JP2003275594A - Metal catalyst for carbon nanotube by low temperature chemical vapor deposition - Google Patents

Metal catalyst for carbon nanotube by low temperature chemical vapor deposition

Info

Publication number
JP2003275594A
JP2003275594A JP2002290290A JP2002290290A JP2003275594A JP 2003275594 A JP2003275594 A JP 2003275594A JP 2002290290 A JP2002290290 A JP 2002290290A JP 2002290290 A JP2002290290 A JP 2002290290A JP 2003275594 A JP2003275594 A JP 2003275594A
Authority
JP
Japan
Prior art keywords
metal catalyst
vapor deposition
chemical vapor
metal
noble metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002290290A
Other languages
Japanese (ja)
Other versions
JP3580549B2 (en
Inventor
建 良 ▲黄▼
Chien-Liang Hwang
Ketsu Tei
傑 丁
Jih-Shun Chiang
日 舜 江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of JP2003275594A publication Critical patent/JP2003275594A/en
Application granted granted Critical
Publication of JP3580549B2 publication Critical patent/JP3580549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal catalyst applied for the synthesis of carbon nanotube by a low temperature chemical vapor deposition method and the synthesis of carbon nanotube using the catalyst. <P>SOLUTION: The metal catalyst is applied for the synthesis of the carbon nanotube by the low temperature chemical vapor deposition method at ≤600°C and is composed of a noble metal particle having 0.01-10 μm diameter as a support and the metal catalyst supported by the noble metal particle. The metal catalyst is composed of iron, cobalt, nickel or the alloy. The ratio of the metal catalyst to the noble metal particle by mass is 0.1-10%. The carbon nanotube is synthesized by the low temperature chemical vapor deposition method using the catalyst and it is unnecessary to remove the metal catalyst after the synthesis of the carbon nanotube. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はカーボンナノチュー
ブの合成方法に関わり、特に低温熱蒸着法によるカーボ
ンナノチューブの合成に適用した金属触媒に関する。
TECHNICAL FIELD The present invention relates to a method for synthesizing carbon nanotubes, and more particularly to a metal catalyst applied to the synthesis of carbon nanotubes by a low temperature thermal vapor deposition method.

【0002】[0002]

【従来の技術】カーボンナノチューブは低密度、高強
度、高靭性、高延性、高表面積、高表面曲率、高熱伝導
度、特異的伝導特性などの特殊な性質を持つため、複合
材料、エレクトロニクス素子、平面ディスプレー、無線
通信、燃料電池及びリチウム電池などの研究で注目を浴
びている。カーボンナノチューブを電子放出源とした電
界放出ディスプレー(carbon nanotube
field emission displays、
CNT−FEDと略称)は将来性を持つ新型の平面ディ
スプレーであり、比較的大型のCTN−FEDの一般的
製造工程は、先ずカーボンナノチューブを導電性ゲルと
混ぜ、混合、スクリーンプリントして導電性のガラス基
材表面に塗布し、さらに350〜550℃で焼結してゲ
ル中の高分子を除去して導電性の良い電子放出薄膜を形
成するものである。しかしながら、この工程は煩雑であ
る一方、カーボンナノチューブを均一に導電性ゲルに分
散することが困難である。
2. Description of the Related Art Carbon nanotubes have special properties such as low density, high strength, high toughness, high ductility, high surface area, high surface curvature, high thermal conductivity, and specific conduction characteristics, so that they can be used in composite materials, electronic devices, It has attracted attention in research on flat-panel displays, wireless communication, fuel cells and lithium batteries. A field emission display (carbon nanotube) using carbon nanotubes as an electron emission source.
field emission displays,
CNT-FED is an abbreviated new type of flat display, and the general manufacturing process of a relatively large CTN-FED is to first mix carbon nanotubes with a conductive gel, mix them, and screen print to make them conductive. Is applied to the surface of the glass substrate and is further sintered at 350 to 550 ° C. to remove the polymer in the gel to form an electron-emitting thin film having good conductivity. However, while this step is complicated, it is difficult to uniformly disperse the carbon nanotubes in the conductive gel.

【0003】電界電子放出能力を持つカーボンナノチュ
ーブを合成する方法としては、アーク放電法、レーザー
蒸発法と熱化学蒸着法などがある。アーク放電法とレー
ザー蒸発法は、得られたカーボンナノチューブの長さと
直径を制御できるが、無定形炭素がかなり多く生成する
ため、生産率が低く、純化する後処理も必要となる。そ
の他、これらのプロセスの温度は1000℃を超えるた
め、直接、ガラスなどの基材にカーボンナノチューブを
合成することが困難である。このような状況下、熱化学
蒸着法は低温でカーボンナノチューブを合成する最も有
力な技術になる。
As methods for synthesizing carbon nanotubes having a field electron emission capability, there are an arc discharge method, a laser evaporation method and a thermochemical vapor deposition method. The arc discharge method and the laser evaporation method can control the length and diameter of the obtained carbon nanotubes, but since the amount of amorphous carbon is considerably large, the production rate is low, and a post-treatment for purification is also required. In addition, since the temperature of these processes exceeds 1000 ° C., it is difficult to directly synthesize carbon nanotubes on a substrate such as glass. Under such circumstances, the thermal chemical vapor deposition method becomes the most powerful technique for synthesizing carbon nanotubes at low temperature.

【0004】従来の熱化学蒸着法によるカーボンナノチ
ューブ合成法は、多孔性シリカ、ゼオライト、アルミナ
や酸化マグネシウムを担体にし、含浸法により、活性金
属触媒を担体に担持することである。これらの担体は安
定した酸化物であり、温度を上げても活性金属触媒と反
応しないため、活性金属触媒は活性を保持したままでカ
ーボンナノチューブを合成することができる。選ばれた
活性金属は主として鉄、コバルト、及びニッケルであ
り、それに銅、モリブデン、マンガン、亜鉛、及び白金
などを微量に添加して、反応の活性を調節している。こ
の担体に担持させた活性金属触媒を用い、リアクターで
炭素蓄積反応(carbon accumulatio
n reaction)を促進して、カーボンナノチュ
ーブを生成する条件は、リアクターにヘリウム、アルゴ
ン、窒素などの不活性ガス、水素及び炭素源ガスを導入
し、反応温度を650〜1000℃にし、圧力を100
〜200kPaにし、1〜120分間で反応するという
ものである。使われる炭素源はアルカンや一酸化炭素で
ある。CNT−FED製造などに使うには、反応させた
あとに酸液で担体を取り除き、純化する必要がある。
The conventional method of synthesizing carbon nanotubes by the thermal chemical vapor deposition method is to use porous silica, zeolite, alumina or magnesium oxide as a carrier, and carry an active metal catalyst on the carrier by an impregnation method. Since these carriers are stable oxides and do not react with the active metal catalyst even when the temperature is raised, the active metal catalyst can synthesize carbon nanotubes while maintaining the activity. The selected active metals are mainly iron, cobalt, and nickel, to which copper, molybdenum, manganese, zinc, platinum, and the like are added in trace amounts to control the activity of the reaction. Using an active metal catalyst supported on this carrier, carbon accumulation reaction (carbon accumulation reaction) is carried out in a reactor.
n reaction) to generate carbon nanotubes is carried out by introducing an inert gas such as helium, argon, or nitrogen, hydrogen and a carbon source gas into the reactor at a reaction temperature of 650 to 1000 ° C. and a pressure of 100.
The reaction is carried out in 1 to 120 minutes at a pressure of up to 200 kPa. The carbon sources used are alkanes and carbon monoxide. In order to use it for the production of CNT-FED, it is necessary to remove the carrier with an acid solution and purify it after the reaction.

【0005】一般的には、熱処理に耐えられるガラスの
温度は650oCが上限であるが、それに劣るナトリウ
ムガラスならば550oCもしくはより低いところにあ
る。このため、基質の表面に熱化学蒸着法で直接カーボ
ンナノチューブを成長させるには、反応温度は基材の変
形温度、もしくは600oC以下でする必要がある。し
かしながら、温度があまり低すぎると触媒の活性が不足
する。このため、活性の高い特殊な触媒システムを開発
し、600oC以下の温度でカーボンナノチューブの成
長を行う方法がある。
Generally, the upper limit of the temperature of glass that can withstand heat treatment is 650 ° C., but inferior sodium glass is 550 ° C. or lower. Therefore, in order to grow the carbon nanotubes directly on the surface of the substrate by the thermal chemical vapor deposition method, the reaction temperature needs to be the deformation temperature of the substrate or 600 ° C. or lower. However, if the temperature is too low, the activity of the catalyst will be insufficient. Therefore, there is a method of developing a special catalytic system having high activity and growing carbon nanotubes at a temperature of 600 ° C. or lower.

【0006】従来の低温熱CVD設備と該設備によるカ
ーボンナノチューブ合成法として、リアクターを二部分
に分けて、ガスの入口と連結し、気体を熱分解する第一
部分と排気口とを連結し、第一部分で分解された気体と
カーボンナノチューブを合成する第二部分とを使用する
方法がある(例えば、特許文献1参照。)。第二部分の
温度は第一部分の温度よりも低い。また、カーボンナノ
チューブの生成反応部は二種類の触媒基板からなり、一
つはアルキンの分解を促進するパラジウム、クロムと白
金などの補助触媒であり、もう一方はカーボンナノチュ
ーブの合成に関わる鉄、コバルト、ニッケル、及びこれ
ら金属の合金からなる触媒膜である。上述の触媒膜を持
つ触媒基板をエッチング用気体で腐食し、ナノ級の触媒
顆粒を形成して置く。上述の設備を用い、第一部分で炭
素源ガスを高熱で分解してから第二部分に導入し、基板
の変形温度やそれ以下の温度において、隔離されたナノ
級の触媒顆粒の表面に、分解した炭素源ガスを熱化学蒸
着法で垂直方向に沿ってカーボンナノチューブを成長さ
せる。この技術は450〜650℃の低温熱化学蒸着法
に基づくものであるが、第一部分で炭素源ガスを700
〜1000℃の高温で分解する必要がある。また、純粋
な低温製造プロセスではないため、特殊なCVDリアク
ターを必要とする。その上に、両種類の基材に異なった
金属触媒層を形成させる、両金属層をある距離を隔て向
かいあった配置で基材を熱CVDリアクターに置く必要
がある。つまり、前述の技術はプロセスが複雑でありな
がら、コストが高くなるなどの難点がある。
As a conventional low temperature thermal CVD equipment and a method for synthesizing carbon nanotubes by the equipment, the reactor is divided into two parts, which are connected to a gas inlet, and a first part for thermally decomposing gas and an exhaust port are connected to each other. There is a method of using a gas decomposed in one part and a second part for synthesizing carbon nanotubes (for example, refer to Patent Document 1). The temperature of the second part is lower than the temperature of the first part. The carbon nanotube production reaction part consists of two types of catalyst substrates, one is an auxiliary catalyst such as palladium, chromium, and platinum that accelerates the decomposition of alkyne, and the other is iron and cobalt involved in the synthesis of carbon nanotubes. It is a catalyst film made of nickel, nickel, and alloys of these metals. The catalyst substrate having the above-mentioned catalyst film is corroded by the etching gas to form nano-sized catalyst granules and placed. Using the above equipment, the carbon source gas is decomposed with high heat in the first part and then introduced into the second part, and decomposed on the surface of the isolated nano-grade catalyst granules at the substrate deformation temperature or lower temperature. The carbon source gas is used to grow carbon nanotubes in the vertical direction by a thermal chemical vapor deposition method. This technique is based on a low temperature thermal chemical vapor deposition method at 450 to 650 ° C.
It is necessary to decompose at a high temperature of ~ 1000 ° C. Also, because it is not a pure low temperature manufacturing process, it requires a special CVD reactor. On top of that, it is necessary to place the substrates in a thermal CVD reactor in such a way that different metal catalyst layers are formed on both types of substrates, the two metal layers facing each other with a certain distance. That is, the above-mentioned technique has a drawback that the cost is high while the process is complicated.

【0007】また、金属触媒層によるカーボンナノチュ
ーブの低温合成法としては、基材に金属触媒層を形成
し、エッチングしてナノ級触媒金属粒子を形成する方法
がある(例えば、特許文献2参照。)。基板の変形温度
やそれ以下の温度で、ナノ級触媒顆粒の表面に、分解さ
れた炭素源ガスを熱化学蒸着法で垂直方向に沿ってカー
ボンナノチューブを成長させるものもある。この炭素源
ガスは炭素源ガス分解用触媒層を利用しないと得られな
いため、両種類の基材に異なった金属触媒層を形成し、
両金属層をある距離を隔て、向かいあった配置で基材を
熱CVDリアクターに置く必要がある。この技術は明ら
かにその前のEP 1061041 A1に開示したも
のを改良したプロセスであり、加熱システムを二段階か
ら一段階に改良したが、触媒自体の改良は見られず、二
つの基材に異なった触媒を必要としている。
As a low temperature synthesis method of carbon nanotubes using a metal catalyst layer, there is a method of forming a metal catalyst layer on a base material and etching it to form nano-class catalyst metal particles (see, for example, Patent Document 2). ). There is also a method in which decomposed carbon source gas is used to grow carbon nanotubes along the vertical direction on the surface of the nano-grade catalyst granules at a temperature of deformation of the substrate or lower, by a thermal chemical vapor deposition method. Since this carbon source gas cannot be obtained without using the catalyst layer for decomposing the carbon source gas, different metal catalyst layers are formed on both types of base materials,
It is necessary to place the substrates in a thermal CVD reactor in a face-to-face arrangement with both metal layers at a distance. This technology is clearly an improved process of that disclosed in the previous EP 1061041 A1 and improved the heating system from two stages to one stage, but no improvement of the catalyst itself was observed and the difference between the two substrates Need a catalyst.

【0008】[0008]

【特許文献1】欧州特許出願公開第1061041A1
号明細書
[Patent Document 1] European Patent Application Publication No. 1061041A1
Issue specification

【特許文献2】欧州特許出願公開第1061043A1
号明細書
[Patent Document 2] European Patent Application Publication No. 1061043A1
Issue specification

【0009】[0009]

【発明が解決しようとする課題】本発明の主な目的は、
容易に調製できるカーボンナノチューブの低温化学蒸着
用金属触媒を提供するものである。
The main object of the present invention is to:
The present invention provides a metal catalyst for low temperature chemical vapor deposition of carbon nanotubes that can be easily prepared.

【0010】本発明の他の目的は、組成が容易に調整、
制御できるカーボンナノチューブの低温化学蒸着法によ
る合成に適した金属触媒を提供するものである。
Another object of the present invention is to easily adjust the composition,
The present invention provides a metal catalyst suitable for controllable synthesis of carbon nanotubes by a low temperature chemical vapor deposition method.

【0011】本発明の他の目的は、従来の欠点を持たな
い基材におけるカーボンナノチューブの直接低温合成法
を提供するものである。
Another object of the invention is to provide a direct low temperature synthesis of carbon nanotubes on a substrate which does not have the disadvantages of the prior art.

【0012】本発明の他の目的は、触媒システムが簡単
に調製できる利点を持つ基材におけるカーボンナノチュ
ーブの直接低温合成法を提供するものである。
Another object of the present invention is to provide a direct low temperature synthesis of carbon nanotubes on a substrate which has the advantage that the catalyst system can be easily prepared.

【0013】[0013]

【課題を解決するための手段】(1) 直径が0.01
〜10μmの貴金属粒子及びそれに担持した金属触媒を
含み、該金属触媒は鉄、コバルト、ニッケル、及びこれ
らの合金からなる群から選ばれる一種以上であり、該金
属触媒に対する該貴金属粒子の質量比が0.1〜10%
の範囲であることを特徴とするカーボンナノチューブの
低温熱化学蒸着用金属触媒。
[Means for Solving the Problems] (1) The diameter is 0.01
-10 μm precious metal particles and a metal catalyst supported thereon, the metal catalyst is one or more selected from the group consisting of iron, cobalt, nickel, and alloys thereof, the mass ratio of the precious metal particles to the metal catalyst. 0.1-10%
A metal catalyst for low temperature thermal chemical vapor deposition of carbon nanotubes, characterized in that

【0014】(2) 該貴金属粒子が銀、金、白金、パ
ラジウム、銅、及びそれらの合金からなる群から選ばれ
る一種以上であることを特徴とする(1)に記載の金属
触媒。
(2) The metal catalyst according to (1), wherein the noble metal particles are one or more selected from the group consisting of silver, gold, platinum, palladium, copper, and alloys thereof.

【0015】(3) 該貴金属粒子が銀であることを特
徴とする(2)に記載の金属触媒。
(3) The metal catalyst according to (2), wherein the noble metal particles are silver.

【0016】(4) 該貴金属粒子と該金属触媒の塩類
溶液を混合し、この混合液を加熱し、溶媒を除去して該
金属触媒を該貴金属粒子に担持させることを特徴とする
(1に記載の金属触媒。
(4) The noble metal particles and a salt solution of the metal catalyst are mixed, and the mixed solution is heated to remove the solvent so that the metal catalyst is supported on the noble metal particles (1). The metal catalyst described.

【0017】(5) 該金属触媒の塩類溶液が硝酸塩溶
液または硫酸塩溶液であることを特徴とするものである
(4)に記載の金属触媒。
(5) The metal catalyst according to (4), wherein the salt solution of the metal catalyst is a nitrate solution or a sulfate solution.

【0018】(6) 該金属触媒の塩類溶液が水溶液ま
たはアルコール類溶液であることを特徴とするものであ
る(5)に記載の金属触媒。
(6) The metal catalyst according to (5), wherein the salt solution of the metal catalyst is an aqueous solution or an alcohol solution.

【0019】(7) ステップ a)貴金属粒子を溶媒に分散し、 b)金属触媒の塩類溶液をステップa)で得た該貴金属
分散液に入れ、 c)ステップb)で得た混合物に沈殿剤を入れ、 d)ステップc)で得た混合物に還元剤を入れ、該金属
触媒を還元して該貴金属粒子に担持する 工程を含む沈積沈殿法により調製されることを特徴とす
る(1)に記載の金属触媒。
(7) Step a) dispersing noble metal particles in a solvent, b) adding a salt solution of a metal catalyst to the noble metal dispersion obtained in step a), and c) precipitating agent in the mixture obtained in step b). And d) a reducing agent is added to the mixture obtained in step c) to reduce the metal catalyst to support it on the noble metal particles (1). The metal catalyst described.

【0020】(8) ステップa)の溶媒が水又はアル
コール類溶媒であることを特徴とするものである(7)
に記載の金属触媒。
(8) The solvent of step a) is water or an alcohol solvent (7)
The metal catalyst according to.

【0021】(9) ステップc)の沈殿剤がアンモニ
ア水及び重炭酸ソーダであることを特徴とするものであ
る(7)に記載の金属触媒。
(9) The metal catalyst according to (7), wherein the precipitating agent in step c) is aqueous ammonia and sodium bicarbonate.

【0022】(10) ステップd)の還元剤がヒドラ
ジン、ホルムアルデヒド、亜リン酸塩、及びベンゾアル
デヒドからなる群から選ばれる一種以上であることを特
徴とするものである(7)に記載の金属触媒。
(10) The metal according to (7), wherein the reducing agent in step d) is one or more selected from the group consisting of hydrazine, formaldehyde, phosphite, and benzaldehyde. catalyst.

【0023】(11) ステップ a)(1)に記載の金属触媒を基材に分散し、 b)炭素源ガスを用い、熱化学蒸着法で該金属触媒にカ
ーボンナノチューブを成長させる 工程を含むことを特徴とする低温熱化学蒸着法によるカ
ーボンナノチューブの合成法。
(11) Step a) Dispersing the metal catalyst according to (1) on a substrate, and b) using a carbon source gas to grow carbon nanotubes on the metal catalyst by a thermal chemical vapor deposition method. A method for synthesizing carbon nanotubes by low temperature thermal chemical vapor deposition.

【0024】(12) ステップa)において、基材が
ITO導電性ガラス、強化ガラス、ナトリウムガラス、
酸化シリカ、シリカチップ、アルミ、及び金属からなる
群から選ばれる一種以上である(11)に記載の方法。
(12) In step a), the substrate is ITO conductive glass, tempered glass, sodium glass,
The method according to (11), which is at least one selected from the group consisting of silica oxide, silica chips, aluminum, and metals.

【0025】(13)ステップb)の熱化学蒸着法の反
応温度が400〜600℃であることを特徴とするもの
である(11)に記載の方法。
(13) The method according to (11), wherein the reaction temperature in the thermal chemical vapor deposition method in step b) is 400 to 600 ° C.

【0026】(14)ステップb)の熱化学蒸着法にお
いて、圧力を50〜200kPaにし、反応時間を1〜
120分間にし、使われた炭素源ガスがアルカン、及び
一酸化炭素であることを特徴とするものである(11)
に記載の方法。
(14) In the thermal chemical vapor deposition method of step b), the pressure is set to 50 to 200 kPa and the reaction time is set to 1 to
The carbon source gas used for 120 minutes is alkane and carbon monoxide (11).
The method described in.

【0027】(15)アルカンの炭素数が1〜6である
ことを特徴とするものである(14)に記載の方法。
(15) The method according to (14), wherein the alkane has 1 to 6 carbon atoms.

【0028】(16)炭素源ガスがメタン、アセチレン
や一酸化炭素であることを特徴とするものである(1
4)に記載の方法。
(16) The carbon source gas is methane, acetylene or carbon monoxide (1)
The method according to 4).

【0029】(17)ステップb)の熱化学蒸着法を水
素ガスの雰囲気で行い、使用した炭素源ガスがアルカン
及び一酸化炭素であることを特徴とする(11)に記載
の方法。
(17) The method according to (11), wherein the thermal chemical vapor deposition method of step b) is carried out in an atmosphere of hydrogen gas, and the carbon source gas used is alkane and carbon monoxide.

【0030】[0030]

【発明の実施の形態】本発明の第一は直径が0.01〜
10μmの貴金属粒子及びそれに担持した金属触媒を含
み、該金属触媒は鉄、コバルト、ニッケル、及びこれら
の合金からなる群から選ばれる一種以上であり、該金属
触媒に対する該貴金属粒子の質量比が0.1〜10%の
範囲であることを特徴とするカーボンナノチューブの低
温熱化学蒸着用金属触媒の提供である。
BEST MODE FOR CARRYING OUT THE INVENTION The first aspect of the present invention is that the diameter is 0.01 to
10 μm noble metal particles and a metal catalyst supported on the noble metal particles, the metal catalyst is one or more selected from the group consisting of iron, cobalt, nickel, and alloys thereof, and the mass ratio of the noble metal particles to the metal catalyst is 0. The present invention provides a metal catalyst for low temperature thermal chemical vapor deposition of carbon nanotubes, which is characterized by being in the range of 1 to 10%.

【0031】本発明は600℃以下の低温熱化学蒸着法
によるカーボンナノチューブの合成に適用した金属触媒
であり、前述の欧州特許に開示した除去法に基づくナノ
金属触媒の合成法と相違し、付加法により触媒を製作す
る。
The present invention is a metal catalyst applied to the synthesis of carbon nanotubes by a low temperature thermal chemical vapor deposition method at 600 ° C. or lower, which is different from the synthesis method of the nano metal catalyst based on the removal method disclosed in the above-mentioned European Patent, and is added. The catalyst is manufactured by the method.

【0032】まず、カーボンナノチューブを下流の製品
と同時に利用できる担体、つまり、製品とそのプロセス
に影響を与えない担体を選ぶことが好ましい。CNT−
FEDを例にすると、銀ゲルはCNT−FED製造工程
に必要とする導電性表面接着剤であるため、銀ゲル中の
銀顆粒は直接触媒担体にすることができ、取り除く必要
がない。
First, it is preferable to select a carrier in which carbon nanotubes can be used simultaneously with a downstream product, that is, a carrier which does not affect the product and its process. CNT-
Taking FED as an example, since silver gel is a conductive surface adhesive required for the CNT-FED manufacturing process, silver granules in silver gel can be directly used as a catalyst carrier and need not be removed.

【0033】沈積沈殿法(deposition pr
ecipitation method)や含浸法によ
り金属触媒を担体の表面に付着し、この金属触媒を基材
の表面に塗布し、熱化学蒸着反応を行うと、600℃以
下でもカーボンナノチューブを大量に合成できる。
Deposition sedimentation method (deposition pr
A large amount of carbon nanotubes can be synthesized even at 600 ° C. or lower by depositing a metal catalyst on the surface of a support by an evaporation method or an impregnation method, applying the metal catalyst on the surface of a base material, and performing a thermal chemical vapor deposition reaction.

【0034】本発明の触媒担体である貴金属粒子は、直
径0.01〜10μm、より好ましくは0.05〜5μ
mである。該貴金属粒子を構成する貴金属としては、
金、銀、銅、パラジウム、白金、及びこれらの合金など
がある。
The noble metal particles as the catalyst carrier of the present invention have a diameter of 0.01 to 10 μm, more preferably 0.05 to 5 μm.
m. As the noble metal that constitutes the noble metal particles,
Examples include gold, silver, copper, palladium, platinum, and alloys thereof.

【0035】金属触媒の調整方法は、含浸法及び沈積沈
殿法などあり、いずれでもよい。いずれも、最初に貴金
属粒子を溶媒に分散する。
The method for preparing the metal catalyst includes an impregnation method and a sedimentation precipitation method, and any method may be used. In both cases, the noble metal particles are first dispersed in the solvent.

【0036】含浸法は、銀の該貴金属粒子を脱イオン
水、メタノールまたはエタノールなどの溶媒中で、超音
波で10分間ほど振動し、これに濃度1〜5質量%の硝
酸ニッケル水溶液など金属触媒の塩類溶液を添加する。
該金属触媒は、鉄、コバルト、ニッケル及びこれらの合
金などの遷移金属のいずれか一種以上であり、また該塩
類溶液は硝酸塩及び硫酸塩の水溶液、又はアルコール類
溶液である。両溶液を均一に混合した後、混合液を加熱
し濃縮し、溶媒を除去することにより、金属触媒が貴金
属粒子に担持され、金属触媒になる。該金属触媒対該貴
金属粒子の質量比は0.1〜10%、より好ましくは1
〜5%の範囲である。
In the impregnation method, the noble metal particles of silver are vibrated with ultrasonic waves for about 10 minutes in a solvent such as deionized water, methanol or ethanol, and a metal catalyst such as an aqueous solution of nickel nitrate having a concentration of 1 to 5% by mass is added thereto. Of saline solution is added.
The metal catalyst is one or more of transition metals such as iron, cobalt, nickel and alloys thereof, and the salt solution is an aqueous solution of nitrate and sulfate or an alcohol solution. After uniformly mixing both solutions, the mixed solution is heated and concentrated, and the solvent is removed, whereby the metal catalyst is supported on the noble metal particles and becomes a metal catalyst. The mass ratio of the metal catalyst to the noble metal particles is 0.1 to 10%, more preferably 1
Is in the range of up to 5%.

【0037】沈積沈殿法は、該銀顆粒を含む水溶液又は
アルコール類溶液中に分散させ、アンモニア水などのア
ルカリ水溶液を添加して溶液をpH8〜9に調整し、約
30分、沸騰させて担体の表面をアルカリ性にし、活性
金属塩類の水溶液を添加し、均一に撹拌し、アンモニア
水又は重炭酸ソーダなどの沈殿剤、及びヒドラジン、亜
リン酸塩、ホルムアルデヒド又はベンザアルデヒドなど
の還元剤を添加し、活性金属を沈殿し、還元させた後、
溶媒を濾過し、除去することにより、金属触媒を得られ
る。
In the precipitation method, the silver granules are dispersed in an aqueous solution or an alcoholic solution, an alkaline aqueous solution such as ammonia water is added to adjust the solution to pH 8 to 9, and the solution is boiled for about 30 minutes to obtain a carrier. To make the surface alkaline, add an aqueous solution of an active metal salt, stir evenly, add a precipitating agent such as ammonia water or sodium bicarbonate, and a reducing agent such as hydrazine, phosphite, formaldehyde or benzaldehyde, and activate. After precipitating and reducing the metal,
A metal catalyst can be obtained by filtering and removing the solvent.

【0038】本発明の第二は、 a)第一の発明の該金属触媒を基材に分散し、 b)炭素源ガスを用い、熱化学蒸着法で該金属触媒にカ
ーボンナノチューブを成長させる 工程を含むことを特徴とする低温熱化学蒸着法によるカ
ーボンナノチューブの合成法である。
The second aspect of the present invention is: a) a step of dispersing the metal catalyst of the first aspect of the invention on a substrate, and b) using a carbon source gas to grow carbon nanotubes on the metal catalyst by a thermal chemical vapor deposition method. Is a method for synthesizing carbon nanotubes by a low temperature thermal chemical vapor deposition method, which comprises:

【0039】本発明のカーボンナノチューブの低温熱化
学蒸着法は、第一の発明の金属触媒を基材に分散し、炭
素源ガスを用い、熱化学蒸着法により金属触媒にカーボ
ンナノチューブを成長させる。該基材はシリカチップ、
石英ガラス、強化ガラス、ナトリウムガラス、酸化シリ
カ、ITO導電ガラス、アルミ又は金属板である。
In the low temperature thermochemical vapor deposition method for carbon nanotubes of the present invention, the metal catalyst of the first invention is dispersed in a substrate, and a carbon source gas is used to grow carbon nanotubes on the metal catalyst by the thermochemical vapor deposition method. The base material is a silica chip,
Quartz glass, tempered glass, sodium glass, silica oxide, ITO conductive glass, aluminum or metal plate.

【0040】該金属触媒を基材に分散する方法は、基材
をアセトン等の溶媒に浸し、超音波で10分間振動する
ことにより洗浄し、該触媒が基材表面での付着力を発揮
するよう、前処理をする。得られた金属触媒を、高分子
と有機溶媒とを含有するゲル状液に均一に分散する。高
分子としてはメチルセルロースまたはエチルセルロース
が好ましく、有機溶媒としてはテルピネオールなどのア
ルコール類溶液が好ましい。金属触媒対高分子ゲルの混
合質量比は1:10から3:1である。高分子ゲルとし
ては、セルロース樹脂35質量部、溶媒としてのdl−
α−テルピネオール50質量部、さらに分散剤としての
リン酸ナトリウム10質量部及びガラス粉15質量部を
含んでいてもよい。ガラス粉の目的は接着力を良くする
ためである。スクリーンプリント法により混合ゲルを基
材に塗布し、110℃で30分間乾かし、空気の雰囲気
で350〜500oCに加熱し、30分間加熱すること
で、高分子及び有機溶媒を除去する。
The method of dispersing the metal catalyst on the substrate is to immerse the substrate in a solvent such as acetone and vibrate with ultrasonic waves for 10 minutes to wash the substrate so that the catalyst exhibits an adhesive force on the surface of the substrate. To preprocess. The obtained metal catalyst is uniformly dispersed in a gel-like liquid containing a polymer and an organic solvent. The polymer is preferably methyl cellulose or ethyl cellulose, and the organic solvent is preferably an alcohol solution such as terpineol. The mixing mass ratio of metal catalyst to polymer gel is 1:10 to 3: 1. As the polymer gel, 35 parts by mass of cellulose resin, dl- as a solvent
It may include 50 parts by mass of α-terpineol, 10 parts by mass of sodium phosphate as a dispersant, and 15 parts by mass of glass powder. The purpose of the glass powder is to improve the adhesive strength. Screen coated printing method mixing the gel by to the substrate, dried at 110 ° C. for 30 minutes, in an atmosphere of air heated to 350 to 500 o C, by heating for 30 minutes, to remove the polymer and organic solvent.

【0041】本発明の金属触媒を基材に分散する他の方
法は、金属触媒をエタノールなどの有機溶媒に入れ、超
音波で10分間ほど振動することにより分散し、得られ
た混合液を石英船基板(quartz boat su
bstrate)に分布し、110℃で30分間、乾か
すというものである。
Another method of dispersing the metal catalyst of the present invention on a substrate is to put the metal catalyst in an organic solvent such as ethanol and vibrate with ultrasonic waves for about 10 minutes to disperse the mixture. Ship board (quartz boat su
bstrate) and dried at 110 ° C. for 30 minutes.

【0042】前述の金属触媒が分散された該基材をリア
クターに置き、熱化学蒸着法により、金属触媒にカーボ
ンナノチューブを成長することができる。反応温度は4
00〜600℃にし、圧力は50〜200kPaにし、
1〜120分間、より好ましくは500℃、100kP
a、5〜20分間、反応させる。また反応気体は、ヘリ
ウム、アルゴン及び窒素などの不活性気体、水素ガス及
び炭素源ガスを含む。炭素源ガスには一酸化炭素、及び
炭素数1〜6のアルカン、より好ましくはメタン、又は
アセチレンなどがある。反応して触媒担体表面に形成さ
れたカーボンナノチューブは、直径1〜200nmであ
る。
The substrate in which the above-mentioned metal catalyst is dispersed is placed in a reactor, and carbon nanotubes can be grown on the metal catalyst by a thermochemical vapor deposition method. Reaction temperature is 4
0 to 600 ° C., pressure 50 to 200 kPa,
1 to 120 minutes, more preferably 500 ° C., 100 kP
a, react for 5 to 20 minutes. Further, the reaction gas includes an inert gas such as helium, argon and nitrogen, hydrogen gas and a carbon source gas. Carbon source gas includes carbon monoxide and alkanes having 1 to 6 carbon atoms, more preferably methane or acetylene. The carbon nanotubes formed by the reaction on the surface of the catalyst carrier have a diameter of 1 to 200 nm.

【0043】従来の技術と比較すると、本発明は以下に
述べた利点を有する。まず、本発明の担体金属触媒は6
00℃以下の低温熱化学蒸着法によりカーボンナノチュ
ーブを合成できる。次に、本発明の担体金属触媒は基材
にカーボンナノチューブを直接、低温合成することがで
き、触媒担体を除去することが不要である。さらに、本
発明は単一の高活性触媒システムを使用し、両種類の触
媒システムでないため製造コストを軽減できる。さら
に、一段式の低温プロセスを採用し、前段の炭素源ガス
高温処理が不要である。さらに、現下の厚膜プロセスと
同様な導電層を担体にするのでため、CNT−FEDの
生産プロセスへ直接導入することができる。
Compared with the prior art, the present invention has the following advantages. First, the carrier metal catalyst of the present invention is 6
Carbon nanotubes can be synthesized by a low temperature thermal chemical vapor deposition method at a temperature of 00 ° C. or lower. Next, the carrier metal catalyst of the present invention can directly synthesize carbon nanotubes on a substrate at a low temperature, and it is not necessary to remove the catalyst carrier. Further, the present invention uses a single high activity catalyst system and is less costly to manufacture because it is not a catalyst system of both types. Furthermore, the one-stage low-temperature process is adopted, and the high-temperature treatment of the carbon source gas in the previous stage is unnecessary. Furthermore, since a conductive layer similar to the current thick film process is used as a carrier, it can be directly introduced into the production process of CNT-FED.

【0044】[0044]

【実施例】以下、本発明を実施例を用いて説明する。EXAMPLES The present invention will be described below with reference to examples.

【0045】実施例1 直径1〜5μmの銀粉1.0gを50mlの脱イオン水
に入れ、10分間の超音波振動処理をした。1%の硝酸
ニッケル水溶液を得られた銀水溶液に添加し、撹拌して
混合した。得られた混合液を加熱して溶媒を飛ばし、1
%ニッケル含有の金属触媒1.01gを得た。
Example 1 1.0 g of silver powder having a diameter of 1 to 5 μm was placed in 50 ml of deionized water and subjected to ultrasonic vibration treatment for 10 minutes. A 1% nickel nitrate aqueous solution was added to the obtained silver aqueous solution, and the mixture was stirred and mixed. The resulting mixture is heated to drive off the solvent, 1
1.01 g of a metal catalyst containing% nickel was obtained.

【0046】実施例2 直径0.05〜0.1μmの銀粉1.0gを50mlの
脱イオン水に入れ、15分間撹拌し、28%のアンモニ
ア水0.05gを添加し、再び5分間撹拌した。30分
間の加熱還流をした後、10%の硝酸ニッケル水溶液
0.5gを徐々に入れ、再び28%のアンモニア水0.
08gを入れた。撹拌しながら4時間沸騰させて0.4
4gの37%ホルムアルデヒド水溶液を入れ、再び30
分間沸騰させた。冷却し、ろ過し、残渣を110℃で4
時間乾燥して、5%ニッケル含有の金属触媒1.05g
を得た。
Example 2 1.0 g of silver powder having a diameter of 0.05 to 0.1 μm was put into 50 ml of deionized water, stirred for 15 minutes, added with 0.05 g of 28% ammonia water, and stirred again for 5 minutes. . After heating under reflux for 30 minutes, 0.5 g of 10% nickel nitrate aqueous solution was gradually added, and 28% ammonia water of 0.1% was added again.
08g was added. Boil for 4 hours with stirring 0.4
Add 4g of 37% aqueous formaldehyde solution and add 30g again.
Boil for a minute. Cooled, filtered and residue at 4 ° C. at 4 ° C.
1.05 g of metal catalyst containing 5% nickel after drying for an hour
Got

【0047】実施例3 実施例1で調製した金属触媒をセルロース樹脂35質量
部、溶媒としてのdl−α−テルピネオール50質量
部、分散剤としてのリン酸ナトリウム10質量部及びガ
ラス粉15質量部を含む高分子ゲル液と均一に質量比1
対1の割合で混合した。混合ゲルを基材に塗布し、11
0℃に30分間乾かし、熱化学蒸着リアクターに置き、
500oCの空気の雰囲気で加熱し、30分間焼結して
高分子を除去した。先ず流量1500ml/minのア
ルゴンを10分間導入し、空気を脱気した。反応の前
に、流量500ml/minのアルゴンと流量75ml
/minの水素を混合してシステム中に5分間導入し、
さらに流量25ml/minのアセチレンと合流させ熱
化学蒸着反応を行った。反応が6分間進んだ後、アセチ
レンと水素の供給を停止し、加熱用の電源を切って温度
を100℃まで下げてからアルゴンガスの供給を停止し
た。基板を取り出すと、表面の触媒上に黒い沈積物が観
察され、電顕で観察したら、20〜60nmのカーボン
ナノチューブであった。
Example 3 35 parts by weight of the metal catalyst prepared in Example 1 were added to 35 parts by weight of a cellulose resin, 50 parts by weight of dl-α-terpineol as a solvent, 10 parts by weight of sodium phosphate as a dispersant, and 15 parts by weight of glass powder. Mass ratio of 1 including polymer gel solution
Mixed at a ratio of 1: 1. Apply the mixed gel to the substrate,
Dry at 0 ° C for 30 minutes, place in a thermal chemical vapor deposition reactor,
The polymer was removed by heating in an atmosphere of 500 ° C. air and sintering for 30 minutes. First, argon was introduced at a flow rate of 1500 ml / min for 10 minutes to deaerate the air. Before the reaction, flow rate 500ml / min argon and flow rate 75ml
/ Min hydrogen was mixed and introduced into the system for 5 minutes,
Further, it was combined with acetylene at a flow rate of 25 ml / min to carry out a thermal chemical vapor deposition reaction. After the reaction proceeded for 6 minutes, the supply of acetylene and hydrogen was stopped, the power for heating was turned off to lower the temperature to 100 ° C., and then the supply of argon gas was stopped. When the substrate was taken out, a black deposit was observed on the surface catalyst, and when observed by an electron microscope, it was a carbon nanotube of 20 to 60 nm.

【0048】実施例4 実施例1で得た金属触媒に代えて、実施例2で得た金属
触媒を用いた他は実施例3と同様にして、基材の表面に
直径20〜60nmのカーボンナノチューブを成長させ
た。
Example 4 Carbon material having a diameter of 20 to 60 nm was formed on the surface of a substrate in the same manner as in Example 3 except that the metal catalyst obtained in Example 2 was used instead of the metal catalyst obtained in Example 1. The nanotubes were grown.

【0049】実施例5 実施例2で調製した金属触媒0.01gを石英船基板に
分布させ、熱化学蒸着リアクターに置いて、実施例3と
同様の条件で直径20〜60nmのカーボンナノチュー
ブを成長させた。
Example 5 0.01 g of the metal catalyst prepared in Example 2 was distributed on a quartz ship substrate and placed in a thermal chemical vapor deposition reactor to grow carbon nanotubes having a diameter of 20 to 60 nm under the same conditions as in Example 3. Let

【0050】[0050]

【発明の効果】以上述べたように、本発明が開示した金
属触媒を用いて、触媒担体を除去しなくてよい、カーボ
ンナノチューブの直接低温合成を行うことができる。
As described above, the metal catalyst disclosed in the present invention can be used for direct low-temperature synthesis of carbon nanotubes without removing the catalyst carrier.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01J 9/02 H01J 9/02 B Fターム(参考) 4G069 AA03 AA08 BA17 BA21C BB01C BB02A BB02B BB10C BB12C BB16C BB20C BC02C BC31A BC32A BC32B BC33A BC57C BC66A BC66C BC67A BC68A BC68B BC68C BC69A BC72A BC75A BD01C BD02C BD06C BD07C BE10C BE37C CD10 DA06 EA01X EA01Y EB18X EB18Y FA01 FA02 FA03 FB08 FB23 FB45 FB46 FB57 FC02 FC03 FC08 FC10 4G146 AA11 BA08 BA12 BB11 BB22 BC09 BC43 BC44 BC48 4K030 AA09 AA10 AA14 AA17 CA02 CA06 FA10 FA14 FA17 JA09 JA10 JA11 LA01 LA11 5C127 AA01 BA15 BB07 CC03 DD02─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01J 9/02 H01J 9/02 BF term (reference) 4G069 AA03 AA08 BA17 BA21C BB01C BB02A BB02B BB10C BB12C BB16C BB20C BC02C BC31A BC32A BC32B BC33A BC57C BC66A BC66C BC67A BC68A BC68B BC68C BC69A BC72A BC75A BD01C BD02C BD06C BD07C BE10C BE37C CD10 DA06 EA01X EA01Y BC08BA24BA4BC08FC22 FC08ABB4FCBFC08FC02 AA10 AA14 AA17 CA02 CA06 FA10 FA14 FA17 JA09 JA10 JA11 LA01 LA11 5C127 AA01 BA15 BB07 CC03 DD02

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 直径が0.01〜10μmの貴金属粒子
及びそれに担持した金属触媒を含み、該金属触媒は鉄、
コバルト、ニッケル、及びこれらの合金からなる群から
選ばれる一種以上であり、該金属触媒に対する該貴金属
粒子の質量比が0.1〜10%の範囲であることを特徴
とするカーボンナノチューブの低温熱化学蒸着用金属触
媒。
1. A noble metal particle having a diameter of 0.01 to 10 μm and a metal catalyst supported thereon, the metal catalyst being iron,
Low temperature heat of carbon nanotubes, which is one or more selected from the group consisting of cobalt, nickel, and alloys thereof, wherein the mass ratio of the noble metal particles to the metal catalyst is in the range of 0.1 to 10%. Metal catalyst for chemical vapor deposition.
【請求項2】 該貴金属粒子が銀、金、白金、パラジウ
ム、銅、及びそれらの合金からなる群から選ばれる一種
以上であることを特徴とする請求項1に記載の金属触
媒。
2. The metal catalyst according to claim 1, wherein the noble metal particles are one or more selected from the group consisting of silver, gold, platinum, palladium, copper, and alloys thereof.
【請求項3】 該貴金属粒子が銀であることを特徴とす
る請求項2に記載の金属触媒。
3. The metal catalyst according to claim 2, wherein the noble metal particles are silver.
【請求項4】 該貴金属粒子と該金属触媒の塩類溶液を
混合し、この混合液を加熱し、溶媒を除去して該金属触
媒を該貴金属粒子に担持させることを特徴とする請求項
1に記載の金属触媒。
4. The noble metal particles and the salt solution of the metal catalyst are mixed, and the mixed solution is heated to remove the solvent so that the metal catalyst is supported on the noble metal particles. The metal catalyst described.
【請求項5】 該金属触媒の塩類溶液が硝酸塩溶液また
は硫酸塩溶液であることを特徴とするものである請求項
4に記載の金属触媒。
5. The metal catalyst according to claim 4, wherein the salt solution of the metal catalyst is a nitrate solution or a sulfate solution.
【請求項6】 該金属触媒の塩類溶液が水溶液またはア
ルコール類溶液であることを特徴とするものである請求
項5に記載の金属触媒。
6. The metal catalyst according to claim 5, wherein the salt solution of the metal catalyst is an aqueous solution or an alcohol solution.
【請求項7】 ステップ a)貴金属粒子を溶媒に分散し、 b)金属触媒の塩類溶液をステップa)で得た該貴金属
分散液に入れ、 c)ステップb)で得た混合物に沈殿剤を入れ、 d)ステップc)で得た混合物に還元剤を入れ、該金属
触媒を還元して該貴金属粒子に担持する 工程を含む沈積沈殿法により調製されることを特徴とす
る請求項1に記載の金属触媒。
7. Step a) dispersing noble metal particles in a solvent, b) adding a salt solution of a metal catalyst to the noble metal dispersion obtained in step a), and c) adding a precipitant to the mixture obtained in step b). The method according to claim 1, wherein the method comprises the steps of: d) adding a reducing agent to the mixture obtained in step c), reducing the metal catalyst and supporting the metal catalyst on the noble metal particles. Metal catalyst.
【請求項8】 ステップa)の溶媒が水又はアルコール
類溶媒であることを特徴とするものである請求項7に記
載の金属触媒。
8. The metal catalyst according to claim 7, wherein the solvent in step a) is water or an alcohol solvent.
【請求項9】 ステップc)の沈殿剤がアンモニア水及
び重炭酸ソーダであることを特徴とするものである請求
項7に記載の金属触媒。
9. The metal catalyst according to claim 7, wherein the precipitating agent in step c) is aqueous ammonia and sodium bicarbonate.
【請求項10】 ステップd)の還元剤がヒドラジン、
ホルムアルデヒド、亜リン酸塩、及びベンザアルデヒド
からなる群から選ばれる一種以上であることを特徴とす
るものである請求項7に記載の金属触媒。
10. The reducing agent of step d) is hydrazine,
The metal catalyst according to claim 7, which is one or more selected from the group consisting of formaldehyde, phosphite, and benzaldehyde.
【請求項11】 ステップ a)請求項1に記載の金属触媒を基材に分散し、 b)炭素源ガスを用い、熱化学蒸着法で該金属触媒にカ
ーボンナノチューブを成長させる 工程を含むことを特徴とする低温熱化学蒸着法によるカ
ーボンナノチューブの合成法。
11. A step of a) dispersing the metal catalyst according to claim 1 on a substrate, and b) using a carbon source gas to grow carbon nanotubes on the metal catalyst by a thermal chemical vapor deposition method. Characteristic method of synthesizing carbon nanotubes by low temperature thermal chemical vapor deposition.
【請求項12】 ステップa)において、基材がITO
導電性ガラス、強化ガラス、ナトリウムガラス、酸化シ
リカ、シリカチップ、アルミ、及び金属からなる群から
選ばれる一種以上である請求項11に記載の方法。
12. In step a), the substrate is ITO.
The method according to claim 11, which is one or more selected from the group consisting of conductive glass, tempered glass, sodium glass, silica oxide, silica chips, aluminum, and metal.
【請求項13】ステップb)の熱化学蒸着法の反応温度
が400〜600℃であることを特徴とするものである
請求項11に記載の方法。
13. The method according to claim 11, wherein the reaction temperature of the thermal chemical vapor deposition method of step b) is 400 to 600 ° C.
【請求項14】ステップb)の熱化学蒸着法において、
圧力を50〜200kPaにし、反応時間を1〜120
分間にし、使われた炭素源ガスがアルカン、及び一酸化
炭素であることを特徴とするものである請求項11に記
載の方法。
14. In the thermal chemical vapor deposition method of step b),
The pressure is 50 to 200 kPa, and the reaction time is 1 to 120
12. The method according to claim 11, characterized in that the carbon source gas used in minutes is alkanes and carbon monoxide.
【請求項15】アルカンの炭素数が1〜6であることを
特徴とするものである請求項14に記載の方法。
15. The method according to claim 14, wherein the alkane has 1 to 6 carbon atoms.
【請求項16】炭素源ガスがメタン、アセチレンや一酸
化炭素であることを特徴とするものである請求項14に
記載の方法。
16. The method according to claim 14, wherein the carbon source gas is methane, acetylene or carbon monoxide.
【請求項17】ステップb)の熱化学蒸着法を水素ガス
の雰囲気で行い、使用した炭素源ガスがアルカン及び一
酸化炭素であることを特徴とする請求項11に記載の方
法。
17. The method according to claim 11, wherein the thermal chemical vapor deposition method of step b) is carried out in an atmosphere of hydrogen gas, and the carbon source gas used is alkane and carbon monoxide.
JP2002290290A 2002-03-25 2002-10-02 Metal catalyst for low temperature thermal chemical vapor deposition of carbon nanotubes Expired - Fee Related JP3580549B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW091105806 2002-03-25
TW091105806A TWI237064B (en) 2002-03-25 2002-03-25 Supported metal catalyst for synthesizing carbon nanotubes by low-temperature thermal chemical vapor deposition and method of synthesizing nanotubes using the same

Publications (2)

Publication Number Publication Date
JP2003275594A true JP2003275594A (en) 2003-09-30
JP3580549B2 JP3580549B2 (en) 2004-10-27

Family

ID=28037903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290290A Expired - Fee Related JP3580549B2 (en) 2002-03-25 2002-10-02 Metal catalyst for low temperature thermal chemical vapor deposition of carbon nanotubes

Country Status (3)

Country Link
US (1) US20030181328A1 (en)
JP (1) JP3580549B2 (en)
TW (1) TWI237064B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006239618A (en) * 2005-03-04 2006-09-14 Hitachi Zosen Corp Catalyst for carbon nanotube growth and manufacturing method thereof
JP2008520429A (en) * 2004-11-17 2008-06-19 本田技研工業株式会社 Catalyst for the synthesis of single-walled carbon nanotubes
KR101200982B1 (en) 2010-11-22 2012-11-13 부산대학교 산학협력단 Method for Gas Phase Synthesizing of Heterostructures of Carbon Nanotubes and Bimetallic Nanowires
JP2015533638A (en) * 2012-09-18 2015-11-26 ハンワ ケミカル コーポレイション Method for producing metal catalyst for producing carbon nanotubes and method for producing carbon nanotubes using the same

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7070472B2 (en) * 2001-08-29 2006-07-04 Motorola, Inc. Field emission display and methods of forming a field emission display
US7162308B2 (en) 2002-11-26 2007-01-09 Wilson Greatbatch Technologies, Inc. Nanotube coatings for implantable electrodes
US7282191B1 (en) * 2002-12-06 2007-10-16 The Board Of Trustees Of The Leland Stanford Junior University Carbon nanotube growth
KR100599404B1 (en) 2003-02-25 2006-07-12 한국과학기술원 Fabrication Method of Nano-Composite Powders Reinforced with Carbon Nanotubes
US20100098877A1 (en) * 2003-03-07 2010-04-22 Cooper Christopher H Large scale manufacturing of nanostructured material
US7419601B2 (en) * 2003-03-07 2008-09-02 Seldon Technologies, Llc Nanomesh article and method of using the same for purifying fluids
US7211320B1 (en) 2003-03-07 2007-05-01 Seldon Technologies, Llc Purification of fluids with nanomaterials
KR100558966B1 (en) * 2003-07-25 2006-03-10 한국과학기술원 Metal Nanocomposite Powders Reinforced with Carbon Nanotubes and Their Fabrication Process
JP4834957B2 (en) * 2004-02-27 2011-12-14 住友電気工業株式会社 Catalyst structure and carbon nanotube production method using the same
JP4379247B2 (en) * 2004-04-23 2009-12-09 住友電気工業株式会社 Method for producing carbon nanostructure
JP4604563B2 (en) * 2004-06-08 2011-01-05 住友電気工業株式会社 Method for producing carbon nanostructure
DK1828447T3 (en) * 2004-11-16 2011-03-21 Hyperion Catalysis Int Process for preparing supported catalysts from metal-applied carbon nanotubes
US20060204426A1 (en) * 2004-11-17 2006-09-14 Research Foundation Of The City University Of New York Methods and devices for making carbon nanotubes and compositions thereof
US20060115409A1 (en) * 2004-11-26 2006-06-01 Yuan-Yao Li Method for producing carbon nanotube
US8206624B2 (en) * 2004-11-26 2012-06-26 National Chung Cheng University Method for producing carbon nanotube
TWI386514B (en) * 2005-11-11 2013-02-21 Hon Hai Prec Ind Co Ltd Apparatus for manufacturing carbon nanotubes
US7990037B2 (en) 2005-11-28 2011-08-02 Megica Corporation Carbon nanotube circuit component structure
KR20070106231A (en) * 2006-04-28 2007-11-01 삼성에스디아이 주식회사 Composition for preparing electron emitter, method of manufacturing electron emitter using the same, electron emitter and electron emission device manufactured by using this method
CN102105219B (en) * 2008-05-22 2013-07-31 陶氏环球技术有限责任公司 Metallic platinum on silica support catalyst and process for preparing it
KR101116472B1 (en) * 2009-02-06 2012-03-07 (주)엘지하우시스 carbon nanotube-metal particle complex composition and steering wheel with heating element using the same
US8207084B2 (en) * 2009-06-23 2012-06-26 Ford Global Technologies, Llc Urea-resistant catalytic units and methods of using the same
RU2476268C2 (en) * 2010-06-15 2013-02-27 Общество с ограниченной ответственностью "НаноТехЦентр" Method of obtaining metal oxide catalysts for growing carbon nanotubes from gaseous phase
CN110002430A (en) * 2012-06-22 2019-07-12 国立大学法人东京大学 Carbon nanotube and its manufacturing method
ES2592355B1 (en) * 2015-05-27 2017-09-12 Fundación Imdea Materiales Procedure for obtaining carbon fibers using polyhedral microparticles of nickel or nickel alloys
CN105642917A (en) * 2016-03-15 2016-06-08 苏州赛福德备贸易有限公司 Preparation method for metal-clad carbon nano tube
CN109896518B (en) * 2019-04-08 2022-03-18 西京学院 Preparation method of high-purity carbon nanotubes
CN110339842A (en) * 2019-06-26 2019-10-18 江西铜业技术研究院有限公司 A kind of composite catalyst and preparation method thereof growing carbon nanotube
CN112264040B (en) * 2020-11-16 2023-09-22 南京工业大学 Carbon sphere-graphene oxide catalyst and preparation method and application thereof
CN114890851B (en) * 2022-05-26 2023-06-02 陕西师范大学 Nano composite burning-rate catalyst of transition metal compound embedded in carbon nano tube
CN114940489B (en) * 2022-06-17 2023-08-22 太原理工大学 Method for preparing carbon nano tube from coal liquefaction residues
CN115533098A (en) * 2022-10-21 2022-12-30 天能新能源(湖州)有限公司 Preparation method of iron-cobalt alloy loaded nitrogen-containing carbon nanotube conductive material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2929630C2 (en) * 1979-07-21 1983-12-15 Dornier System Gmbh, 7990 Friedrichshafen Process for the production of silver powder
US5112795A (en) * 1990-10-12 1992-05-12 Union Carbide Chemicals & Plastics Technology Corporation Supported silver catalyst, and processes for making and using same
US5525570A (en) * 1991-03-09 1996-06-11 Forschungszentrum Julich Gmbh Process for producing a catalyst layer on a carrier and a catalyst produced therefrom
US7005404B2 (en) * 2000-12-20 2006-02-28 Honda Motor Co., Ltd. Substrates with small particle size metal oxide and noble metal catalyst coatings and thermal spraying methods for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520429A (en) * 2004-11-17 2008-06-19 本田技研工業株式会社 Catalyst for the synthesis of single-walled carbon nanotubes
JP2006239618A (en) * 2005-03-04 2006-09-14 Hitachi Zosen Corp Catalyst for carbon nanotube growth and manufacturing method thereof
KR101200982B1 (en) 2010-11-22 2012-11-13 부산대학교 산학협력단 Method for Gas Phase Synthesizing of Heterostructures of Carbon Nanotubes and Bimetallic Nanowires
JP2015533638A (en) * 2012-09-18 2015-11-26 ハンワ ケミカル コーポレイション Method for producing metal catalyst for producing carbon nanotubes and method for producing carbon nanotubes using the same

Also Published As

Publication number Publication date
US20030181328A1 (en) 2003-09-25
JP3580549B2 (en) 2004-10-27
TWI237064B (en) 2005-08-01

Similar Documents

Publication Publication Date Title
JP3580549B2 (en) Metal catalyst for low temperature thermal chemical vapor deposition of carbon nanotubes
JP3580548B2 (en) Low-temperature direct synthesis of carbon nanotubes on substrate surface
CN110694616B (en) Method for universally preparing load type metal monoatomic/metal nanoparticles
Esmaeilifar et al. Synthesis methods of low-Pt-loading electrocatalysts for proton exchange membrane fuel cell systems
Filipič et al. Copper oxide nanowires: a review of growth
CA2483401A1 (en) Process for preparing carbon nanotubes
JP2008195599A (en) Platinum nano catalyst-carrying carbon nano-tube electrode and its manufacturing method
CN105618784A (en) Preparation method for dendritic copper-palladium nanocrystalline alloy and product of preparation method
EP1917101A2 (en) Method for manufacture and coating of nanostructured components
JP2003201108A (en) Carbon material
CN1199853C (en) Metal catalyst for low-temp. thermochemical gas-phase precipitation synthesis of carbon nanotubes and synthetic method of carbon nanotubes using the same
CN110694669A (en) Preparation method of monatomic catalyst
CN112452315A (en) Application of high-temperature sintering-resistant catalyst
JP5569396B2 (en) Catalyst production method
CN112938936A (en) Metal atom loaded nano composite material and preparation method thereof
JP2002110176A (en) Carbon nanofiber composite and its manufacturing method
CN113798503A (en) Method for preparing metal cobalt nanosheet
CN1193930C (en) Process for direct low-temperature synthesis of carbon nanotube on substrate material
CN110102773B (en) Preparation method of ordered mesoporous Ni nanoparticles with controllable particle size
JP4774994B2 (en) Carbon nanostructure manufacturing method, catalytic metal particle composite material, and manufacturing method thereof
KR20040082949A (en) Massive synthesis method of single-walled carbon nanotubes using the vapor phase growth
CN109678157B (en) Preparation method of nano tungsten carbide with high catalytic activity
TWI274789B (en) Method for manufacturing carbon nanotube at a low temperature
CN106917079B (en) Chemically plating for Au-Pt alloy nanotube method
CN115159510B (en) Graphene heat conduction film and method for efficiently producing graphene heat conduction film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040716

R150 Certificate of patent or registration of utility model

Ref document number: 3580549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees