JP2003277998A - Plating apparatus, and method for controlling plating solution using the same - Google Patents

Plating apparatus, and method for controlling plating solution using the same

Info

Publication number
JP2003277998A
JP2003277998A JP2002085672A JP2002085672A JP2003277998A JP 2003277998 A JP2003277998 A JP 2003277998A JP 2002085672 A JP2002085672 A JP 2002085672A JP 2002085672 A JP2002085672 A JP 2002085672A JP 2003277998 A JP2003277998 A JP 2003277998A
Authority
JP
Japan
Prior art keywords
additive
plating
plating solution
concentration
consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002085672A
Other languages
Japanese (ja)
Other versions
JP3821742B2 (en
Inventor
Toshiki Niimura
俊樹 新村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP2002085672A priority Critical patent/JP3821742B2/en
Priority to US10/395,220 priority patent/US20030183513A1/en
Publication of JP2003277998A publication Critical patent/JP2003277998A/en
Application granted granted Critical
Publication of JP3821742B2 publication Critical patent/JP3821742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plating apparatus capable of keeping the constant concentration of the additive to the plating solution through the plating work time, and a plating solution controlling method using the plating apparatus. <P>SOLUTION: The plating apparatus 100 calibrates the plating consumption coefficient per unit treatment number for each predetermined time, and calculates the replenishment amount to the consumption of the additive associated with the plating treatment by the 'periodically calibrated plating consumption coefficient × plating treatment number'. Therefore, the consumption of the additive agrees with the replenishment of the additive. As a result, the concentration of the additive contained in the plating solution 3 is maintained at a constant value. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被メッキ基板にメ
ッキ処理を施すメッキ装置に関し、特に、Cuメッキ液
の添加剤濃度をメッキ作業時間を通じて一定に保つこと
のできるメッキ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plating apparatus for plating a substrate to be plated, and more particularly to a plating apparatus capable of keeping the additive concentration of Cu plating solution constant throughout the plating operation time.

【0002】[0002]

【従来の技術】メッキ装置は、メッキ液中に含まれるメ
ッキ液成分(促進剤等の添加剤)をメッキ作業時を含め
長期間に渡って一定に保つことが要求される。
2. Description of the Related Art A plating apparatus is required to keep a plating solution component (additive such as an accelerator) contained in a plating solution constant over a long period of time including a plating operation.

【0003】具体的には、一例として、メッキ装置10
0は、図1のように、メッキセル10、メッキ液槽2
0、メッキ液分析機30及び添加剤補充装置40を有す
る構成であり、添加剤補充はメッキ液分析機30で以下
のように行われていた。
Specifically, as an example, the plating apparatus 10
0 is the plating cell 10 and the plating liquid tank 2 as shown in FIG.
0, the plating liquid analyzer 30 and the additive replenishing device 40 are included, and the additive replenishment is performed by the plating liquid analyzer 30 as follows.

【0004】まず、添加剤補充装置40は、メッキ液分
析機30から添加剤濃度測定結果を所定の時間間隔(3
時間、6時間、12時間等適宜設定できるが、一例とし
て3時間とする)で受信して、添加剤のターゲット濃度
からのずれを計算して添加剤をメッキ液槽20に補充し
ていた。勿論、添加剤濃度測定結果が添加剤のターゲッ
ト濃度ターゲット濃度を超えている場合は添加剤の補充
は行われない。
First, the additive replenishing device 40 displays the additive concentration measurement results from the plating solution analyzer 30 at predetermined time intervals (3
The time, 6 hours, 12 hours, etc. can be set as appropriate, but as an example, it is set to 3 hours), the deviation from the target concentration of the additive is calculated, and the additive is replenished in the plating solution tank 20. Of course, when the additive concentration measurement result exceeds the target concentration of the additive, the additive is not replenished.

【0005】このようなメッキ液槽20の添加剤濃度の
定期的なセンタリングが実測結果を基にした定期的なセ
ンタリングが、例えば1分毎に行われるのならば添加剤
濃度外れの問題は発生しないが、現実には添加剤濃度の
実測には最短で約2.5時間を必要とするため、実際に
は例えば、3時間間隔で行われる。そこで、この3時間
に対して添加剤濃度の計算を例えば、5分毎に行うこと
により、3間内での添加剤濃度の変動を抑えようとし
ていた。このたとえば5分毎の計算による所定の時間間
隔内で、次のような添加剤の補充が行われていた。
If such periodic centering of the additive concentration in the plating liquid tank 20 is performed on the basis of the actual measurement result, for example, every one minute, the problem of the additive concentration deviation occurs. However, in reality, the actual measurement of the additive concentration requires about 2.5 hours at the shortest, so that the actual measurement is performed at intervals of, for example, 3 hours. Therefore, the calculation of additive concentration for this 3 hours for example, by performing every 5 minutes, were trying to suppress the fluctuation of the additive concentration within between 3:00. For example, the following replenishment of additives was performed within a predetermined time interval calculated by, for example, every 5 minutes.

【0006】メッキ液分析機30では、メッキ処理に無
関係で経過時間に掛けられる単位時間当たりの添加剤濃
度変化係数 Kt(ml/h)、単位メッキ電荷量(メ
ッキ膜厚に比例する)当たりの添加剤濃度変化係数Kq
(ml/amp・h)、添加剤ターゲット濃度Ct(m
l/l)が予め入力されている。ここで、単位メッキ電
荷量当たりの添加剤濃度変化係数Kqは、経験的推測に
よる一定の値が用いられていた。
In the plating liquid analyzer 30, the additive concentration change coefficient Kt (ml / h) per unit time multiplied by the elapsed time irrespective of the plating process, and the unit of the amount of electric charge for plating (proportional to the plating film thickness) Additive concentration change coefficient Kq
(Ml / amp · h), additive target concentration Ct (m
1 / l) is input in advance. Here, as the additive concentration change coefficient Kq per unit plating charge amount, a constant value based on empirical estimation has been used.

【0007】メッキ液分析機は5分毎に(1)式に示す
計算を行う。 C=C(k−1)−(Kt×T+Kq×Q)・・・(1) ここで、 C ・・・ 今回の添加剤濃度計算結果 C(k−1)・・・ 前回の添加剤濃度計算結果 (但
し、前回〜今回の計算の間に添加剤補充が行われた場合
は添加剤ターゲット濃度) T・・・C(k−1)計算時からの経過時間 Q・・・C(k−1)計算時からの積算メッキ電荷量 S=(Ct−C)×V ・・・(2) ここで、 S・・・ 添加剤濃度を添加剤ターゲット濃度ターゲ
ット濃度とするために必要な添加剤補充量(計算結果) V・・・ メッキ装置内の全メッキ液量 上記のようにして算出された添加剤濃度を添加剤ターゲ
ット濃度とするために必要な添加剤補充量Sが、例え
ば、10ml以上となった場合はただちにキャリアの補
充が行われ、10ml未満の場合は、次回(約5分後)
の計算結果を待つこととなる。
The plating solution analyzer performs the calculation shown in the equation (1) every 5 minutes. C k = C (k-1 ) - at (Kt × T + Kq × Q ) ··· (1) where, C k · · · This additive concentration calculation result C (k-1) ··· last addition Agent concentration calculation result (however, additive target concentration when additive is replenished between the previous and present calculations) T ... C (k-1) C k Elapsed time from calculation · C (k-1) cumulative plating charge amount S k = (Ct-C k ) × V ··· (2) where, S k · · · additives target concentration target concentration of the additive concentration from the calculation Amount of additive replenishment necessary for (calculation result) V ... total amount of plating solution in the plating apparatus Additive required to make the additive concentration calculated as described above the additive target concentration replenishing amount S k is, for example, immediately replenishment of carrier is performed if equal to or more than 10 ml, 10 ml In the case of full, next time (after about 5 minutes)
It will wait for the calculation result of.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、図3
(a)、(b)に示すように、メッキ処理によるキャリ
アの消費量は、積算メッキ膜厚(∝積算メッキ電荷量)で
はなくメッキ処理枚数に比例する。図3(a)の積算メ
ッキ膜厚とキャリア消費量にも緩い相関が観られる。こ
れは、メッキ処理枚数と積算メッキ膜厚においても、図
4のように緩い相関があるためである。
However, as shown in FIG.
As shown in (a) and (b), the amount of carrier consumed by the plating process is proportional to the number of plated plates, not the integrated plating film thickness (∝ integrated plating charge amount). There is also a loose correlation between the integrated plating film thickness in FIG. 3A and the carrier consumption amount. This is because there is a loose correlation between the number of plated plates and the integrated plating film thickness as shown in FIG.

【0009】図6(a)は、従来のメッキ装置での、メ
ッキ処理枚数とキャリア補充量を示す図である。従来の
方法では、メッキ処理による消費に対する、キャリアの
補充量はKq×積算メッキ電荷量で計算されていた。5
50nmや3000nmのように一定膜厚のメッキのみ
を行う場合は、積算メッキ電荷量=1枚当りの電荷量×
処理枚数の関係が成り立つため、図のように補充量と処
理枚数が比例する。図6(a)からも明らかなように、
従来の補充量計算では、処理枚数が同じであっても、メ
ッキ膜厚が異なると補充量が大きく異なる。
FIG. 6A is a diagram showing the number of plated plates and the carrier replenishment amount in the conventional plating apparatus. In the conventional method, the replenishment amount of the carrier with respect to the consumption by the plating process is calculated by Kq × integrated plating charge amount. 5
When only plating with a constant film thickness such as 50 nm or 3000 nm is performed, accumulated plating charge amount = charge amount per plate ×
Since the relationship of the number of processed sheets is established, the replenishment amount is proportional to the number of processed sheets as shown in the figure. As is clear from FIG. 6 (a),
In the conventional replenishment amount calculation, the replenishment amount greatly differs when the plating film thickness is different even if the number of processed sheets is the same.

【0010】一方、上述の通り、メッキ処理によるキャ
リア消費はメッキ処理枚数に比例する。メッキ処理枚数
が同じであれば、実際の消費量は同一であるが、従来の
補充量計算では、メッキ膜厚が異なると、薄膜メッキ時
は少量、厚膜メッキ時は多量のように異なる補充量を導
く。この結果、当然消費量と補充量は一致せず、添加剤
濃度は変化する。
On the other hand, as described above, the carrier consumption due to the plating process is proportional to the number of plated plates. If the number of plated plates is the same, the actual consumption will be the same, but in the conventional replenishment amount calculation, if the plating film thickness is different, the amount of replenishment will be different when thin-film plating and larger when thick-film plating. Guide the amount. As a result, naturally, the consumption amount and the replenishment amount do not match and the additive concentration changes.

【0011】図6(b)は、従来の補充方式を用いた場合
のメッキ処理枚数と添加剤濃度のターゲット濃度からの
変化を表わしている。従来Kqには、経験的推測による
ある一定値が用いられていたが、この一定値を変化させ
たとしても、基板に対して複数のメッキ膜厚のメッキを
行う場合は、この濃度変化を補償することはできない。
FIG. 6B shows changes in the number of plated plates and the additive concentration from the target concentration when the conventional replenishment method is used. Conventionally, a certain constant value has been used for Kq based on empirical estimation, but even if this constant value is changed, if the plating of a plurality of plating film thicknesses is performed on the substrate, this concentration change is compensated for. You cannot do it.

【0012】実際のメッキのロット処理では、厚膜メッ
キ、薄膜メッキのどちらか一方を継続することはあまり
なく、あるバランスで厚膜メッキ、薄膜メッキの処理を
行う。この結果、図6(b)に示した厚膜メッキの濃度
上昇効果、薄膜メッキの濃度低下効果が相殺しあうた
め、図7に示されるように必ずしも基板処理枚数が多く
なるほど濃度外れに至り易いわけではない。しかしなが
ら、ある頻度で厚膜メッキ、薄膜メッキどちらかに偏る
ことが、実際のメッキ局面(製品出荷上)で不可避的に
発生する。この場合は、図6(b)のように添加剤濃度
が変化し、添加剤濃度外れによる製品廃棄、もしくはメ
ッキ処理不能による出荷停止に陥る。
In the actual plating lot processing, either one of the thick film plating and the thin film plating is rarely continued, and the thick film plating and the thin film plating are performed with a certain balance. As a result, the effect of increasing the concentration of the thick film plating and the effect of decreasing the concentration of the thin film plating shown in FIG. 6 (b) cancel each other out, so that as shown in FIG. Do not mean. However, biasing to either thick film plating or thin film plating at a certain frequency inevitably occurs in the actual plating phase (on product shipment). In this case, the additive concentration changes as shown in FIG. 6B, and the product is discarded due to deviation of the additive concentration, or shipment is stopped due to inability to perform the plating process.

【0013】図5は、メッキ処理によるキャリアの消費
量が積算メッキ膜厚ではなく、処理枚数に依存するとい
う知見の基に、ウエハ1枚当りのキャリア消費量とメッ
キの全量交換からの経過時間を調べた結果である。従来
は同一のメッキ処理を行えば、同じ量のキャリアが消費
されると考えられていた。このため、Kqには、経験的
推測による一定値が用いられてきた。しかしながら、図
5の通り、メッキ処理による添加剤の消費率は一定では
ない。この消費率に対応する比例係数が一定であったこ
とも、従来の方法でメッキによる消費量と補充量が一致
していなかったことの原因である。
FIG. 5 shows that the consumption amount of the carrier by the plating process depends on the number of processed plates, not on the integrated plating film thickness, and based on the knowledge that the carrier consumption amount per wafer and the elapsed time from the total amount of plating are exchanged. Is the result of examining. Conventionally, it was thought that the same amount of carriers would be consumed if the same plating treatment was performed. Therefore, a constant value based on empirical estimation has been used for Kq. However, as shown in FIG. 5, the consumption rate of the additive due to the plating process is not constant. The fact that the proportional coefficient corresponding to this consumption rate is constant is also the reason why the consumption amount by plating and the replenishment amount by the conventional method do not match.

【0014】上述の通り、図5は、単位処理枚数当りの
キャリア消費量が、メッキ液の全液交換からの時間等に
依存して変化することを示している。図3(b)において
キャリア消費量と枚数が比例の関係(=単位処理枚数当
りのキャリア消費量は一定)を示しているのは、メッキ
液の全液交換から一定時間経過後、一定短時間内でのデ
ータであるからである。実際には液交換約110時間〜
130時間のデータである。この時間内における単位処
理枚数当りのキャリア消費量の変化は小さいため、図3
(b)の比例の関係が得られている。
As described above, FIG. 5 shows that the carrier consumption amount per unit number of processed sheets changes depending on the time from the total liquid exchange of the plating liquid and the like. In FIG. 3B, the proportional relationship between the carrier consumption amount and the number of sheets (= constant carrier consumption amount per unit number of processed sheets) is shown after a certain period of time has elapsed since the replacement of all plating liquids and a certain period of time. This is because it is internal data. Actually about 110 hours for liquid exchange
This is data for 130 hours. Since the change in the carrier consumption amount per unit number of processed sheets during this time is small, FIG.
The proportional relationship of (b) is obtained.

【0015】このように従来のメッキ装置では、約3時
間毎にしか実施できない濃度実測による添加剤濃度のセ
ンタリングを補完するために実施する、例えば5分毎の
補充量計算において、メッキ処理による添加剤消費に対
する補充量の計算が 一定の比例係数×積算メッキ膜厚
で行われてきた。しかしながら、実際のメッキ処理によ
る消費量は 変化する係数×メッキ処理枚数で表わされ
る量であった。このため、この濃度実測間隔内で添加剤
濃度が規格から外れ、メッキ特性が変わってしまい、結
果として多量の基板が廃棄されて基板の歩留まりをメッ
キ工程において大幅に下げてしまうという問題があっ
た。
As described above, in the conventional plating apparatus, it is carried out to complement the centering of the additive concentration by the concentration measurement which can be carried out only about every 3 hours. For example, in the replenishment amount calculation every 5 minutes, the addition by the plating treatment is performed. The calculation of the replenishment amount with respect to the agent consumption has been performed with a constant proportional coefficient x integrated plating film thickness. However, the actual amount consumed by plating was the amount expressed by the coefficient that changes x the number of plated plates. Therefore, within the concentration measurement interval, the additive concentration deviates from the standard, the plating characteristics change, and as a result, a large amount of substrates are discarded and the yield of the substrates is significantly reduced in the plating process. .

【0016】本発明の目的は、メッキ液の添加剤濃度を
メッキ作業時間を通じて一定に保つことのできるメッキ
装置及びそれを用いたメッキ液の管理方法を提供するこ
とにある。
An object of the present invention is to provide a plating apparatus capable of keeping the additive concentration of the plating solution constant throughout the plating operation time, and a plating solution management method using the same.

【0017】[0017]

【課題を解決するための手段】本発明のメッキ装置は、
基板に対してメッキ処理を行うメッキセルと、前記メッ
キセルにメッキ液を常時循環させて供給、回収する機能
を持つメッキ液槽と、前記メッキ液槽のメッキ液に含ま
れる添加剤の濃度を測定するメッキ液分析機と、前記メ
ッキ液分析機の前記添加剤の濃度に対する分析結果を受
けての添加剤を前記メッキ液槽に補充するか否かの判定
を行い、補充すると判定されたときに添加剤を前記メッ
キ液槽に補充する添加剤補充装置とを有するメッキ装置
であって、前記メッキ液分析機は前記メッキ液槽のメッ
キ液に含まれる添加剤の濃度を所定時間毎に測定して前
記所定時間内に行われたメッキ処理による添加剤の消費
量をメッキ処理された基板の枚数で除した値をメッキ処
理添加剤消費係数として算出し、前記所定時間よりも短
いモニター時間毎に前記メッキ処理添加剤消費係数を用
いて前記モニター時間内にメッキ処理された基板の枚数
を掛けて添加剤のメッキ依存消費量予測値を算出し、添
加剤の経過時間依存消費量と合わせて添加剤消費量予測
値とし、1回前の前回モニター時の添加剤濃度と前記添
加剤消費量予測値を基にして今回モニター時の添加剤濃
度を求め、の添加剤濃度を差し引いた値にメッキ液量を
掛けた補充量が所定の臨界値以上になった場合に、前記
添加剤補充装置が前記メッキ液槽に前記補充量の添加剤
を補充することを特徴とする。
The plating apparatus of the present invention comprises:
A plating cell for performing a plating process on a substrate, a plating solution tank having a function of constantly circulating and supplying and collecting a plating solution in the plating cell, and a concentration of an additive contained in the plating solution in the plating solution tank are measured. A plating solution analyzer and, based on the analysis results of the additive concentration of the plating solution analyzer, determine whether or not to replenish the plating solution tank with the additive, and add when it is determined to replenish. A plating apparatus having an additive replenishing device for replenishing a plating solution to the plating solution tank, wherein the plating solution analyzer measures the concentration of the additive contained in the plating solution in the plating solution tank every predetermined time. A value obtained by dividing the consumption amount of the additive by the plating treatment performed within the predetermined time by the number of substrates subjected to the plating treatment is calculated as a plating treatment additive consumption coefficient, and is calculated every monitoring time shorter than the predetermined time. Using the plating additive consumption coefficient, multiply the number of substrates plated in the monitoring time to calculate the plating dependent consumption predicted value of the additive, and add it together with the elapsed time dependent consumption of the additive. Based on the additive concentration at the previous monitoring one time before and the predicted value of the additive consumption, the additive concentration at the current monitoring was calculated, and the value was subtracted from the additive concentration. The additive replenishing device replenishes the plating solution tank with the replenishing amount of the additive when the replenishing amount multiplied by the liquid amount becomes equal to or more than a predetermined critical value.

【0018】上記本発明のメッキ装置において、前記添
加剤の経過時間依存消費量は、一定の値を有する単位時
間当たりの添加剤濃度変化係数に前記モニター時間を掛
けて算出される。
In the above plating apparatus of the present invention, the elapsed time dependent consumption of the additive is calculated by multiplying the additive concentration change coefficient per unit time having a constant value by the monitoring time.

【0019】また、上記本発明のメッキ装置において、
前記メッキ液は銅メッキ液であり、前記添加剤はチオー
ル系有機添加剤(促進剤)である。
Further, in the above plating apparatus of the present invention,
The plating solution is a copper plating solution, and the additive is a thiol-based organic additive (accelerator).

【0020】次に、本発明のメッキ液の管理方法は、メ
ッキセル、メッキ液槽、メッキ液分析機及び添加剤補充
装置を有するメッキ装置において、基板をメッキセルに
浸してメッキ処理を行い、メッキ液槽により前記メッキ
セルにメッキ液を常時循環させて供給、回収し、メッキ
液分析機により前記メッキ液槽のメッキ液に含まれる添
加剤の濃度を測定し、添加剤補充装置により前記メッキ
液分析機の前記添加剤の濃度に対する分析結果を受けて
添加剤を前記メッキ液槽に補充するか否かの判定を行
い、補充すると判定されたときに所定量の添加剤を前記
メッキ液槽に補充するメッキ液の管理方法であって、前
記メッキ液分析機において、前記メッキ液槽のメッキ液
に含まれる添加剤の濃度を所定時間毎に測定して前記所
定時間内に行われたメッキ処理による添加剤の消費量を
メッキ処理された基板の枚数で除した値をメッキ処理添
加剤消費係数として算出し、前記所定時間よりも短いモ
ニター時間毎に前記メッキ処理添加剤消費係数を用いて
前記モニター時間内にメッキ処理された基板の枚数を掛
けて添加剤のメッキ依存消費量予測値を算出し、添加剤
の経過時間依存消費量と合わせて添加剤消費量予測値と
し、1回前の前回モニター時の添加剤濃度 と前記添加
剤消費量予測値を基にして今回モニター時の添加剤濃度
を求め、添加剤のターゲット濃度から前記今回モニター
時の添加剤濃度を差し引いた値にメッキ液量を掛けた補
充量が所定の臨界値以上になった場合に、前記添加剤補
充装置が前記メッキ液槽に前記補充量の添加剤を補充す
る前記所定時間よりも短いモニター時間毎に前記メッキ
処理添加剤消費係数を用いて前記モニター時間内にメッ
キ処理された基板の枚数を掛けて添加剤のメッキ依存消
費量予測値を算出し、添加剤の経過時間依存消費量と合
わせて添加剤消費量予測値とし、前記モニター開始時間
の添加剤濃度から前記添加剤消費量予測値を差し引いた
添加剤濃度を前記モニター終了時点の添加剤濃度とし、
添加剤のターゲット濃度から前記モニター終了時点の添
加剤濃度を差し引いた値にメッキ液量を掛けた補充量が
所定の臨界値以上になった場合に、前記添加剤補充装置
が前記メッキ液槽に前記補充量の添加剤を補充すること
を特徴とする。
Next, the plating solution management method of the present invention is a plating apparatus having a plating cell, a plating solution tank, a plating solution analyzer and an additive replenishing device, in which the substrate is immersed in the plating cell to carry out the plating treatment. The plating solution is constantly circulated in the plating cell to be supplied and collected, the concentration of the additive contained in the plating solution in the plating solution tank is measured by the plating solution analyzer, and the plating solution analyzer is measured by the additive replenishing device. Based on the analysis result of the concentration of the additive, it is determined whether or not the additive is replenished to the plating solution tank, and when it is determined that the additive is replenished, a predetermined amount of the additive is replenished to the plating solution tank. A method of controlling a plating solution, wherein the plating solution analyzer measures the concentration of an additive contained in the plating solution in the plating solution tank at predetermined intervals and is performed within the predetermined time. A value obtained by dividing the consumption amount of the additive by the plating process by the number of plated substrates is calculated as a plating treatment additive consumption coefficient, and the plating treatment additive consumption coefficient is calculated for each monitoring time shorter than the predetermined time. Using the number of substrates plated in the above-mentioned monitoring time, the plating-dependent consumption estimation value of the additive is calculated, and the addition-time estimation consumption value of the additive is calculated to be the additive consumption estimation value. The value obtained by subtracting the additive concentration at the current monitoring from the target concentration of the additive by calculating the additive concentration at the current monitoring based on the additive concentration at the previous monitoring before the previous time and the predicted value of the additive consumption amount. When the replenishment amount multiplied by the plating liquid amount becomes a predetermined critical value or more, the additive replenishing device replenishes the plating liquid tank with the replenishing amount of the additive agent for a monitoring time shorter than the predetermined time. To calculate the plating-dependent consumption estimation value of the additive by multiplying the number of substrates plated in the monitoring time by using the plating-treatment additive consumption coefficient, and combine it with the elapsed-time consumption consumption of the additive. As the additive consumption predicted value, the additive concentration obtained by subtracting the additive consumption predicted value from the additive concentration at the monitor start time is defined as the additive concentration at the monitor end time,
When the replenishment amount obtained by subtracting the additive concentration at the end of the monitor from the target concentration of the additive by the plating solution amount is equal to or higher than a predetermined critical value, the additive replenishing device is added to the plating solution tank. It is characterized in that the additive is replenished in the replenishing amount.

【0021】上記本発明のメッキ液の管理方法におい
て、前記メッキ液槽のメッキ液に含まれる添加剤の濃度
を所定時間毎に測定して前記所定時間内に行われたメッ
キ処理による添加剤の消費量をメッキ処理された基板の
枚数で除した値をメッキ処理添加剤消費係数として算出
する操作において、前記メッキ処理添加剤消費係数はメ
ッキ処理される基板1枚当たりの添加剤消費量であり、
前記基板1枚は、ある一つのサイズの面積を有する基板
を1枚として規格化された枚数として換算される。
In the method for controlling a plating solution of the present invention, the concentration of the additive contained in the plating solution in the plating solution tank is measured every predetermined time, and the additive by the plating treatment performed within the predetermined time is measured. In the operation of calculating a value obtained by dividing the consumption amount by the number of plated substrates as a plating treatment additive consumption coefficient, the plating treatment additive consumption coefficient is an additive consumption amount per substrate to be plated. ,
One substrate is converted into the number of substrates standardized as one substrate having an area of a certain size.

【0022】また、上記本発明のメッキ液の管理方法に
おいて、前記メッキ装置における基板をメッキセルに浸
して行う前記メッキ処理が、前記基板に対して複数種類
の膜厚のメッキ膜をメッキするメッキ処理である。
In the plating solution management method of the present invention, the plating treatment performed by immersing the substrate in the plating apparatus in a plating cell is a plating treatment for plating the substrate with a plating film having a plurality of film thicknesses. Is.

【0023】[0023]

【発明の実施の形態】次に、本発明の実施形態について
図1を参照して説明する。図1はメッキ装置の模式断面
図である。メッキ装置100は、主として、メッキセル
10、メッキ液槽20、メッキ液分析機30及び添加剤
補充装置40を有する構成を採る。メッキセル10にお
いては、基板1をアノード2と対向させてメッキ液3に
浸し、基板1及びアノード2間に電圧Eを印加してメッ
キ液3中のCu 2+を基板1表面にメッキする。この
とき、メッキ液にはCu 2+,SO 4−,H
Cl の他にメッキ促進剤として、チオール系有機添
加剤がある濃度で含まれている。この他にも有機高分子
系添加剤(抑制剤、ポリマー)等が含まれるが、この添
加剤は実質的に時間に比例して濃度が変化し、メッキ処
理には依存しないため、キャリアのような添加剤の濃度
の問題は発生しない。
BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic sectional view of a plating apparatus. The plating apparatus 100 mainly includes a plating cell 10, a plating solution tank 20, a plating solution analyzer 30, and an additive replenishing device 40. In the plating cell 10, the substrate 1 is opposed to the anode 2 and immersed in the plating solution 3, and a voltage E is applied between the substrate 1 and the anode 2 to plate Cu 2+ in the plating solution 3 on the surface of the substrate 1. At this time, the plating solution contains Cu 2+ , SO 4 − , H + ,
In addition to Cl , a thiol-based organic additive is contained at a certain concentration as a plating accelerator. In addition to these, organic polymer additives (inhibitors, polymers), etc. are included, but since the concentration of these additives changes substantially in proportion to time and does not depend on the plating treatment, The problem of the concentration of various additives does not occur.

【0024】次に、メッキ液槽20は、メッキ液循環チ
ューブ50を通してメッキ液を循環させて常時メッキセ
ル10に対してメッキ液を供給し、またメッキセル10
からメッキ液を回収する。従って、メッキ液槽20とメ
ッキセルにおけるメッキ液3の添加剤濃度は同じとな
る。
Next, the plating solution tank 20 circulates the plating solution through the plating solution circulation tube 50 to constantly supply the plating solution to the plating cell 10, and the plating cell 10
Collect the plating solution from. Therefore, the additive concentrations of the plating solution 3 in the plating solution tank 20 and the plating cell are the same.

【0025】次に、メッキ液分析機30は、メッキ液槽
20おけるメッキ液3の添加剤濃度を測定する装置であ
り、ここで測定された添加剤濃度のデータを基に、添加
剤補充装置40に対して添加剤をメッキ液槽に補充する
かどうかの指示を与え、補充する場合には、その補充量
も指示する。
Next, the plating liquid analyzer 30 is a device for measuring the additive concentration of the plating liquid 3 in the plating liquid tank 20, and the additive replenishing device is based on the data of the additive concentration measured here. 40 is given an instruction as to whether or not the plating solution tank is replenished with the additive, and in the case of replenishment, the replenishment amount is also instructed.

【0026】次に、添加剤補充装置40は、メッキ液分
析機30からの指示に従って、添加剤をメッキ液槽20
に補充する場合には、メッキ液分析機30から指示され
た補充量の添加剤をメッキ液槽20に補充する。
Next, the additive replenishing device 40 follows the instruction from the plating solution analyzer 30 to add the additive to the plating solution tank 20.
When replenishing the plating solution, the plating solution tank 20 is replenished with the replenishment amount of the additive instructed by the plating solution analyzer 30.

【0027】添加剤補充装置40は、メッキ液分析機3
0から添加剤濃度測定結果を所定の時間間隔(3時間、
6時間、12時間等適宜設定できるが、一例として3時
間とする)で受信して、添加剤のターゲット濃度からの
ずれを計算して添加剤をメッキ液槽20に補充する。勿
論、添加剤濃度測定結果が添加剤のターゲット濃度を超
えている場合は添加剤の補充は行われない。この点は従
来の方法と同じである。
The additive replenishing device 40 is a plating liquid analyzer 3
Additive concentration measurement results from 0 to a predetermined time interval (3 hours,
6 hours, 12 hours, etc. can be set appropriately, but as an example, 3 hours is received), the deviation from the target concentration of the additive is calculated, and the additive is replenished to the plating solution tank 20. Of course, if the additive concentration measurement result exceeds the target concentration of the additive, the additive is not replenished. This point is the same as the conventional method.

【0028】ここで、本実施形態の特徴である添加剤の
補充方法について説明する。本発明では、所定時間(例
えば3h)毎の実測による添加剤濃度センタリングによ
る管理を補完する、例えば、5分毎の計算による濃度管
理に用いる計算式が異なる。まず、添加剤補充装置40
は、メッキ液分析機30から添加剤濃度測定結果を所定
の比例係数校正時間間隔(3時間、6時間、12時間等
適宜設定できるが、一例として6時間とする)で受信し
て、添加剤の減少分からメッキ処理に無関係で経過時間
に依存する添加剤消費量を差し引いた量を実際にメッキ
処理した基板の枚数で除した値を添加剤濃度変化係数K
w(=当比例係数校正時間における、基板1枚メッキ当
りのキャリア消費量)とする。
Now, a method of replenishing the additive, which is a feature of this embodiment, will be described. In the present invention, the calculation formula used for the concentration management by the calculation every 5 minutes, which is complementary to the management by the additive concentration centering by the actual measurement every predetermined time (for example, 3 h), is different. First, the additive replenishing device 40
Receives the additive concentration measurement result from the plating solution analyzer 30 at a predetermined proportional coefficient calibration time interval (3 hours, 6 hours, 12 hours, etc. can be set as appropriate, but is 6 hours as an example). The value obtained by subtracting the amount of additive consumption that is irrelevant to the plating process and that depends on the elapsed time from the decrease of
w (= carrier consumption per plating of one substrate at the time of calibration of the proportional coefficient).

【0029】即ち、以下の式でKwを求める。比例係数
校正時間(例えば6時間)での濃度変化をΔCLT、全メ
ッキ液量をV、比例係数校正時間内での全添加剤補充量
をSLT、単位時間当たりの自然添加剤消費率をKt、
比例係数校正時間をTLT、比例係数校正時間でのメッ
キ処理枚数をWLTとすると、濃度変化=(全添加剤補
充量−全添加剤消費量)/メッキ液量であるから ΔCLT=(SLT−(Kt×TLT+Kw×WL
T))/V が成り立つ。従ってKwは、以下の式で求められる。 Kw=(SLT−(ΔCLT×V+Kt×TLT))/
WLT このようにして、従来とは異なり、所定時間毎に校正さ
れる比例係数Kwが求められる。
That is, Kw is calculated by the following equation. ΔCLT is the concentration change during the proportional coefficient calibration time (for example, 6 hours), V is the total plating solution amount, SLT is the total additive replenishment amount within the proportional coefficient calibration time, and Kt is the natural additive consumption rate per unit time.
Assuming that the proportional coefficient calibration time is TLT and the number of plating treatments in the proportional coefficient calibration time is WLT, concentration change = (total additive replenishment amount−total additive consumption amount) / plating solution amount, ΔCLT = (SLT− ( Kt x TLT + Kw x WL
T)) / V holds. Therefore, Kw is calculated by the following equation. Kw = (SLT− (ΔCLT × V + Kt × TLT)) /
WLT In this way, unlike the prior art, the proportional coefficient Kw which is calibrated at every predetermined time is obtained.

【0030】このKwを用いて、メッキ液分析機30は
例えば3時間毎の実測による添加剤濃度センタリングに
よる管理を補完するため、5分毎に計算によって現添加
剤濃度を計算する。5分毎の添加剤濃度計算に用いる式
は従来の(1)式のKq×QをKw×Wに置き換えた以
下の(3)式である。 C=C(k−1)−(Kt×T+Kw×W)・・・(3) ここで、Wは、前回〜今回の計算の間にメッキされた基
板の枚数であり、基板の枚数は、ある一つのサイズの面
積を有する基板を1枚として規格化された枚数として換
算される。例えば、6インチウェハを1枚とした場合、
8インチウェハは1.778枚となる。
Using this Kw, the plating solution analyzer 30 calculates the present additive concentration by calculation every 5 minutes in order to complement the control by the additive concentration centering by actual measurement every 3 hours, for example. The formula used to calculate the additive concentration every 5 minutes is the following formula (3) in which Kq × Q in the conventional formula (1) is replaced with Kw × W. C k = C (k−1) − (Kt × T + Kw × W) (3) Here, W is the number of substrates plated between the previous calculation and the present calculation, and the number of substrates is The number of substrates having an area of a certain size is converted into a standardized number. For example, if one 6-inch wafer is used,
The number of 8-inch wafers is 1.778.

【0031】そして、Cを求めた後は、従来の方法で
示した(2)式によりSを計算する。 S=(Ct−C)×V・・・(2) この結果、例えば、(2)式のSが10ml以上とな
った場合はただちに添加剤補充装置40からメッキ液槽
20に添加剤の補充が行われ、10ml未満の場合は、
約5分後に(3)式のC(k−1)に今回の添加剤濃度
測定結果Cを代入して、次回のC、Sの計算を行
う。 (3)式により、Cを求めた以降の手順は従来の
方法と同じである。
After obtaining C k , S k is calculated by the equation (2) shown in the conventional method. S k = (Ct−C k ) × V (2) As a result, for example, when S k of the formula (2) becomes 10 ml or more, the additive replenishing device 40 immediately adds the plating solution to the plating solution tank 20. If the agent is replenished and less than 10 ml,
After about 5 minutes, the additive concentration measurement result C k of this time is substituted into C (k−1 ) of the equation (3), and the next calculation of C k and S k is performed. The procedure after obtaining C k by the equation (3) is the same as the conventional method.

【0032】以上のようにして、所定の比例係数校正時
間毎に校正したにKwにメッキ処理枚数をかけてメッキ
処理による消費量を求め、添加剤を補充すれば消費した
分だけ補充したことになり、添加剤濃度が安定する。こ
のため、センタリング間隔を長くすることができ、分析
装置の定期メンテ間隔、装置寿命が長くなり、分析薬品
の使用量が減るという副次的効果も得られる。
As described above, after calibrating at a predetermined proportional coefficient calibration time, Kw is multiplied by the number of plating treatments to obtain the consumption amount by the plating treatment, and if the additive is replenished, only the consumed amount is replenished. And the additive concentration stabilizes. For this reason, the centering interval can be lengthened, the regular maintenance interval of the analyzer and the device life can be extended, and the secondary effects of reducing the amount of analytical chemicals used can also be obtained.

【0033】ここで、添加剤消費量がメッキ処理枚数に
ほぼ比例することを裏付ける現象について述べておく。
既に記載したように、図3(b)は、メッキ処理による
添加剤(キャリア)消費量のメッキ処理枚数(一定サイ
ズの基板を使用)に対する依存性を示すグラフである。
このグラフと図3(a)のグラフを比較すると明らかな
ように、添加剤(キャリア)消費量は、図3(a)の積
算メッキ電荷量との相関性よりも図3(b)のメッキ処
理枚数との相関性の方が強いことがわかる。図3(a)
が緩い相関を持つ理由は前述の通りである。
Here, the phenomenon that supports the fact that the additive consumption amount is approximately proportional to the number of plated plates will be described.
As described above, FIG. 3B is a graph showing the dependence of the additive (carrier) consumption amount by the plating process on the number of plated plates (using a substrate of a fixed size).
As is clear from comparison between this graph and the graph of FIG. 3A, the consumption amount of the additive (carrier) is higher than the correlation with the integrated plating charge amount of FIG. It can be seen that the correlation with the number of processed sheets is stronger. Figure 3 (a)
The reason why has a loose correlation is as described above.

【0034】ここで、この強い相関性は、次のような理
由による。すなわち、基板がメッキ液に浸かった瞬間に
添加剤が基板の表面に吸着されるので、基板のメッキ処
理による添加剤消費量は主として、基板の表面積、さら
には、基板のメッキ処理枚数で決定される。図2は、そ
の現象をCuメッキを例に、模式的に説明するための基
板の表面の一部の拡大模式断面図である。
Here, this strong correlation is due to the following reason. That is, since the additive is adsorbed on the surface of the substrate at the moment when the substrate is immersed in the plating solution, the additive consumption amount due to the plating treatment of the substrate is mainly determined by the surface area of the substrate and further the number of the plated treatment of the substrate. It FIG. 2 is an enlarged schematic cross-sectional view of a part of the surface of the substrate for schematically explaining the phenomenon using Cu plating as an example.

【0035】まず、図2(a)のように、基板1には溝
51が設けられ、溝51を含む基板表面全体には予めス
パッタ法によるCuシード層52が形成されている。こ
の基板1をメッキ液に浸けると、図2(a)のように、
キャリア(メッキ促進剤)53がCuシード層52表面
に均等に吸着される。
First, as shown in FIG. 2A, a groove 51 is provided in the substrate 1, and a Cu seed layer 52 is formed in advance by sputtering on the entire surface of the substrate including the groove 51. When this substrate 1 is immersed in the plating solution, as shown in FIG.
The carrier (plating accelerator) 53 is evenly adsorbed on the surface of the Cu seed layer 52.

【0036】次に、Cuメッキが始まると、図2(b)
のように、溝51内部が徐々にCu膜54で埋められ始
め、溝内のCu膜54の表面積が小さくなる。このと
き、Cuシード層52の表面に吸着したキャリア53は
Cu膜54が成長しても基板表面に存在する。この結
果、Cu膜54の表面積が小さくなった溝内部ではキャ
リアの密度が相対的に高くなる。従って、この部分での
メッキが促進される。
Next, when Cu plating is started, FIG.
As described above, the inside of the groove 51 is gradually filled with the Cu film 54, and the surface area of the Cu film 54 in the groove becomes small. At this time, the carrier 53 adsorbed on the surface of the Cu seed layer 52 exists on the substrate surface even if the Cu film 54 grows. As a result, the carrier density becomes relatively high inside the groove where the surface area of the Cu film 54 is small. Therefore, the plating in this portion is promoted.

【0037】次に、Cuメッキ膜の成長と共に、図2
(c)のように、溝内部でのキャリアの密度はさらに高
くなり、溝が完全にCu膜54で埋まることになる。
Next, as shown in FIG.
As shown in (c), the carrier density inside the groove is further increased, and the groove is completely filled with the Cu film 54.

【0038】以上のように、メッキ処理における添加剤
の消費量は主として、基板の表面積、更には、基板のメ
ッキ処理枚数で決定され、メッキ膜厚は添加剤の消費量
に関係なくメッキ電荷量で決定されることがわかる。
As described above, the consumption amount of the additive in the plating process is mainly determined by the surface area of the substrate and further the number of substrates subjected to the plating treatment, and the plating film thickness is the amount of the plating charge regardless of the consumption amount of the additive. It turns out that is decided by.

【0039】以上のように、本発明のメッキ装置及びそ
れを用いたメッキ液の管理方法によれば、メッキ処理に
よるキャリア消費量を、定期的(例えば6時間毎)に校
正された係数(Kw)×メッキ処理枚数の計算式を用い
て、モニター時間(例えば5分)毎に添加剤消費量を計
算し、時間経過による消費と合わせて、添加剤を補充を
決定したので、所定時間(例えば3時間)毎の添加剤濃度
実測による濃度センタリングによる管理が完全に補完さ
れ、メッキ液に含まれる添加剤濃度をその運転時間に渡
って一定に維持することが可能となり、基板の歩留まり
を大幅に上げることができた。
As described above, according to the plating apparatus of the present invention and the plating liquid management method using the plating apparatus, the carrier consumption amount by the plating treatment is calibrated periodically (for example, every 6 hours) by a coefficient (Kw). ) × the number of plating treatments was used to calculate the additive consumption amount for each monitoring time (for example, 5 minutes), and it was decided to replenish the additive together with the consumption over time. The control by concentration centering by measuring the additive concentration every 3 hours is completely complemented, and it becomes possible to maintain the concentration of the additive contained in the plating solution constant over the operating time, resulting in a large substrate yield. I was able to raise it.

【0040】[0040]

【発明の効果】以上に説明したように、本発明ではメッ
キ処理による添加剤の消費量は積算メッキ膜厚ではなく
処理枚数に比例し、さらにその係数は一定ではなく変化
するという新たな知見に基づき、所定時間毎に校正され
た比例係数(Kw)×メッキ処理枚数の計算式を用い
て、モニター時間(例えば5分)毎に添加剤消費量を計
算し、時間経過による消費と合わせて、添加剤を補充を
決定したので、所定時間(例えば3時間)毎の添加剤濃度
実測による濃度センタリングによる管理が完全に補完さ
れ、メッキ液に含まれる添加剤濃度をその運転時間に渡
って一定に維持することが可能となる。従って、本発明
によるメッキ装置を使用すれば、メッキ装置の運転時間
に渡って所定の付きまわり(埋設性等)のメッキ膜がメッ
キされた基板を生産することが可能となり、基板が廃棄
されて基板の歩留まりをメッキ工程において大幅に下げ
ることがなくなるという効果が得られる。
As described above, according to the present invention, the consumption of the additive by the plating process is proportional to the number of processed plates, not to the integrated plating film thickness, and the coefficient is not constant but changes. Based on the proportional coefficient (Kw) calibrated for each predetermined time × the number of plated plates, the additive consumption amount is calculated for each monitoring time (for example, 5 minutes), and the consumption is calculated as the time elapses. Since it was decided to replenish the additive, the control by concentration centering by measuring the additive concentration every predetermined time (for example, 3 hours) was completely complemented, and the concentration of the additive contained in the plating solution was kept constant over the operating time. It is possible to maintain. Therefore, by using the plating apparatus according to the present invention, it becomes possible to produce a substrate on which a plating film with a predetermined attachment (embedding property, etc.) is plated over the operating time of the plating apparatus, and the substrate is discarded. It is possible to obtain an effect that the yield of the substrate is not significantly reduced in the plating process.

【0041】また、本発明によれば、メッキ処理による
消費量と補充量が一致するため、添加剤濃度が安定す
る。このため、測定による添加剤濃度センタリングの頻
度を低減させることができる。この結果、分析装置の定
期メンテ間隔、装置寿命が長くなり、分析薬品の使用量
が減るという副次的効果も得られる。
Further, according to the present invention, since the consumption amount by the plating process and the replenishment amount are the same, the additive concentration is stable. Therefore, the frequency of additive concentration centering due to measurement can be reduced. As a result, the regular maintenance interval of the analyzer and the life of the analyzer are extended, and the secondary effect of reducing the amount of the analytical chemicals used is also obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に用いられるメッキ装置の模
式図である。
FIG. 1 is a schematic diagram of a plating apparatus used in an embodiment of the present invention.

【図2】メッキ処理による添加剤消費量がメッキ処理枚
数に強く依存する現象を模式的に説明するための基板の
表面の一部の拡大模式断面図である。
FIG. 2 is an enlarged schematic cross-sectional view of a part of the surface of the substrate for schematically explaining a phenomenon in which the additive consumption amount due to plating treatment strongly depends on the number of plating treatments.

【図3】メッキ処理による添加剤(キャリア)消費量の
積算メッキ電荷量に対する依存性及びメッキ処理枚数
(一定サイズの基板を使用)に対する依存性を示すグラ
フである。
FIG. 3 is a graph showing the dependence of the additive (carrier) consumption amount by the plating process on the integrated plating charge amount and the dependence on the number of plating processes (using a substrate of a fixed size).

【図4】図3のデータにおける積算メッキ電荷量とメッ
キ処理枚数(一定サイズの基板を使用)との関係を示す
グラフである。
FIG. 4 is a graph showing the relationship between the cumulative amount of plating charges and the number of plating treatments (using a substrate of a fixed size) in the data of FIG.

【図5】200nm基板(1枚当たりのメッキ処理によ
る添加剤(キャリア)消費量の経過時間依存性を示すグ
ラフである。
FIG. 5 is a graph showing the elapsed time dependency of the consumption amount of an additive (carrier) by a 200 nm substrate (one plate is plated.

【図6】(a)は、従来の方法を用いた場合の、キャリ
ア補充量とメッキ処理基板枚数の関係(メッキ膜厚は2
種類)を示すグラフであり、(b)は、従来の方法を用
いた場合の、キャリア濃度変化とメッキ処理基板枚数の
関係(計算値であり、メッキ膜厚は2種類のみ)を示す
グラフである。
FIG. 6A shows the relationship between the amount of replenished carrier and the number of plated substrates when the conventional method is used (the plating film thickness is 2
(B) is a graph showing the relationship between the carrier concentration change and the number of plated substrates (calculated value, only two types of plating film thickness) when the conventional method is used. is there.

【図7】従来の方法を用いた場合の、キャリア濃度変化
とメッキ処理基板枚数の関係(実データ、メッキ膜厚は
3種類以上)を示すグラフである。
FIG. 7 is a graph showing the relationship between the carrier concentration change and the number of plated substrates (actual data, plating film thickness is 3 or more) when the conventional method is used.

【符号の説明】 1 基板 2 アノード 10 メッキセル 20 メッキ液槽 30 メッキ液分析機 40 添加剤補充装置 50 メッキ液循環チューブ 51 溝 52 Cuシード層 53 キャリア(メッキ促進剤) 54 Cu膜[Explanation of symbols] 1 substrate 2 anode 10 plating cell 20 plating bath 30 Plating liquid analyzer 40 Additive replenishing device 50 plating solution circulation tube 51 groove 52 Cu seed layer 53 Carrier (plating accelerator) 54 Cu film

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基板に対してメッキ処理を行うメッキセ
ルと、前記メッキセルにメッキ液を常時循環させて供
給、回収する機能を持つメッキ液槽と、前記メッキ液槽
のメッキ液に含まれる添加剤の濃度を測定するメッキ液
分析機と、前記メッキ液分析機の前記添加剤の濃度に対
する分析結果を受けての添加剤を前記メッキ液槽に補充
するか否かの判定を行い、補充すると判定されたときに
添加剤を前記メッキ液槽に補充する添加剤補充装置とを
有するメッキ装置であって、前記メッキ液分析機は前記
メッキ液槽のメッキ液に含まれる添加剤の濃度を所定時
間毎に測定して前記所定時間内に行われたメッキ処理に
よる添加剤の消費量をメッキ処理された基板の枚数で除
した値をメッキ処理添加剤消費係数として算出し、前記
所定時間よりも短いモニター時間毎に前記メッキ処理添
加剤消費係数を用いて前記モニター時間内にメッキ処理
された基板の枚数を掛けて添加剤のメッキ依存消費量予
測値を算出し、添加剤の経過時間依存消費量と合わせて
添加剤消費量予測値とし、1回前の前回モニター時の添
加剤濃度と前記添加剤消費量予測値を基にして今回モニ
ター時の添加剤濃度を求め、添加剤のターゲット濃度か
ら前記今回モニター時の添加剤濃度を差し引いた値にメ
ッキ液量を掛けた補充量が所定の臨界値以上になった場
合に、前記添加剤補充装置が前記メッキ液槽に前記補充
量の添加剤を補充することを特徴とするメッキ装置。
1. A plating cell for plating a substrate, a plating solution tank having a function of constantly circulating and supplying and collecting a plating solution to the plating cell, and an additive contained in the plating solution in the plating solution tank. And a plating solution analyzer for measuring the concentration of the plating solution analyzer, and determines whether or not to replenish the plating solution tank with the additive based on the analysis result for the concentration of the additive of the plating solution analyzer, and determines to replenish. A plating apparatus having an additive replenishing device that replenishes the additive to the plating solution tank when the plating solution analyzer is used, wherein the plating solution analyzer is configured to adjust the concentration of the additive contained in the plating solution in the plating solution tank for a predetermined time. Calculated as the plating treatment additive consumption coefficient, which is calculated by dividing the consumption amount of the additive by the plating treatment performed within the predetermined time by the number of the plated substrates, and is shorter than the predetermined time. Mo The plating-dependent additive consumption coefficient of each additive is multiplied by the number of substrates plated during the monitoring time to calculate the plating-dependent consumption predicted value of the additive, and the elapsed-time-dependent consumption of the additive is calculated. Based on the additive concentration at the previous monitoring one time before and the predicted value of the additive consumption at this time, the additive concentration at the current monitoring is calculated and calculated from the target concentration of the additive. When the replenishment amount obtained by multiplying the value obtained by subtracting the additive concentration at the time of monitoring at this time by the plating liquid amount is equal to or higher than a predetermined critical value, the additive replenishing device causes the plating liquid tank to have the replenishment amount of the additive A plating device characterized by replenishing.
【請求項2】 前記添加剤の経過時間依存消費量は、一
定の値を有する単位時間当たりの添加剤濃度変化係数に
前記モニター時間を掛けて算出される請求項1記載のメ
ッキ装置。
2. The plating apparatus according to claim 1, wherein the elapsed time-dependent consumption amount of the additive is calculated by multiplying an additive concentration change coefficient per unit time having a constant value by the monitoring time.
【請求項3】 前記メッキ液は銅メッキ液であり、前記
添加剤はチオール系有機添加剤(促進剤)である請求項
1又は2記載のメッキ装置。
3. The plating apparatus according to claim 1, wherein the plating solution is a copper plating solution, and the additive is a thiol-based organic additive (accelerator).
【請求項4】 メッキセル、メッキ液槽、メッキ液分析
機及び添加剤補充装置を有するメッキ装置において、基
板をメッキセルに浸してメッキ処理を行い、メッキ液槽
により前記メッキセルにメッキ液を常時循環させて供
給、回収し、メッキ液分析機により前記メッキ液槽のメ
ッキ液に含まれる添加剤の濃度を測定し、添加剤補充装
置により前記メッキ液分析機の前記添加剤の濃度に対す
る分析結果を受けて添加剤を前記メッキ液槽に補充する
か否かの判定を行い、補充すると判定されたときに所定
量の添加剤を前記メッキ液槽に補充するメッキ液の管理
方法であって、前記メッキ液分析機において、前記メッ
キ液槽のメッキ液に含まれる添加剤の濃度を所定時間毎
に測定して前記所定時間内に行われたメッキ処理による
添加剤の消費量をメッキ処理された基板の枚数で除した
値をメッキ処理添加剤消費係数として算出し、前記所定
時間よりも短いモニター時間毎に前記メッキ処理添加剤
消費係数を用いて前記モニター時間内にメッキ処理され
た基板の枚数を掛けて添加剤のメッキ依存消費量予測値
を算出し、添加剤の経過時間依存消費量と合わせて添加
剤消費量予測値とし、1回前の前回モニター時の添加剤
濃度 と前記添加剤消費量予測値 を基にして今回モニタ
ー時の添加剤濃度を求め、添加剤のターゲット濃度から
前記今回モニター時の添加剤濃度を差し引いた値にメッ
キ液量を掛けた補充量が所定の臨界値以上になった場合
に、前記添加剤補充装置が前記メッキ液槽に前記補充量
の添加剤を補充する前記所定時間よりも短いモニター時
間毎に前記メッキ処理添加剤消費係数を用いて前記モニ
ター時間内にメッキ処理された基板の枚数を掛けて添加
剤のメッキ依存消費量予測値を算出し、添加剤の経過時
間依存消費量と合わせて添加剤消費量予測値とし、前記
モニター開始時間の添加剤濃度から前記添加剤消費量予
測値を差し引いた添加剤濃度を前記モニター終了時点の
添加剤濃度とし、添加剤のターゲット濃度から前記モニ
ター終了時点の添加剤濃度を差し引いた値にメッキ液量
を掛けた補充量が所定の臨界値以上になった場合に、前
記添加剤補充装置が前記メッキ液槽に前記補充量の添加
剤を補充することを特徴とするメッキ液の管理方法。
4. In a plating apparatus having a plating cell, a plating solution tank, a plating solution analyzer and an additive replenishing device, the substrate is immersed in the plating cell for plating, and the plating solution is constantly circulated in the plating cell by the plating solution tank. Supplied and collected, the concentration of the additive contained in the plating solution in the plating solution tank is measured by the plating solution analyzer, and the analysis result for the concentration of the additive in the plating solution analyzer is received by the additive replenishing device. A method of controlling a plating solution, in which a predetermined amount of additive is replenished in the plating solution tank when it is determined that the additive is replenished in the plating solution tank. In the liquid analyzer, the concentration of the additive contained in the plating solution in the plating solution tank is measured every predetermined time to measure the consumption amount of the additive due to the plating process performed within the predetermined time. A value divided by the number of processed substrates is calculated as the plating treatment additive consumption coefficient, and the plating treatment additive consumption coefficient is used at each monitoring time shorter than the predetermined time to perform plating treatment within the monitoring time. Multiply the number of substrates that have been used to calculate the plating-dependent consumption estimation value of the additive, and add it with the elapsed time-dependent consumption consumption of the additive to obtain the addition agent consumption prediction value And the additive concentration at this time monitoring is calculated based on the above and the additive consumption estimated value, and the replenishment amount is calculated by multiplying the value obtained by subtracting the additive concentration at this monitoring time from the target concentration of the additive by the plating solution amount. When the additive replenishing device replenishes the plating solution tank with the replenishing amount of the additive at a predetermined critical value or more, the additive consumption coefficient of the plating treatment is calculated for each monitoring time shorter than the predetermined time. Then, the estimated plating-dependent consumption amount of the additive is calculated by multiplying the number of substrates plated during the monitoring time, and the estimated consumption amount of the additive is calculated together with the elapsed time-dependent consumption amount of the additive, The additive concentration obtained by subtracting the additive consumption predicted value from the additive concentration at the start time was taken as the additive concentration at the end of the monitoring, and the target concentration of the additive was subtracted from the additive concentration at the end of the monitoring. A method of managing a plating solution, wherein the additive replenishing device replenishes the plating solution tank with the replenishment amount of the additive when the replenishment amount multiplied by the plating solution amount exceeds a predetermined critical value. .
【請求項5】 前記添加剤の経過時間依存消費量は、一
定の値を有する単位時間当たりの添加剤濃度変化係数に
前記モニター時間を掛けて算出される請求項4記載のメ
ッキ液の管理方法。
5. The method for managing a plating solution according to claim 4, wherein the elapsed time-dependent consumption amount of the additive is calculated by multiplying an additive concentration change coefficient per unit time having a constant value by the monitoring time. .
【請求項6】 前記メッキ液槽のメッキ液に含まれる添
加剤の濃度を所定時間毎に測定して前記所定時間内に行
われたメッキ処理による添加剤の消費量をメッキ処理さ
れた基板の枚数で除した値をメッキ処理添加剤消費係数
として算出する操作において、前記メッキ処理添加剤消
費係数はメッキ処理される基板1枚当たりの添加剤消費
量であり、前記基板1枚は、ある一つのサイズの面積を
有する基板を1枚として規格化された枚数として換算さ
れる請求項4又は5記載のメッキ液の管理方法。
6. The concentration of the additive contained in the plating solution in the plating solution tank is measured every predetermined time, and the consumption amount of the additive due to the plating process performed within the predetermined time is measured in the plated substrate. In the operation of calculating a value divided by the number of sheets as a plating treatment additive consumption coefficient, the plating treatment additive consumption coefficient is an additive consumption amount per substrate to be plated, and one substrate is The method for managing a plating solution according to claim 4, wherein the number of substrates having one size area is converted into a standard number.
【請求項7】 前記メッキ液は銅メッキ液であり、前記
添加剤はチオール系有機添加剤(促進剤)である請求項
4、5又は6記載のメッキ液の管理方法。
7. The method for controlling a plating solution according to claim 4, 5 or 6, wherein the plating solution is a copper plating solution, and the additive is a thiol-based organic additive (accelerator).
【請求項8】 前記メッキ装置において、基板をメッキ
セルに浸して行う前記メッキ処理が、前記基板に対して
複数種類の膜厚のメッキ膜をメッキするメッキ処理であ
る請求項4乃至7のいずれか一項に記載のメッキ液の管
理方法。
8. The plating apparatus according to claim 4, wherein the plating process in which the substrate is immersed in a plating cell is a plating process for plating a plating film having a plurality of film thicknesses on the substrate. The method for managing a plating solution according to the item 1.
JP2002085672A 2002-03-26 2002-03-26 Plating apparatus and plating solution management method using the same Expired - Fee Related JP3821742B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002085672A JP3821742B2 (en) 2002-03-26 2002-03-26 Plating apparatus and plating solution management method using the same
US10/395,220 US20030183513A1 (en) 2002-03-26 2003-03-25 Plating system and method for management of plating solution using plating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002085672A JP3821742B2 (en) 2002-03-26 2002-03-26 Plating apparatus and plating solution management method using the same

Publications (2)

Publication Number Publication Date
JP2003277998A true JP2003277998A (en) 2003-10-02
JP3821742B2 JP3821742B2 (en) 2006-09-13

Family

ID=28449263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002085672A Expired - Fee Related JP3821742B2 (en) 2002-03-26 2002-03-26 Plating apparatus and plating solution management method using the same

Country Status (2)

Country Link
US (1) US20030183513A1 (en)
JP (1) JP3821742B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040667A (en) * 2008-08-01 2010-02-18 Nec Electronics Corp Method for manufacturing semiconductor device, and device for manufacturing semiconductor device
JP2010229454A (en) * 2009-03-26 2010-10-14 Fuji Electric Holdings Co Ltd Wet plating method and wet plating apparatus
JP2012083196A (en) * 2010-10-12 2012-04-26 Japan Radio Co Ltd Concentration sensor system
KR20160131426A (en) 2015-05-07 2016-11-16 가부시끼가이샤 제이씨유 Management method of copper sulfate plating solution

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312775A (en) * 2005-04-08 2006-11-16 Sharp Corp Plating apparatus, plating method, and method for manufacturing semiconductor device
CN102286773A (en) * 2011-08-22 2011-12-21 无锡鼎亚电子材料有限公司 Automatic dosing machine for electroplating additive
CN103361709B (en) * 2012-03-27 2016-04-06 上海梅山钢铁股份有限公司 Plated metal pottery plating solution homogeneity and control device for stability
CN102776552B (en) * 2012-08-02 2015-12-16 梅县金象铜箔有限公司 Automatic control process during melanism Copper Foil supplementation with copper ion and the equipment of use thereof
KR101901781B1 (en) 2014-05-12 2018-10-01 삼성전자주식회사 substrate processing apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040667A (en) * 2008-08-01 2010-02-18 Nec Electronics Corp Method for manufacturing semiconductor device, and device for manufacturing semiconductor device
JP2010229454A (en) * 2009-03-26 2010-10-14 Fuji Electric Holdings Co Ltd Wet plating method and wet plating apparatus
JP2012083196A (en) * 2010-10-12 2012-04-26 Japan Radio Co Ltd Concentration sensor system
KR20160131426A (en) 2015-05-07 2016-11-16 가부시끼가이샤 제이씨유 Management method of copper sulfate plating solution

Also Published As

Publication number Publication date
US20030183513A1 (en) 2003-10-02
JP3821742B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP4358259B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
US5352350A (en) Method for controlling chemical species concentration
JP6104497B2 (en) Method and apparatus for analysis and control of plating solutions
JP2003277998A (en) Plating apparatus, and method for controlling plating solution using the same
JP4940008B2 (en) Plating film forming apparatus and film forming control method
JP2001023952A (en) Etching method and device
US20080023045A1 (en) Conductivity control of water content in solvent strip baths
TWI692554B (en) Copper oxide powder, method of plating a substrate, and method of managing plating solution
WO2003006715A1 (en) Methods and apparatus for controlling an amount of a chemical constituent of an electrochemical bath
US6508924B1 (en) Control of breakdown products in electroplating baths
US6921193B2 (en) Chemical concentration control device for semiconductor processing apparatus
KR20180033072A (en) Substrate treating device and substrate treating method
JP2008306089A (en) Immersion type cleaning device
JP2000150447A (en) Method and device for managing concentration of chemical and chemical processing device
JP2007316360A (en) Management method and management device for water-based photoresist stripping liquid
JP4720217B2 (en) Plating solution analysis method and copper plating equipment
US20100078043A1 (en) Cleaning device and cleaning method
JP5365296B2 (en) Wet plating method and wet plating apparatus
JP2888217B2 (en) Method for controlling concentration of cleaning chemical solution and silicon wafer cleaning apparatus
KR100578479B1 (en) Control method of aluminum uniform concentration in hot dip galvanizing tank
TWI827478B (en) Clean system and clean method for a steel strip
JP3657693B2 (en) Etching method of semiconductor wafer
JP3647367B2 (en) Concentration measuring method and apparatus, and substrate processing apparatus
US20090200171A1 (en) Electrochemical sensing and data analysis system, apparatus and method for metal plating
JP2011029443A (en) Method and system for wet processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140630

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees