltage difference between the minimum voltage and the maximum voltage of the unit cell is about 25 mV to 500 mV, which is predetermined. The control method for a non-aqueous secondary battery module according to claim 1, wherein the control is control for equalizing variations in charge / discharge states of the unit cells.
【請求項3】 前記非水系二次電池の厚さが12mm未
満の扁平形状であり、エネルギー容量が30Wh以上且
つ体積エネルギー密度が180Wh/l以上である請求
項1又は2に記載の非水系二次電池モジュールの制御
法。
3. The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery has a flat shape with a thickness of less than 12 mm, an energy capacity of 30 Wh or more and a volume energy density of 180 Wh / l or more. Control method for secondary battery module.
【請求項4】 前記正極がマンガン酸化物を主体とする
請求項1又は2に記載の非水系二次電池モジュールの制
御法。
4. The method for controlling a non-aqueous secondary battery module according to claim 1, wherein the positive electrode is mainly composed of manganese oxide.
【請求項5】 前記負極がリチウムをドープ及び脱ドー
プ可能な物質を含む請求項1又は2に記載の非水系二次
電池モジュールの制御法。
5. The method for controlling a non-aqueous secondary battery module according to claim 1, wherein the negative electrode contains a material capable of doping and dedoping lithium.
【請求項6】 前記負極が黒鉛系物質を主体とする請求
項5に記載の非水系二次電池モジュールの制御法。
6. The method for controlling a non-aqueous secondary battery module according to claim 5, wherein the negative electrode is mainly composed of a graphite-based material.
【請求項7】 前記扁平形状の表裏面の形状が矩形であ
る請求項1から6のいずれかに記載の非水系二次電池モ
ジュールの制御法。
7. The method for controlling a non-aqueous secondary battery module according to claim 1, wherein the shape of the front and back surfaces of the flat shape is rectangular.
【請求項8】 前記電池容器の板厚が0.2mm以上1
mm以下である請求項1から7のいずれかに記載の非水
系二次電池モジュールの制御法。
8. The plate thickness of the battery container is 0.2 mm or more 1
The method for controlling the non-aqueous secondary battery module according to any one of claims 1 to 7, wherein the control method is less than or equal to mm.
JP2002080129A 2002-03-22 2002-03-22 Control method of non-aqueous secondary battery module Expired - Fee Related JP4022726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002080129A JP4022726B2 (en) 2002-03-22 2002-03-22 Control method of non-aqueous secondary battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002080129A JP4022726B2 (en) 2002-03-22 2002-03-22 Control method of non-aqueous secondary battery module

Publications (2)

Publication Number Publication Date
JP2003282151A true JP2003282151A (en) 2003-10-03
JP4022726B2 JP4022726B2 (en) 2007-12-19

Family

ID=29229291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002080129A Expired - Fee Related JP4022726B2 (en) 2002-03-22 2002-03-22 Control method of non-aqueous secondary battery module

Country Status (1)

Country Link
JP (1) JP4022726B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106771A1 (en) * 2005-04-04 2006-10-12 Matsushita Electric Industrial Co., Ltd. Cylindrical lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106771A1 (en) * 2005-04-04 2006-10-12 Matsushita Electric Industrial Co., Ltd. Cylindrical lithium secondary battery
US7419743B2 (en) 2005-04-04 2008-09-02 Matsushita Electric Industrial Co., Ltd. Cylindrical lithium battery resistant to breakage of the porous heat resistant layer

Also Published As

Publication number Publication date
JP4022726B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
JP3997370B2 (en) Non-aqueous secondary battery
JP3799463B2 (en) Battery module
US8012614B2 (en) Non-aqueous electrolyte battery, and power supply unit
JP4562304B2 (en) Method for producing non-aqueous secondary battery
JP2012156405A (en) Electricity storage device
US6258487B1 (en) Lithium secondary battery including a divided electrode base layer
JP4009803B2 (en) Non-aqueous secondary battery
JP3997369B2 (en) Manufacturing method of non-aqueous secondary battery
JP2002298827A (en) Nonaqueous secondary battery
JP2002246068A (en) Nonaqueous secondary cell
JP4403447B2 (en) Non-aqueous secondary battery
JP2002270241A (en) Nonaqueous secondary cell
JP4092543B2 (en) Non-aqueous secondary battery
JP4009802B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP2002270240A (en) Nonaqueous secondary cell
JP4601109B2 (en) Non-aqueous secondary battery
WO2022000329A1 (en) Electrochemical apparatus and electronic apparatus
JP4025944B2 (en) Organic electrolyte battery for power storage system
JP2001243953A (en) Non-aqueous secondary battery
JP2002245991A (en) Non-aqueous secondary battery
JP4594478B2 (en) Non-aqueous secondary battery
JP4022726B2 (en) Control method of non-aqueous secondary battery module
JP2001266848A (en) Non-aqueous secondary battery
JP4859277B2 (en) Non-aqueous secondary battery
JP2001243980A (en) Non-aqueous secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Ref document number: 4022726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees