JP2003282051A - Electrode for cell, and cell using electrode for cell - Google Patents

Electrode for cell, and cell using electrode for cell

Info

Publication number
JP2003282051A
JP2003282051A JP2002082046A JP2002082046A JP2003282051A JP 2003282051 A JP2003282051 A JP 2003282051A JP 2002082046 A JP2002082046 A JP 2002082046A JP 2002082046 A JP2002082046 A JP 2002082046A JP 2003282051 A JP2003282051 A JP 2003282051A
Authority
JP
Japan
Prior art keywords
battery
active material
binder
volume
battery electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002082046A
Other languages
Japanese (ja)
Inventor
Takayuki Iwasaki
孝行 岩▲崎▼
Tomotoshi Mochizuki
智俊 望月
Koki Yoshizawa
廣喜 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002082046A priority Critical patent/JP2003282051A/en
Publication of JP2003282051A publication Critical patent/JP2003282051A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Metal Rolling (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an efficient electrode for cells of which the internal resistance is low and the cell using this electrode for cells. <P>SOLUTION: The electrode for cells is formed by combining a powdered active material 15 with current collector bodies 10, which have electrical conductivity. If a value computed by dividing the volume of a void, which is obtained by subtracting the real volume of the active material 15 from the volume of the apparent volume of the active material 15, further by the volume of the apparent volume of the active material 15, is to be a percentage of voids, the above percentage of voids is to become 5% or more and 20% or less. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電池用電極、及び
該電池用電極を用いた電池に係わり、特に、内部抵抗が
低く、高性能な電池用電極、及び該電池用電極を用いた
電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery electrode and a battery using the battery electrode, and more particularly to a battery electrode having a low internal resistance and high performance, and a battery using the battery electrode. It is about.

【0002】[0002]

【従来の技術】従来、ニッケル水素電池の負極板を製造
する場合、水素吸蔵合金等の活物質の粉末に結着剤や導
電材等を混合させたペースト状物質を、電極の集電体と
なる発泡状の金属多孔体に塗布して三次元状の空孔に充
填したり、あるいは、パンチングメタル、メタルラス等
の金属板に穴あけ加工した金属多孔板に塗着し、乾燥
後、圧延加工することにより製造されている。この場
合、前記ニッケル水素電池の負極板の空隙率は、約25
%程度である。なお、空隙率とは、集電体以外の電極構
成部材(活物質、結着剤、及び導電材を含む)の実体積
を、集電体以外の電極構成部材の見かけの体積から引い
て空隙の体積を求め、さらに、前記空隙の体積を、集電
体以外の電極構成部材の見かけの体積で割って得られる
値である。
2. Description of the Related Art Conventionally, when a negative electrode plate for a nickel-hydrogen battery is manufactured, a paste-like substance obtained by mixing a powder of an active material such as a hydrogen storage alloy with a binder or a conductive material is used as an electrode current collector. Is applied to a foamed metal porous body to fill three-dimensional pores, or it is applied to a perforated metal porous plate such as punching metal or metal lath, dried, and then rolled. It is manufactured by In this case, the porosity of the negative electrode plate of the nickel hydrogen battery is about 25.
%. In addition, the porosity is the void obtained by subtracting the actual volume of the electrode component other than the current collector (including the active material, the binder, and the conductive material) from the apparent volume of the electrode component other than the current collector. Is a value obtained by dividing the volume of the void by the apparent volume of the electrode constituent member other than the current collector.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
従来技術に示すような空隙率が25%程度の電池用電極
においては、電極内部の電気抵抗が大きいために、放電
容量を低下させる一因となるという問題があった。
However, in the battery electrode having a porosity of about 25% as shown in the above-mentioned prior art, the electrical resistance inside the electrode is large, and this is one of the causes for lowering the discharge capacity. There was a problem of becoming.

【0004】本発明は、上記事情に鑑みてなされたもの
で、内部抵抗が低く、高性能な電池用電極、及び該電池
用電極を用いた電池を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a high-performance battery electrode having a low internal resistance, and a battery using the battery electrode.

【0005】[0005]

【課題を解決するための手段】前記課題を解決するため
に、請求項1に記載した発明は、導電性を有する集電体
に、粉末状の活物質を結合して成形される電池用電極で
あり、前記活物質の見かけの体積から前記活物質の実体
積を引いて得られる空隙の体積を、さらに、前記活物質
の見かけの体積で割って算出される値を空隙率とする
と、前記空隙率は、5%以上20%以下であることを特
徴としている。この電池用電極によれば、空隙率は、5
%以上20%以下に設定される。
In order to solve the above-mentioned problems, the invention described in claim 1 is an electrode for a battery formed by bonding a powdery active material to a conductive current collector. That is, the volume of voids obtained by subtracting the actual volume of the active material from the apparent volume of the active material, further, when the value calculated by dividing by the apparent volume of the active material is the porosity, The porosity is characterized by being 5% or more and 20% or less. According to this battery electrode, the porosity is 5
% To 20%.

【0006】請求項2に記載した発明は、前記活物質に
は、導電性を有する結着剤または導電材が添加され、前
記結着剤または前記導電材の添加率は、体積率で0、あ
るいは10%以下であることを特徴としている。この電
池用電極によれば、活物質には、体積率で0、あるいは
10%以下の導電性を有する結着剤または導電材が添加
される。
According to a second aspect of the present invention, a binder or conductive material having conductivity is added to the active material, and the addition rate of the binder or conductive material is 0 in terms of volume ratio. Alternatively, it is characterized by being 10% or less. According to this battery electrode, a binder or a conductive material having a conductivity of 0 or 10% or less in volume ratio is added to the active material.

【0007】請求項3に記載した発明は、前記結着剤ま
たは前記導電材の平均粒径は、前記活物質の平均粒径よ
りも小さいことを特徴としている。この電池用電極によ
れば、結着剤または導電材の平均粒径は、活物質の平均
粒径よりも小さく設定される。
The invention as set forth in claim 3 is characterized in that the binder or the conductive material has an average particle diameter smaller than that of the active material. According to this battery electrode, the average particle size of the binder or the conductive material is set smaller than the average particle size of the active material.

【0008】請求項4に記載した発明は、前記活物質に
は、非導電性の結着剤が添加され、前記結着剤の添加率
は、体積率で0、あるいは10%以下であることを特徴
としている。この電池用電極によれば、活物質には、体
積率で0、あるいは10%以下の非導電性結着剤が添加
される。
In the invention described in claim 4, a non-conductive binder is added to the active material, and the addition rate of the binder is 0 or 10% or less in volume ratio. Is characterized by. According to this battery electrode, a non-conductive binder having a volume ratio of 0 or 10% or less is added to the active material.

【0009】請求項5に記載した発明は、電池用電極の
成形工程では、少なくとも1回、通電圧延法により圧延
加工されることを特徴としている。この電池用電極によ
れば、該電池用電極の成形工程として、通電圧延法が採
用される。
The invention described in claim 5 is characterized in that, in the step of forming the battery electrode, rolling is performed at least once by the electric current rolling method. According to this battery electrode, the electric rolling method is adopted as the forming process of the battery electrode.

【0010】請求項6に記載した発明は、前記通電圧延
法において、通電電流αは、iを単位幅電流(A/m
m)、vを圧延速度(mm/s)とすると、α=i2
vの式を満たし、前記通電電流αは、2.5×10
5 (A2・sec)/mm3以下の値に設定されることを
特徴としている。この電池用電極によれば、通電圧延時
には、通電電流αは、2.5×105 (A2・sec)
/mm3以下の値に設定される。
According to a sixth aspect of the present invention, in the electric current rolling method, the electric current α is expressed by a unit width current (A / m).
m) and v are rolling speeds (mm / s), α = i 2 /
v is satisfied, and the energizing current α is 2.5 × 10
It is characterized by being set to a value of 5 (A 2 · sec) / mm 3 or less. According to this battery electrode, the energizing current α is 2.5 × 10 5 (A 2 · sec) during the energizing rolling.
/ Mm 3 or less.

【0011】請求項7に記載した発明は、前記通電圧延
法は、圧力が1×10-2Pa以下の真空雰囲気下で実施
されることを特徴としている。この電池用電極によれ
ば、通電圧延法は、圧力が1×10-2Pa以下の真空雰
囲気下で実施される。
The invention described in claim 7 is characterized in that the electric current rolling method is carried out in a vacuum atmosphere having a pressure of 1 × 10 -2 Pa or less. According to this battery electrode, the electric current rolling method is carried out in a vacuum atmosphere having a pressure of 1 × 10 −2 Pa or less.

【0012】請求項8に記載した発明は、前記通電圧延
法は、不活性雰囲気下で実施されることを特徴としてい
る。この電池用電極によれば、通電圧延法は、不活性雰
囲気下で実施される。
The invention described in claim 8 is characterized in that the electric current rolling method is carried out in an inert atmosphere. According to this battery electrode, the electric current rolling method is carried out in an inert atmosphere.

【0013】請求項9に記載した発明は、請求項1から
8のいずれか1項の電池用電極を用いることを特徴とし
ている。この電池用電極を用いた電池によれば、電池に
は、請求項1から8のいずれか1項に記載された電池用
電極が採用される。
The invention described in claim 9 is characterized in that the battery electrode according to any one of claims 1 to 8 is used. According to the battery using the battery electrode, the battery electrode according to any one of claims 1 to 8 is adopted as the battery.

【0014】[0014]

【発明の実施の形態】(電池用電極の実施形態)以下、
本発明の実施形態について図示例に基づいて説明する。
図1に示すように、ニッケル水素電池の負極板1は、集
電体10と、活物質である水素吸蔵合金粉末15とから
なる。さらに、不図示であるが、前記活物質には、結着
剤や、カーボン粉末等の導電材を適宜混合させる場合も
ある。
DETAILED DESCRIPTION OF THE INVENTION (Embodiment of Battery Electrode)
Embodiments of the present invention will be described based on illustrated examples.
As shown in FIG. 1, the negative electrode plate 1 of the nickel-hydrogen battery comprises a current collector 10 and a hydrogen storage alloy powder 15 which is an active material. Further, although not shown, a binder and a conductive material such as carbon powder may be appropriately mixed with the active material.

【0015】集電体10として使用される素材として
は、ニッケル、銅、アルミニウム等の単体金属の他に、
金属の酸化物、硫化物等の化合物、もしくは、複数の金
属を組み合わせた混合物やメッキ材等が挙げられ、集電
体の形態により、発泡状の多孔体、パンチングメタル、
または無垢の箔が適宜適用されるが、特に限定されるも
のではなく、本実施形態では、エンボス加工が施された
ニッケル箔を採用する。また、集電体10に固着させる
活物質としては、本実施形態では水素吸蔵合金を採用す
るが、通常、活物質粉末は、適用する電池や極の種類に
対応するものであり、亜鉛、鉛、鉄、カドミウム、アル
ミニウム、及びリチウム等の単体金属、水酸化ニッケ
ル、水酸化亜鉛、水酸化アルミニウム、及び水酸化鉄等
の金属水酸化物、コバルト酸リチウム、ニッケル酸リチ
ウム、マンガン酸リチウム、及びバナジウム酸リチウム
等のリチウム複合酸化物、二酸化マンガン、また二酸化
鉛等の金属酸化物、ポリアリニン、またポリアセン等の
導電性高分子等を採用することができ、特に限定される
ものではない。
As the material used as the current collector 10, in addition to simple metals such as nickel, copper and aluminum,
Compounds such as metal oxides and sulfides, or a mixture of a plurality of metals, a plating material and the like can be mentioned. Depending on the form of the current collector, a foamed porous body, punching metal,
Alternatively, a solid foil is appropriately applied, but it is not particularly limited, and in this embodiment, an embossed nickel foil is used. Further, as the active material fixed to the current collector 10, a hydrogen storage alloy is adopted in the present embodiment, but the active material powder usually corresponds to the type of battery or electrode to be applied, and zinc, lead, etc. , Elemental metals such as iron, cadmium, aluminum and lithium, metal hydroxides such as nickel hydroxide, zinc hydroxide, aluminum hydroxide and iron hydroxide, lithium cobalt oxide, lithium nickel oxide, lithium manganate, and A lithium composite oxide such as lithium vanadate, manganese dioxide, a metal oxide such as lead dioxide, a conductive polymer such as polyalinine, polyacene, or the like can be adopted and is not particularly limited.

【0016】負極板1は、水素吸蔵合金粉末15を集電
体10に圧着、もしくは塗着させ、その後、圧延加工す
ることにより製造される。本実施形態では、3種類の製
法を採用している。即ち、粉末圧延法により水素吸蔵合
金粉末15を集電体10に圧延し、通電圧延法により再
度圧延加工する製法(以下、製法Aと表記する)と、粉
末圧延法により水素吸蔵合金粉末15を集電体10に圧
延し、通常の圧延法により再度圧延加工する製法(以
下、製法Bと表記する)と、さらに、浸漬法により水素
吸蔵合金粉末15を集電体10に塗着し、通常の圧延法
により圧延加工する製法(以下、製法Cと表記する)と
を採用する。
The negative electrode plate 1 is manufactured by pressure-bonding or coating the hydrogen-absorbing alloy powder 15 on the current collector 10 and then rolling. In this embodiment, three types of manufacturing methods are adopted. That is, the hydrogen storage alloy powder 15 is rolled by the powder rolling method to the current collector 10 and is rolled again by the electric current rolling method (hereinafter referred to as production method A), and the hydrogen storage alloy powder 15 is processed by the powder rolling method. A manufacturing method in which the current collector 10 is rolled and a rolling process is performed again by a normal rolling method (hereinafter, referred to as a manufacturing method B), and further, a hydrogen storage alloy powder 15 is applied to the current collector 10 by a dipping method, The manufacturing method (hereinafter, referred to as manufacturing method C) of rolling by the rolling method of No.

【0017】製法Aでは、まず、導電材としてニッケル
粉末(平均粒径1μm以下)を水素吸蔵合金粉末15
(平均粒径30μm)に混合し、該混合物を粉末圧延法
により集電体10の両面に圧着させて予備成形品を成形
する。次に、該予備成形品を通電圧延法により再度圧延
して負極板1を成形する。通電圧延法においては、荷
重、雰囲気、また、通電電流をそれぞれ適宜変化させ
て、空隙率が異なる負極板を製造した。
In the manufacturing method A, first, nickel powder (average particle diameter of 1 μm or less) as a conductive material is used as the hydrogen storage alloy powder 15
(Average particle size 30 μm), and the mixture is pressed onto both sides of the current collector 10 by a powder rolling method to form a preform. Next, the preform is rolled again by the electric current rolling method to form the negative electrode plate 1. In the electric current rolling method, the negative electrode plates having different porosities were manufactured by appropriately changing the load, atmosphere, and electric current.

【0018】製法Bでは、前記予備成形品を、通常の圧
延法により再度圧延して負極板1を成形する。ニッケル
粉末の添加量と、再圧延時の荷重をそれぞれ適宜変化さ
せて、空隙率が異なる負極板を製造した。
In the manufacturing method B, the preform is rolled again by the usual rolling method to form the negative electrode plate 1. Negative electrode plates having different porosities were manufactured by appropriately changing the amount of nickel powder added and the load during rerolling.

【0019】製法Cでは、非導電性の樹脂を分散させた
水溶液を結着剤として水素吸蔵合金粉末15に混合し、
該混合物を浸漬法により集電体10の両面に塗着させ、
乾燥後、予備成形品を成形する。次に、該予備成形品を
通常の圧延法により圧延して負極板1を成形する。非導
電性結着剤の添加量と、再圧延時の荷重をそれぞれ適宜
変化させて、空隙率が異なる負極板を製造した。
In the manufacturing method C, an aqueous solution in which a non-conductive resin is dispersed is mixed with the hydrogen storage alloy powder 15 as a binder,
The mixture is applied to both sides of the current collector 10 by a dipping method,
After drying, the preform is molded. Next, the preform is rolled by a usual rolling method to form the negative electrode plate 1. The amount of the non-conductive binder added and the load during re-rolling were appropriately changed to manufacture negative electrode plates having different porosities.

【0020】図2に、本実施形態における負極板の空隙
率と放電容量比の関係を示す。放電容量比は、図中A点
に示す、非導電性結着剤を体積率で5%添加し、製法C
で製造された負極板1aにおいて、空隙率が25%の場
合の放電容量値を100%としたときの値である。
FIG. 2 shows the relationship between the porosity of the negative electrode plate and the discharge capacity ratio in this embodiment. The discharge capacity ratio is shown by point A in the figure, and the non-conductive binder is added in a volume ratio of 5%, and the production method C is used.
In the negative electrode plate 1a manufactured in 1., the discharge capacity value is 100% when the porosity is 25%.

【0021】図2に示すように、それぞれ本実施形態で
ある、非導電性結着剤を体積率で5%添加し、製法Cで
製造された負極板1aと、導電材であるニッケル粉末を
体積率で10%添加し、製法Aで製造した負極板1b
と、ニッケル粉末を添加せずに、製法Bで製造した負極
板1cと、ニッケル粉末を体積率で5%添加し、製法B
で製造した負極板1dと、ニッケル粉末を体積率で10
%添加し、製法Bで製造した負極板1eとでは、すべて
の場合において、空隙率を減少させていくにつれて、空
隙率が20%以下から電極内部の電気抵抗が低下し、該
電気抵抗の低下に起因して放電容量が増加し、空隙率が
10〜12.5%の時に、放電容量比は最大となる。ま
た、空隙率を5%以下とすると、放電容量比は減少す
る。
As shown in FIG. 2, the negative electrode plate 1a manufactured by the manufacturing method C and the nickel powder which is the conductive material, which is the present embodiment, is added by 5% in volume ratio of the non-conductive binder. Negative electrode plate 1b manufactured by the manufacturing method A by adding 10% in volume ratio
And the negative electrode plate 1c manufactured by the manufacturing method B without adding the nickel powder and 5% by volume of the nickel powder,
The negative electrode plate 1d manufactured in step 1 and nickel powder in a volume ratio of 10
%, And with the negative electrode plate 1e manufactured by the manufacturing method B, in all cases, as the porosity decreases, the electric resistance inside the electrode decreases from the porosity of 20% or less, and the electric resistance decreases. As a result, the discharge capacity increases and the discharge capacity ratio becomes maximum when the porosity is 10 to 12.5%. Further, when the porosity is 5% or less, the discharge capacity ratio decreases.

【0022】一般に、電極に存在する空隙は、電気抵抗
を増加させる要因となるので、空隙を少なくすること
で、電極内部の電気抵抗を低下させることができる。一
方、空隙は、電解液を電極内部へ拡散させるために必須
であるので、必要以上に少なくすると、電解液の拡散が
悪くなり、電池性能の低下を引き起こす。即ち、図2よ
り、空隙率は、体積率で約5〜20%程度に設定すると
効率が良く、特に、体積率で約7.5〜15%程度に設
定することが望ましい。
In general, the voids present in the electrodes cause an increase in electrical resistance. Therefore, by reducing the voids, the electrical resistance inside the electrodes can be lowered. On the other hand, the voids are indispensable for diffusing the electrolytic solution into the electrode. Therefore, if the voids are made less than necessary, the diffusion of the electrolytic solution will be deteriorated and the battery performance will be deteriorated. That is, as shown in FIG. 2, it is efficient to set the porosity to about 5 to 20% in terms of volume ratio, and it is particularly preferable to set it to about 7.5 to 15% in terms of volume ratio.

【0023】前記導電材及び結着剤は、どちらか一方
を、もしくは両方を混合して用いても良い。図3に、
(1)導電材であるニッケル粉末を添加し、製法Bで負
極板を製造した場合と、(2)非導電性結着剤を添加
し、製法Cで負極板を製造した場合と、さらに、(3)
非導電性結着剤とニッケル粉末とを添加し、製法Cで負
極板を製造した場合とを比較した、負極板の空隙率を1
2.5%とした場合の本実施形態における添加量の体積
率と放電容量比の関係を示す。放電容量比は、図2に示
す放電容量比と同一定義の値である。また、上記(3)
の製造方法において、非導電性結着剤の添加量は、体積
率で5%であり、ニッケル粉末の添加量は、図中横軸に
示す添加量だけ適宜変化させた。
The conductive material and the binder may be used either alone or as a mixture of both. In Figure 3,
(1) A case where nickel powder as a conductive material is added and a negative electrode plate is manufactured by a manufacturing method B, (2) A case where a non-conductive binder is added and a negative electrode plate is manufactured by a manufacturing method C, and (3)
The porosity of the negative electrode plate was 1 as compared with the case where the negative electrode plate was manufactured by the manufacturing method C by adding the non-conductive binder and the nickel powder.
The relationship between the volume ratio of the added amount and the discharge capacity ratio in the present embodiment in the case of 2.5% is shown. The discharge capacity ratio has the same definition as the discharge capacity ratio shown in FIG. In addition, (3) above
In the manufacturing method, the amount of non-conductive binder added was 5% in volume ratio, and the amount of nickel powder added was appropriately changed by the amount shown on the horizontal axis in the figure.

【0024】前記導電材を採用する場合、例えば、上記
(1)の製造方法のように導電材としてニッケル粉末を
使用し、該ニッケル粉末を水素吸蔵合金粉末15等に混
合すると、ニッケル粉末の平均粒径は、水素吸蔵合金粉
末15の平均粒径よりも小さいので、負極板の空隙率を
小さくする効果があり、電気抵抗を低下させ、放電容量
を増加させることが可能となる。
When the conductive material is used, for example, when nickel powder is used as the conductive material as in the manufacturing method of (1) and the nickel powder is mixed with the hydrogen storage alloy powder 15 or the like, the average nickel powder is Since the particle size is smaller than the average particle size of the hydrogen storage alloy powder 15, it has an effect of reducing the porosity of the negative electrode plate, and it is possible to reduce the electric resistance and increase the discharge capacity.

【0025】しかしながら、ニッケル粉末の添加量を増
加させると、水素吸蔵合金の単位体積当たりの重量を低
減させてしまうために、空隙率が同一で、導電材を添加
しない負極板と比較した場合、電池性能は低下する。図
3に示すように、ニッケル粉末の添加量を、体積率で1
0%以上として混合すると、放電容量比は、大きく低下
する。したがって、導電材の添加量は、10%以下とす
ることが望ましい。さらには、前記添加量を2.5%以
下とすると、なお望ましい。
However, when the amount of nickel powder added is increased, the weight of the hydrogen storage alloy per unit volume is reduced, so that when compared with a negative electrode plate having the same porosity and no conductive material added, Battery performance is reduced. As shown in FIG. 3, the addition amount of the nickel powder is 1 in terms of volume ratio.
If it is mixed as 0% or more, the discharge capacity ratio is greatly reduced. Therefore, the addition amount of the conductive material is preferably 10% or less. Furthermore, it is more desirable to set the addition amount to 2.5% or less.

【0026】また、前記結着剤に非導電性結着剤を採用
する場合、非導電性結着剤は、電極の電気抵抗を上昇さ
せる作用があるが、一方では、活物質の脱落防止には有
効であり、少量を添加することは、使用目的によっては
有意義に作用する。図3に示すように、非導電性結着剤
の添加量を、体積率で10%以上として混合すると、放
電容量比は、急激に低下する。したがって、非導電性結
着剤の添加量は、10%以下とすることが望ましい。さ
らには、前記添加量を2.5%以下とすると、なお望ま
しい。
When a non-conductive binder is used as the binder, the non-conductive binder has the effect of increasing the electrical resistance of the electrode, but on the other hand, it prevents the active material from falling off. Is effective, and the addition of a small amount has a significant effect depending on the purpose of use. As shown in FIG. 3, when the non-conductive binder is added at a volume ratio of 10% or more and mixed, the discharge capacity ratio sharply decreases. Therefore, the addition amount of the non-conductive binder is preferably 10% or less. Furthermore, it is more desirable to set the addition amount to 2.5% or less.

【0027】また、図2に示すように、空隙率を低下さ
せる手法として、圧延中のロール間に通電する通電圧延
法を採用すると、活物質表面の接触点近傍の硬さが低減
するので、活物質同士の接触抵抗を低下させることがで
きる。したがって、通電しない圧延法で製造した、同一
空隙率の負極板と比較して、電極の電気抵抗を下げるこ
とができ、放電容量を増加させることが可能となる。
Further, as shown in FIG. 2, if a current rolling method in which current is applied between rolls during rolling is adopted as a method for reducing the porosity, the hardness in the vicinity of the contact point on the surface of the active material is reduced. The contact resistance between the active materials can be reduced. Therefore, it is possible to reduce the electric resistance of the electrode and increase the discharge capacity as compared with a negative electrode plate having the same porosity, which is manufactured by a rolling method in which electricity is not applied.

【0028】図4に、上記通電圧延法において、圧力が
1×10-2Pa以下の真空雰囲気下、及び、圧力が1×
105Pa程度の大気雰囲気下での、負極板の空隙率を
12.5%とし、かつ、導電材のニッケル粉末を10%
添加した場合の本実施形態における通電電流αと放電容
量比の関係を示す。通電電流αは、iを単位幅電流(A
/mm)、vを圧延速度(mm/s)とすると、α=i
2 /vの式を満たす値である。また、放電容量比は、図
2及び図3に示す放電容量比と同一定義の値である。
FIG. 4 shows that in the above-mentioned electric current rolling method, the pressure is 1 × 10 −2 Pa or less in a vacuum atmosphere and the pressure is 1 ×
The porosity of the negative electrode plate is set to 12.5% and the conductive material nickel powder is set to 10% in an air atmosphere of about 10 5 Pa.
The relationship between the energizing current α and the discharge capacity ratio in the present embodiment when added is shown. The energizing current α is expressed by the unit width current (A
/ Mm) and v is the rolling speed (mm / s), α = i
It is a value that satisfies the formula of 2 / v. Further, the discharge capacity ratio has the same definition as the discharge capacity ratio shown in FIGS.

【0029】通電圧延時に、ロール(不図示)間に通電
するにしたがって、圧延加工中の負極板の温度が上昇
し、酸化反応が激しく起こるので、図4に示すように、
大気中で通電圧延を実施した場合、通電電流αを増大さ
せるにつれて、放電容量比が低下し、電池の性能低下が
顕著となる。したがって、通電圧延は、多くの電流を流
すことを可能とするために、例えば、圧力が1×10-2
Pa以下の真空雰囲気下、もしくは、不活性雰囲気下で
実施することが望ましい。
During the electric current rolling, the temperature of the negative electrode plate during the rolling process rises as the electric current is applied between the rolls (not shown), and the oxidation reaction occurs violently. Therefore, as shown in FIG.
When the electric current rolling is performed in the atmosphere, the discharge capacity ratio decreases as the electric current α increases, and the performance of the battery decreases significantly. Therefore, in the electric current rolling, for example, when the pressure is 1 × 10 −2 , it is possible to pass a large amount of current.
It is desirable to carry out under a vacuum atmosphere of Pa or less or under an inert atmosphere.

【0030】また、通電電流αを増大しすぎると、活物
質自体の物性が変化してしまい、放電容量の低下を引き
起こすので、図4より、通電電流αは、2.5×105
(A2・sec)/mm3の値に設定すれば、効率良く放
電容量を増加させることが可能となる。
Further, if the energizing current α is increased too much, the physical properties of the active material itself are changed and the discharge capacity is lowered. Therefore, from FIG. 4, the energizing current α is 2.5 × 10 5
By setting the value to (A 2 · sec) / mm 3 , it becomes possible to efficiently increase the discharge capacity.

【0031】(電池の実施形態)次に、図5に、上記負
極板1を採用した負電極D1を用いた円筒二次電池P
(例えばニッケル水素電池)の斜視図を示す。この円筒
二次電池Pでは、負電極D1と正電極D2とは、セパレ
ータ3を挟んだ状態で渦巻き状に多重巻回して電槽4
(負極端子)内に収納されており、また電槽4内に充填
された電解液に浸漬されている。電槽4の上端は開口部
が形成されており、当該開口部は、中央に正極端子5が
設けられると共に電槽4に対して絶縁された封口板6に
よって封止されている。また、負電極D1は電槽4に接
続され、また正電極D2は正極端子5に接続されてお
り、負電極D1と正電極D2とは電解液を介して直列回
路を構成している。
(Embodiment of Battery) Next, referring to FIG. 5, a cylindrical secondary battery P using the negative electrode D1 adopting the negative electrode plate 1 is shown.
A perspective view of (for example, a nickel hydrogen battery) is shown. In this cylindrical secondary battery P, the negative electrode D1 and the positive electrode D2 are spirally multi-wound with the separator 3 sandwiched therebetween, and the battery case 4 is formed.
It is housed in the (negative electrode terminal) and is immersed in the electrolyte solution filled in the battery case 4. An opening is formed at the upper end of the battery case 4, and the positive electrode terminal 5 is provided at the center of the opening and is sealed by a sealing plate 6 that is insulated from the battery case 4. Further, the negative electrode D1 is connected to the battery case 4, the positive electrode D2 is connected to the positive electrode terminal 5, and the negative electrode D1 and the positive electrode D2 form a series circuit via the electrolytic solution.

【0032】なお、本発明は上記実施形態に限定される
ものではなく、本発明の要旨を逸脱しない範囲において
種々の変更も加え得ることは勿論である。例えば、以下
のような変形が考えられる。
The present invention is not limited to the above embodiment, and it goes without saying that various modifications can be made without departing from the gist of the present invention. For example, the following modifications are possible.

【0033】(1)本実施形態では、極板は、ニッケル
水素電池用の負電極としたが、ニッケル水素電池用の正
電極としても良い。また、例えば、リチウムイオン電池
等の他の電池用電極としても良く、この場合は、活物質
とする物質は適宜選択される。
(1) In this embodiment, the electrode plate is a negative electrode for a nickel hydrogen battery, but it may be a positive electrode for a nickel hydrogen battery. Further, for example, it may be an electrode for another battery such as a lithium-ion battery, and in this case, a substance as an active material is appropriately selected.

【0034】(2)本実施形態では、空隙率を低下させ
る手法として、圧延法や通電圧延法を採用したが、これ
らの方法以外に、通電プレス法、温間プレス法、及び、
温間圧延法等を採用しても良い。また、圧延加工前に、
集電体に活物質を塗着させる方法を採用する場合、塗着
の方法としては、浸漬法及びドクターブレード法等が採
用可能である。
(2) In this embodiment, the rolling method and the electric current rolling method are adopted as the method for reducing the porosity. However, in addition to these methods, the electric current pressing method, the warm pressing method, and the
A warm rolling method or the like may be adopted. Also, before rolling
When the method of applying the active material to the current collector is adopted, the method of application may be the dipping method, the doctor blade method or the like.

【0035】(3)上記図5では、円筒二次電池Pにつ
いて示しているが、上記電極として負電極を絶縁材を挟
んで正電極と交互に積層して電槽内に実装した角形電池
にも適用することができる。
(3) Although FIG. 5 shows the cylindrical secondary battery P, a negative battery as the above-mentioned electrode is formed into a prismatic battery mounted in a battery case by alternately laminating a negative electrode with a positive electrode sandwiching an insulating material. Can also be applied.

【0036】[0036]

【発明の効果】以上説明したように、請求項1に記載し
た発明によれば、空隙率は、5%以上20%以下に設定
されるので、電極内部の電気抵抗を低下させることがで
き、かつ、電解液を効率良く電極内部へ拡散させること
が可能となる。
As described above, according to the invention described in claim 1, since the porosity is set to 5% or more and 20% or less, the electric resistance inside the electrode can be reduced, Moreover, it becomes possible to efficiently diffuse the electrolytic solution into the electrode.

【0037】請求項2に記載した発明によれば、活物質
には、体積率で0、あるいは10%以下の導電性を有す
る結着剤または導電材が添加されるので、水素吸蔵合金
の単位体積当たりの重量の低減を抑え、放電容量、即
ち、電池性能の低下を抑えることが可能となる。
According to the second aspect of the invention, since the active material is added with a binder or a conductive material having a volume ratio of 0 or 10% or less, the unit of the hydrogen storage alloy. It is possible to suppress reduction in weight per volume and suppress deterioration in discharge capacity, that is, battery performance.

【0038】請求項3に記載した発明によれば、結着剤
または導電材の平均粒径は、活物質の平均粒径よりも小
さく設定されるので、電極の空隙率を小さくする効果が
あり、電気容量を低下させ、放電容量を増加させること
が可能となる。
According to the invention described in claim 3, since the average particle size of the binder or the conductive material is set smaller than the average particle size of the active material, there is an effect of reducing the porosity of the electrode. It is possible to reduce the electric capacity and increase the discharge capacity.

【0039】請求項4に記載した発明によれば、活物質
には、体積率で0、あるいは10%以下の非導電性結着
剤が添加されるので、電極の電気抵抗を上昇させる作用
を抑え、活物質の脱落防止を行いつつ、放電容量、即
ち、電池性能の低下を抑えることが可能となる。
According to the invention described in claim 4, since the non-conductive binder having a volume ratio of 0 or less than 10% is added to the active material, it has the effect of increasing the electric resistance of the electrode. It is possible to suppress the deterioration of the discharge capacity, that is, the battery performance while suppressing and dropping the active material.

【0040】請求項5に記載した発明によれば、電池用
電極の成形工程として、通電圧延法が採用されるので、
活物質表面の接触点近傍の硬さを低減させ、活物質同士
の接触抵抗を低下させることができる。さらに、電極の
電気抵抗を下げることができ、放電容量を増加させるこ
とが可能となる。
According to the invention described in claim 5, since the electric current rolling method is adopted as the step of forming the battery electrode,
The hardness in the vicinity of the contact point on the surface of the active material can be reduced, and the contact resistance between the active materials can be reduced. Furthermore, the electric resistance of the electrodes can be reduced, and the discharge capacity can be increased.

【0041】請求項6に記載した発明によれば、通電圧
延時には、通電電流αは、2.5×105 (A2・se
c)/mm3以下の値に設定されるので、活物質自体の
物性が変化させることなく、効率良く放電容量を増加さ
せることが可能となる。
According to the invention described in claim 6, at the time of electric rolling, the electric current α is 2.5 × 10 5 (A 2 · se).
Since the value is set to c) / mm 3 or less, the discharge capacity can be efficiently increased without changing the physical properties of the active material itself.

【0042】請求項7に記載した発明によれば、通電圧
延法は、圧力が1×10-2Pa以下の真空雰囲気下で実
施されるので、大気中で通電圧延を実施した場合と比較
して、通電電流αを増大させることが可能となり、放電
容量の低下を抑えることが可能となる。
According to the invention described in claim 7, since the electric current rolling method is carried out in a vacuum atmosphere having a pressure of 1 × 10 -2 Pa or less, it is compared with the case where electric current rolling is carried out in the atmosphere. As a result, the energizing current α can be increased, and the decrease in discharge capacity can be suppressed.

【0043】請求項8に記載した発明によれば、通電圧
延法は、不活性雰囲気下で実施されるので、大気中で通
電圧延を実施した場合と比較して、通電電流αを増大さ
せることが可能となり、放電容量の低下を抑えることが
可能となる。
According to the invention described in claim 8, since the electric current rolling method is carried out in an inert atmosphere, the electric current α should be increased as compared with the case where the electric current rolling is carried out in the atmosphere. It becomes possible to suppress the decrease in discharge capacity.

【0044】請求項9に記載した発明によれば、電池に
は、請求項1から8のいずれか1項に記載された電池用
電極が採用されるので、内部抵抗が低く、高性能な電池
とすることが可能となる。
According to the invention described in claim 9, since the battery electrode according to any one of claims 1 to 8 is adopted for the battery, the battery having a low internal resistance and high performance is obtained. It becomes possible to

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の電池用電極の実施形態における負極
板を示す概略図である。
FIG. 1 is a schematic view showing a negative electrode plate in an embodiment of a battery electrode of the present invention.

【図2】 本発明の電池用電極の実施形態における負極
板の空隙率と放電容量比の関係図である。
FIG. 2 is a relationship diagram of the void ratio and the discharge capacity ratio of the negative electrode plate in the embodiment of the battery electrode of the present invention.

【図3】 本発明の電池用電極の実施形態における結着
剤添加量の体積率と放電容量比の関係図である。
FIG. 3 is a relationship diagram of a volume ratio of a binder addition amount and a discharge capacity ratio in an embodiment of a battery electrode of the present invention.

【図4】 本発明の電池用電極の実施形態における通電
電流αと放電容量比の関係図である。
FIG. 4 is a diagram showing a relationship between a passing current α and a discharge capacity ratio in the embodiment of the battery electrode of the present invention.

【図5】 本発明の電池用電極の実施形態における負電
極を用いた円筒二次電池の斜視図である。
FIG. 5 is a perspective view of a cylindrical secondary battery using a negative electrode in the embodiment of the battery electrode of the present invention.

【符号の説明】[Explanation of symbols]

1 負極板 10 集電体 15 活物質 α 通電電流 1 Negative electrode plate 10 Current collector 15 Active material α energizing current

───────────────────────────────────────────────────── フロントページの続き (72)発明者 望月 智俊 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社機械・プラント開 発センター内 (72)発明者 吉澤 廣喜 神奈川県横浜市磯子区新中原町1番地 石 川島播磨重工業株式会社機械・プラント開 発センター内 Fターム(参考) 4E002 AA08 AB03 AD01 BD08 CB01 5H017 AA02 AA03 AS02 BB01 BB16 BB17 CC03 CC25 EE01 HH02 HH04 HH07 HH09 HH10 5H050 AA12 BA14 BA15 CA02 CA03 CA07 CA20 CB02 CB11 CB12 CB16 DA04 DA10 DA11 FA13 FA17 GA02 GA03 GA07 GA08 GA22 GA26 GA27 HA01 HA07 HA09 HA15 HA17 HA20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tomotoshi Mochizuki             Stone, Shin-Nakahara-cho, Isogo-ku, Yokohama-shi, Kanagawa             Kawashima Harima Heavy Industries Co., Ltd. Machinery and plant opening             In the departure center (72) Inventor Hiroki Yoshizawa             Stone, Shin-Nakahara-cho, Isogo-ku, Yokohama-shi, Kanagawa             Kawashima Harima Heavy Industries Co., Ltd. Machinery and plant opening             In the departure center F-term (reference) 4E002 AA08 AB03 AD01 BD08 CB01                 5H017 AA02 AA03 AS02 BB01 BB16                       BB17 CC03 CC25 EE01 HH02                       HH04 HH07 HH09 HH10                 5H050 AA12 BA14 BA15 CA02 CA03                       CA07 CA20 CB02 CB11 CB12                       CB16 DA04 DA10 DA11 FA13                       FA17 GA02 GA03 GA07 GA08                       GA22 GA26 GA27 HA01 HA07                       HA09 HA15 HA17 HA20

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 導電性を有する集電体に、粉末状の活物
質を結合して成形される電池用電極であり、前記活物質
の見かけの体積から前記活物質の実体積を引いて得られ
る空隙の体積を、さらに、前記活物質の見かけの体積で
割って算出される値を空隙率とすると、前記空隙率は、
5%以上20%以下であることを特徴とする電池用電
極。
1. A battery electrode formed by binding a powdery active material to a conductive current collector, which is obtained by subtracting the actual volume of the active material from the apparent volume of the active material. If the value calculated by dividing the volume of voids to be generated by the apparent volume of the active material is the porosity, the porosity is
An electrode for a battery, which is 5% or more and 20% or less.
【請求項2】 前記活物質には、導電性を有する結着剤
または導電材が添加され、前記結着剤または前記導電材
の添加率は、体積率で0、あるいは10%以下であるこ
とを特徴とする請求項1記載の電池用電極。
2. A binder or conductive material having conductivity is added to the active material, and the addition ratio of the binder or conductive material is 0 or 10% or less in volume ratio. The battery electrode according to claim 1.
【請求項3】 前記結着剤または前記導電材の平均粒径
は、前記活物質の平均粒径よりも小さいことを特徴とす
る請求項1または2に記載の電池用電極。
3. The battery electrode according to claim 1, wherein an average particle size of the binder or the conductive material is smaller than an average particle size of the active material.
【請求項4】 前記活物質には、非導電性の結着剤が添
加され、前記結着剤の添加率は、体積率で0、あるいは
10%以下であることを特徴とする請求項1記載の電池
用電極。
4. The non-conductive binder is added to the active material, and the addition ratio of the binder is 0 or 10% or less in volume ratio. The battery electrode described.
【請求項5】 電池用電極の成形工程では、少なくとも
1回、通電圧延法により圧延加工されることを特徴とす
る請求項1から4のいずれかに記載の電池用電極。
5. The battery electrode according to claim 1, wherein the electrode for battery is rolled by an electric rolling method at least once in the step of forming the battery electrode.
【請求項6】 前記通電圧延法において、通電電流α
は、iを単位幅電流(A/mm)、vを圧延速度(mm
/s)とすると、α=i2 /vの式を満たし、前記通電
電流αは、2.5×105 (A2・sec)/mm3以下
の値に設定されることを特徴とする請求項5記載の電池
用電極。
6. The electric current α in the electric current rolling method
Is the unit width current (A / mm), v is the rolling speed (mm
/ S), the equation α = i 2 / v is satisfied, and the energizing current α is set to a value of 2.5 × 10 5 (A 2 · sec) / mm 3 or less. The battery electrode according to claim 5.
【請求項7】 前記通電圧延法は、圧力が1×10-2
a以下の真空雰囲気下で実施されることを特徴とする請
求項5または6に記載の電池用電極。
7. The electric current rolling method has a pressure of 1 × 10 −2 P
The battery electrode according to claim 5 or 6, which is carried out in a vacuum atmosphere of a or less.
【請求項8】 前記通電圧延法は、不活性雰囲気下で実
施されることを特徴とする請求項5または6に記載の電
池用電極。
8. The battery electrode according to claim 5, wherein the electric current rolling method is performed in an inert atmosphere.
【請求項9】 請求項1から8のいずれか1項の電池用
電極を用いることを特徴とする電池。
9. A battery comprising the battery electrode according to claim 1.
JP2002082046A 2002-03-22 2002-03-22 Electrode for cell, and cell using electrode for cell Pending JP2003282051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002082046A JP2003282051A (en) 2002-03-22 2002-03-22 Electrode for cell, and cell using electrode for cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002082046A JP2003282051A (en) 2002-03-22 2002-03-22 Electrode for cell, and cell using electrode for cell

Publications (1)

Publication Number Publication Date
JP2003282051A true JP2003282051A (en) 2003-10-03

Family

ID=29230431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002082046A Pending JP2003282051A (en) 2002-03-22 2002-03-22 Electrode for cell, and cell using electrode for cell

Country Status (1)

Country Link
JP (1) JP2003282051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115775868A (en) * 2023-02-10 2023-03-10 广东以色列理工学院 Battery pole piece and preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115775868A (en) * 2023-02-10 2023-03-10 广东以色列理工学院 Battery pole piece and preparation method and application thereof

Similar Documents

Publication Publication Date Title
EP0710995B1 (en) Electrode plate for battery and process for producing the same
EP1054464A2 (en) Current collector substrate in electrode for use in alkaline secondary battery, electrode using the same, and alkaline secondary battery having incorporated thereinto the electrode
JPH08170126A (en) Porous metallic body, its production and plate for battery using the same
JP2010061913A (en) Method for manufacturing electrode
JP2023133607A (en) Electrolyte solution for zinc battery and zinc battery
JP7260349B2 (en) Electrolyte for zinc battery and zinc battery
JP2013038170A (en) Sodium ion capacitor
JP3386634B2 (en) Alkaline storage battery
WO2013145752A1 (en) Electrode for non-aqueous electrolyte secondary cell and non-aqueous electrolyte secondary cell using same
JP6385368B2 (en) Coated iron electrode and method for producing the iron electrode
JP2019216057A (en) Porous membrane, battery member, and zinc battery
JP6583993B2 (en) Lithium secondary battery charge / discharge method
JP2013243063A (en) Method of manufacturing electrode using porous metal collector
JP2007172963A (en) Negative electrode for lithium-ion secondary battery, and its manufacturing method
JP2012253072A (en) Lithium ion capacitor
JP2019133769A (en) Electrode material for zinc electrode, manufacturing method thereof, and method of manufacturing zinc battery
JP2003282051A (en) Electrode for cell, and cell using electrode for cell
JP2013214374A (en) Positive electrode for nonaqueous electrolytic secondary batteries, and nonaqueous electrolytic secondary battery using the same
JP2000323165A (en) Wound body electrode group for accumulator and alkali storage battery
WO2023195233A1 (en) Negative electrode for zinc battery, and zinc battery
JP2008159355A (en) Coin type lithium battery
JP5961067B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP2019216059A (en) Porous membrane, battery member, and zinc battery
JP7412143B2 (en) Negative electrode for zinc batteries
JP4359678B2 (en) Secondary battery electrode and secondary battery using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810