JP2003273455A - Two-dimensional photonic crystal face emitting laser and its manufacturing method - Google Patents

Two-dimensional photonic crystal face emitting laser and its manufacturing method

Info

Publication number
JP2003273455A
JP2003273455A JP2002071086A JP2002071086A JP2003273455A JP 2003273455 A JP2003273455 A JP 2003273455A JP 2002071086 A JP2002071086 A JP 2002071086A JP 2002071086 A JP2002071086 A JP 2002071086A JP 2003273455 A JP2003273455 A JP 2003273455A
Authority
JP
Japan
Prior art keywords
photonic crystal
emitting laser
dimensional photonic
periodic structure
surface emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002071086A
Other languages
Japanese (ja)
Other versions
JP3833953B2 (en
Inventor
Susumu Noda
進 野田
Hikari Yokoyama
光 横山
Kojiro Sekine
孝二郎 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd, Japan Science and Technology Corp filed Critical Minolta Co Ltd
Priority to JP2002071086A priority Critical patent/JP3833953B2/en
Publication of JP2003273455A publication Critical patent/JP2003273455A/en
Application granted granted Critical
Publication of JP3833953B2 publication Critical patent/JP3833953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a two-dimensional photonic crystal face emitting laser and its manufacturing method which improves the utilization efficiency of surface emitted light by 50% or more. <P>SOLUTION: There is provided two-dimensional photonic crystal face emitting laser which includes a photonic crystal periodic structure 21a in which there are laminated on a substrate a lower clad layer 12, an active layer for emitting light by doping a carrier, and an upper clad layer, and a refractive index period is arranged in the lower clad layer 12 two dimensionally, and in which light is surface-emitted from the upper surface of the upper clad layer by resonating it with the periodic structure 21a. The width of a cross sectional shape of the periodic structure 21a with respect to the crystal plane is gradually reduced in the direction of the light emission, whereby primary diffraction light L2 directed downward is suppressed, while the quantity of primary diffraction light L1 directed upward is correspondingly increased. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、2次元フォトニッ
ク結晶面発光レーザ及びその製造方法、特に、キャリア
の注入により発光する活性層又はその近傍に、2次元的
に屈折率周期を配置したフォトニック結晶周期構造体を
備え、フォトニック結晶により共振して面発光する2次
元フォトニック結晶面発光レーザ及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-dimensional photonic crystal surface emitting laser and a method of manufacturing the same, and more particularly to a photonic crystal in which a refractive index period is two-dimensionally arranged in or near an active layer emitting light by carrier injection. The present invention relates to a two-dimensional photonic crystal surface emitting laser that includes a periodic structure of a nick crystal and resonates with a photonic crystal to perform surface emission, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来、基板面から垂直方向にレーザ光を
出射する面発光レーザが種々開発、研究されている。面
発光レーザは同一基板上に多数の素子を集積(アレイ
化)でき、各素子からコヒーレントな光が並列的に出射
されるため、並列光ピックアップ、並列光伝送、光並列
情報処理の分野での用途が期待されている。
2. Description of the Related Art Conventionally, various surface emitting lasers which emit laser light in a vertical direction from a substrate surface have been developed and studied. A surface-emitting laser can integrate (array) a large number of elements on the same substrate and emit coherent light from each element in parallel. Therefore, in the field of parallel optical pickup, parallel optical transmission, and optical parallel information processing. Applications are expected.

【0003】この種の面発光レーザとして、フォトニッ
ク結晶を利用した2次元フォトニック結晶面発光レーザ
が特開2000−332351号公報に開示されてい
る。フォトニック結晶とは、光の波長と同程度もしくは
より小さい屈折率周期を有する結晶であり、誘電体の多
次元周期構造体では半導体の結晶中で電子状態にバンド
ギャップが生じることと同様の原理により、光の導波を
抑制する波長帯(フォトニックバンドギャップ)が生
じ、光を2次元又は3次元に閉じこめることが可能であ
る。
As a surface emitting laser of this type, a two-dimensional photonic crystal surface emitting laser utilizing a photonic crystal is disclosed in Japanese Patent Laid-Open No. 2000-332351. A photonic crystal is a crystal having a refractive index period that is about the same as or smaller than the wavelength of light. In a dielectric multidimensional periodic structure, the same principle as that in which a band gap occurs in the electronic state in a semiconductor crystal As a result, a wavelength band (photonic band gap) that suppresses the waveguiding of light is generated, and light can be confined in two dimensions or three dimensions.

【0004】前記公報記載の2次元フォトニック結晶面
発光レーザは、キャリアの注入により発光する活性層の
近傍に、2次元的に屈折率周期を配置したフォトニック
結晶周期構造体を備え、フォトニック結晶により共振し
て面発光するものである。
The two-dimensional photonic crystal surface emitting laser described in the above publication is provided with a photonic crystal periodic structure in which a refractive index period is two-dimensionally arranged in the vicinity of an active layer which emits light when carriers are injected. The crystal resonates and emits surface light.

【0005】具体的には、図8に示すように、この2次
元フォトニック結晶面発光レーザ10は、概略、基板1
1上に下部クラッド層12、活性層13、上部クラッド
層14が積層され、下部クラッド層12には活性層13
の近傍に2次元フォトニック結晶20が内蔵されてい
る。
Specifically, as shown in FIG. 8, the two-dimensional photonic crystal surface emitting laser 10 is roughly composed of a substrate 1
1, a lower clad layer 12, an active layer 13, and an upper clad layer 14 are laminated on the lower clad layer 12.
A two-dimensional photonic crystal 20 is built in the vicinity of.

【0006】基板11は、例えば、n型InPの半導体
材料からなる。下部クラッド層12及び上部クラッド層
14は、例えば、それぞれn型及びp型InPの半導体
層であり、活性層13よりも屈折率が低い。2次元フォ
トニック結晶20は、下部クラッド層12に形成した空
孔(フォトニック結晶周期構造体21)にて構成され、
下部クラッド層12とは屈折率の異なる媒質が2次元の
周期で配列された正方格子や三角格子からなっている。
空孔内にはSiN等を充填してもよい。活性層13は、
例えば、InGaAs/InGaAsP系の半導体材料
を用いた多重量子井戸構造からなっており、キャリアの
注入により発光する。
The substrate 11 is made of, for example, an n-type InP semiconductor material. The lower clad layer 12 and the upper clad layer 14 are, for example, n-type and p-type InP semiconductor layers, respectively, and have a lower refractive index than the active layer 13. The two-dimensional photonic crystal 20 is composed of holes (photonic crystal periodic structure 21) formed in the lower cladding layer 12,
The lower cladding layer 12 is composed of a square lattice or a triangular lattice in which media having different refractive indexes are arranged in a two-dimensional period.
The pores may be filled with SiN or the like. The active layer 13 is
For example, it has a multiple quantum well structure using an InGaAs / InGaAsP-based semiconductor material, and emits light when carriers are injected.

【0007】下部クラッド層12及び上部クラッド層1
4により活性層13を挟んでダブルヘテロ接合を形成
し、キャリアを閉じこめて発光に寄与するキャリアを活
性層13に集中させるようになっている。
Lower clad layer 12 and upper clad layer 1
4 forms a double heterojunction with the active layer 13 sandwiched between them, thereby confining the carriers and concentrating the carriers contributing to light emission in the active layer 13.

【0008】基板11の底面及び上部クラッド層14の
上面には金等からなる下部電極16及び上部電極17が
形成されている。電極16,17間に電圧を印加するこ
とにより活性層13が発光し、該活性層13から漏れた
光が2次元フォトニック結晶20に入射する。2次元フ
ォトニック結晶20の格子間隔に波長が一致する光は、
2次元フォトニック結晶20により共振して増幅され
る。これにより、上部クラッド層14の上面(電極17
の周囲に位置する発光領域18)からコヒーレントな光
が面発光される。
A lower electrode 16 and an upper electrode 17 made of gold or the like are formed on the bottom surface of the substrate 11 and the upper surface of the upper cladding layer 14. The active layer 13 emits light by applying a voltage between the electrodes 16 and 17, and the light leaked from the active layer 13 enters the two-dimensional photonic crystal 20. Light whose wavelength matches the lattice spacing of the two-dimensional photonic crystal 20 is
It is resonated and amplified by the two-dimensional photonic crystal 20. Thereby, the upper surface of the upper clad layer 14 (the electrode 17
The coherent light is surface-emitted from the light emitting region 18) located around the area.

【0009】ここで、図9に示すような正方格子からな
る2次元フォトニック結晶20について共振作用を説明
する。なお、格子形状は正方格子に限らず、三角格子等
であってもよい。
The resonance action of the two-dimensional photonic crystal 20 having a square lattice as shown in FIG. 9 will be described. The lattice shape is not limited to the square lattice, and may be a triangular lattice or the like.

【0010】2次元フォトニック結晶20は、第1媒質
12内に空孔等の第2媒質21と直交する2方向に同じ
周期で形成した正方格子からなっている。正方格子はΓ
−X方向とΓ−M方向の代表的な方向を有している。Γ
−X方向に隣接する第2媒質21の間隔をaとすると、
第2媒質21を格子点とした一辺がaの正方形からなる
基本格子Eが形成されている。
The two-dimensional photonic crystal 20 is composed of a square lattice formed in the first medium 12 in the same period in two directions orthogonal to the second medium 21 such as holes. Square lattice is Γ
It has a representative direction of −X direction and Γ−M direction. Γ
When the distance between the second media 21 adjacent in the −X direction is a,
A basic lattice E, which is a square with one side of a, using the second medium 21 as a lattice point, is formed.

【0011】波長λが基本格子Eの格子間隔aに一致す
る光LがΓ−X方向に進行すると、光Lは格子点で2次
回折される。このうち、光Lの進行方向に対して0°、
±90°、180°の方向に回折された光のみがブラッ
グ条件を満たす。さらに、0°、±90°、180°の
方向に回折された光の進行方向にも格子点が存在するた
め、回折光は再度進行方向に対して0°、±90°、1
80°方向に回折する。
When the light L whose wavelength λ matches the lattice spacing a of the basic grating E travels in the Γ-X direction, the light L is second-order diffracted at the lattice points. Of these, 0 ° with respect to the traveling direction of the light L,
Only the light diffracted in the directions of ± 90 ° and 180 ° satisfies the Bragg condition. Further, since there are lattice points also in the traveling direction of the light diffracted in the directions of 0 °, ± 90 °, and 180 °, the diffracted light is again 0 °, ± 90 °, 1 with respect to the traveling direction.
Diffract in the 80 ° direction.

【0012】光Lが1回又は複数回の2次回折を繰り返
すと、回折光が元の格子点に戻るため共振作用が生じ
る。また、紙面に垂直な方向に1次回折された光もブラ
ッグ条件を満たす。このため、共振によって増幅された
光が上部クラッド層14を介して出射され、面発光機能
を有することになる。また、全ての格子点でこの現象が
生じるため、面内全域でコヒーレントなレーザ発振が可
能である。
When the light L repeats the second-order diffraction once or a plurality of times, the diffracted light returns to the original lattice point and a resonance action occurs. In addition, the light that is first-order diffracted in the direction perpendicular to the paper also satisfies the Bragg condition. Therefore, the light amplified by resonance is emitted through the upper clad layer 14 and has a surface emitting function. Further, since this phenomenon occurs at all the lattice points, coherent laser oscillation is possible in the entire plane.

【0013】[0013]

【発明が解決しようとする課題】ところで、前記2次元
フォトニック結晶面発光レーザにおいて、周期構造体2
1は円柱状、楕円柱状あるいは四角柱状に形成されてお
り、図10に示すように、結晶面に対する垂直方向の断
面形状は四角形状になっている。
By the way, in the two-dimensional photonic crystal surface emitting laser, the periodic structure 2 is used.
1 is formed in a cylindrical shape, an elliptic cylindrical shape, or a quadrangular prism shape, and as shown in FIG. 10, the cross-sectional shape in the direction perpendicular to the crystal plane is a quadrangular shape.

【0014】このように、周期構造体21の垂直断面形
状が四角形であると、1次回折による光は上方への出射
光L1と下方への出射光L2に同じ強度(50%及び5
0%)で分かれる。レーザ光として使用される光は出射
光L1,L2のいずれか一方であり、光の利用効率が低
いという問題点を有していた。
As described above, when the vertical cross-sectional shape of the periodic structure 21 is a quadrangle, the light due to the first-order diffraction has the same intensity (50% and 5) as the light L1 emitted upward and the light L2 emitted downward.
0%). The light used as the laser light is one of the emitted lights L1 and L2, and there is a problem that the light utilization efficiency is low.

【0015】そこで、本発明の目的は、面発光される光
の利用効率を50%以上に高めることのできる2次元フ
ォトニック結晶面発光レーザ及びその製造方法を提供す
ることにある。
Therefore, an object of the present invention is to provide a two-dimensional photonic crystal surface emitting laser capable of increasing the utilization efficiency of surface-emitted light to 50% or more and a manufacturing method thereof.

【0016】[0016]

【発明の構成、作用及び効果】以上の目的を達成するた
め、本発明に係る2次元フォトニック結晶面発光レーザ
は、キャリアの注入により発光する活性層をクラッド層
で挟み込み、該クラッド層又は該活性層に2次元的に屈
折率周期を配置したフォトニック結晶周期構造体を備え
た2次元フォトニック結晶面発光レーザにおいて、前記
フォトニック結晶周期構造体の結晶面に対する断面形状
の幅が主たる発光方向に沿って漸減していることを特徴
とする。
In order to achieve the above objects, the two-dimensional photonic crystal surface emitting laser according to the present invention has an active layer which emits light by carrier injection sandwiched between clad layers, and the clad layers or the clad layers. In a two-dimensional photonic crystal surface emitting laser including a photonic crystal periodic structure in which a refractive index period is two-dimensionally arranged in an active layer, light emission whose cross-sectional shape with respect to a crystal plane of the photonic crystal periodic structure is the main It is characterized by gradually decreasing along the direction.

【0017】この2次元フォトニック結晶面発光レーザ
にあっては、フォトニック結晶周期構造体の前記断面形
状が三角形状に近似した多段形状であってもよい。ま
た、フォトニック結晶周期構造体が断面ほぼ三角形状体
を重ね合わせた井桁構造であってもよい。
In this two-dimensional photonic crystal surface emitting laser, the cross-sectional shape of the photonic crystal periodic structure may be a multi-step shape approximate to a triangular shape. Further, the photonic crystal periodic structure may have a double cross structure in which substantially triangular cross-sections are stacked.

【0018】本発明に係る2次元フォトニック結晶面発
光レーザにおいては、活性層から漏れた光がフォトニッ
ク結晶の周期構造体によって2次回折(共振)して増幅
され、1次回折によってクラッド層から面発光する。周
期構造体は垂直方向の断面形状の幅が主たる発光方向に
沿って漸減しているため、底辺方向への1次回折が抑え
られてほぼ三角形状の頂点方向へより多く1次回折され
る。従って、頂点方向に1次回折される光を面発光とし
て利用することにより、50%以上の光利用効率を得る
ことができる。
In the two-dimensional photonic crystal surface emitting laser according to the present invention, the light leaked from the active layer is second-order diffracted (resonated) and amplified by the periodic structure of the photonic crystal, and is amplified by the first-order diffraction. Surface emission from. Since the width of the vertical sectional shape of the periodic structure gradually decreases along the main light emitting direction, the first-order diffraction in the bottom direction is suppressed, and the first-order diffraction is performed more in the substantially triangular vertex direction. Therefore, by using the light that is first-order diffracted in the vertex direction as the surface emission, it is possible to obtain a light use efficiency of 50% or more.

【0019】一方、前記2次元フォトニック結晶面発光
レーザは、フォトニック結晶周期構造体を結晶面に対す
る垂直方向の断面形状を段差を有するほぼ三角形状にフ
ォトリソグラフィ法で加工した際、マストランスポート
効果によって段差部を消滅させて傾斜面を形成すること
により製造することができる。
On the other hand, in the two-dimensional photonic crystal surface emitting laser, when the photonic crystal periodic structure is processed into a substantially triangular shape having a step in a direction perpendicular to the crystal plane by a photolithography method, mass transport is performed. It can be manufactured by eliminating the step portion by the effect and forming an inclined surface.

【0020】また、フォトニック結晶周期構造体を断面
ほぼ三角形状体を重ね合わせた井桁構造とした2次元フ
ォトニック結晶面発光レーザは、フォトニック結晶周期
構造体を構成する三角形状体をフォトリソグラフィ法で
多段に加工した際、マストランスポート効果によって段
差部を消滅させて傾斜面を形成することにより製造する
ことができる。
A two-dimensional photonic crystal surface emitting laser having a photonic crystal periodic structure having a cross-section of substantially triangular cross-sections superposed on one another is a two-dimensional photonic crystal surface emitting laser, and the triangular bodies constituting the photonic crystal periodic structure are subjected to photolithography. It can be manufactured by eliminating the step portion by the mass transport effect and forming an inclined surface when processed in multiple steps by the method.

【0021】[0021]

【発明の実施の形態】以下、本発明に係る2次元フォト
ニック結晶面発光レーザ及びその製造方法の実施形態に
ついて、添付図面を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a two-dimensional photonic crystal surface emitting laser and a method of manufacturing the same according to the present invention will be described below with reference to the accompanying drawings.

【0022】(第1実施形態、図1参照)本発明に係る
2次元フォトニック結晶面発光レーザの第1実施形態
は、図1にその要部断面を示すように、フォトニック結
晶周期構造体21aの結晶面に対する垂直方向の断面形
状を三角形状としたものであり、周期構造体21aは下
部クラッド層12に形成されている。その他の構成は図
8に示した2次元フォトニック結晶面発光レーザ10と
基本的構成を同じくし、同種の材料を用いて製作され、
同様の共振作用によって面発光する。
(First Embodiment, See FIG. 1) A first embodiment of a two-dimensional photonic crystal surface emitting laser according to the present invention has a photonic crystal periodic structure as shown in FIG. 21a has a triangular cross-section in the direction perpendicular to the crystal plane, and the periodic structure 21a is formed in the lower cladding layer 12. The other structure has the same basic structure as the two-dimensional photonic crystal surface emitting laser 10 shown in FIG. 8, and is manufactured using the same kind of material.
Surface emission is performed by the same resonance action.

【0023】図8に示した周期構造体21は円柱形状、
楕円形状、四角柱形状からなる。本第1実施形態での周
期構造体21aはそれらの形状に対応した円錐形状、楕
円錐形状、四角錐形状である。2次回折は従来の周期構
造体21と同様に発生するが、周期構造体21(三角形
状)の底辺方向への1次回折光L2の発生が抑えられ、
三角形状の頂点方向へより多くの1次回折光L1が出射
される。これにて、光の利用効率が向上することにな
る。
The periodic structure 21 shown in FIG. 8 has a cylindrical shape,
It consists of an elliptical shape and a quadrangular prism shape. The periodic structure 21a in the first embodiment has a conical shape, an elliptic cone shape, or a quadrangular pyramid shape corresponding to those shapes. The second-order diffraction is generated similarly to the conventional periodic structure 21, but the generation of the first-order diffracted light L2 in the bottom direction of the periodic structure 21 (triangular shape) is suppressed,
More first-order diffracted light L1 is emitted in the triangular vertex direction. This improves the light utilization efficiency.

【0024】(第2実施形態、図2参照)本発明に係る
2次元フォトニック結晶面発光レーザの第2実施形態
は、図2にその要部断面を示すように、フォトニック結
晶周期構造体21bの結晶面に対する垂直方向の断面形
状を三角形状に近似した3段形状としたものであり、周
期構造体21bは下部クラッド層12に形成されてい
る。その他の構成は図8に示した2次元フォトニック結
晶面発光レーザ10と基本的構成を同じくし、同種の材
料を用いて製作され、同様の共振作用によって面発光す
る。
(Second Embodiment, See FIG. 2) A second embodiment of a two-dimensional photonic crystal surface emitting laser according to the present invention is a photonic crystal periodic structure as shown in FIG. The cross-sectional shape of 21b in the direction perpendicular to the crystal plane is a three-step shape approximated to a triangular shape, and the periodic structure 21b is formed in the lower cladding layer 12. The other structure has the same basic structure as that of the two-dimensional photonic crystal surface emitting laser 10 shown in FIG. 8, is manufactured using the same kind of material, and emits surface light by the same resonance action.

【0025】本第2実施形態での周期構造体21bも円
錐形状、楕円錐形状、四角錐形状の3段ピラミッド形状
である。前記第1実施形態と比較すると、1次回折光L
2が若干多くなり、面発光して利用される1次回折光L
1の利用効率が若干低下するが、従来の垂直断面が四角
形状の周期構造体21と比べると光の利用効率は向上し
ている。
The periodic structure 21b in the second embodiment also has a conical shape, an elliptic cone shape, and a quadrangular pyramid shape with a three-step pyramid shape. Compared with the first embodiment, the first-order diffracted light L
2 is slightly increased, and the first-order diffracted light L used for surface emission is used.
Although the utilization efficiency of No. 1 is slightly reduced, the utilization efficiency of light is improved as compared with the conventional periodic structure 21 having a rectangular vertical cross section.

【0026】(第3実施形態、図3参照)本発明に係る
2次元フォトニック結晶面発光レーザの第3実施形態
は、図3にその要部断面を示すように、フォトニック結
晶周期構造体21cの結晶面に対する垂直方向の断面形
状を三角形状に近似した2段形状としたものであり、周
期構造体21cは下部クラッド層12に形成されてい
る。その他の構成は図8に示した2次元フォトニック結
晶面発光レーザ10と基本的構成を同じくし、同種の材
料を用いて製作され、同様の共振作用によって面発光す
る。
(Third Embodiment, See FIG. 3) A two-dimensional photonic crystal surface emitting laser according to a third embodiment of the present invention has a photonic crystal periodic structure as shown in FIG. The cross-sectional shape of the 21c in the direction perpendicular to the crystal plane is a two-step shape approximated to a triangular shape, and the periodic structure 21c is formed in the lower cladding layer 12. The other structure has the same basic structure as that of the two-dimensional photonic crystal surface emitting laser 10 shown in FIG. 8, is manufactured using the same kind of material, and emits surface light by the same resonance action.

【0027】本第3実施形態での周期構造体21cも円
錐形状、楕円錐形状、四角錐形状の2段ピラミッド形状
であり、前記第2実施形態の変形例としても位置づけら
れる。第2実施形態と比較すると、1次回折光L2が若
干多くなり、面発光して利用される1次回折光L1の利
用効率が若干低下するが、従来の垂直断面が四角形の周
期構造体21と比べると利用効率は向上している。
The periodic structure 21c in the third embodiment also has a two-step pyramid shape of a conical shape, an elliptic cone shape, and a quadrangular pyramid shape, and is also positioned as a modification of the second embodiment. Compared to the second embodiment, the first-order diffracted light L2 is slightly increased and the utilization efficiency of the first-order diffracted light L1 used for surface emission is slightly reduced, but compared with the conventional periodic structure 21 having a rectangular vertical cross section. And the utilization efficiency is improving.

【0028】(製造方法、図4、図5参照)ここで、前
記第2実施形態で示した2次元フォトニック結晶面発光
レーザの製造方法について、その要部であるフォトニッ
ク結晶周期構造体21bの加工工程(フォトリソグラフ
ィ法あるいは電子ビームリソグラフィ法等)を説明す
る。なお、下部クラッド層、活性層、上部クラッド層を
形成する工程は従来と同様である。
(Manufacturing Method, See FIGS. 4 and 5) Here, in the manufacturing method of the two-dimensional photonic crystal surface emitting laser shown in the second embodiment, the photonic crystal periodic structure 21b, which is the main part thereof, is used. The processing steps (photolithography method, electron beam lithography method, etc.) will be described. The steps of forming the lower clad layer, the active layer, and the upper clad layer are the same as the conventional process.

【0029】まず、下部クラッド層12b上にレジスト
31を塗布し(図4(A)参照)、該レジスト31をパ
ターニングした後(図4(B)参照)、下部クラッド層
12bを所定量エッチング処理する(図4(C)参
照)。
First, a resist 31 is applied on the lower clad layer 12b (see FIG. 4A), the resist 31 is patterned (see FIG. 4B), and then the lower clad layer 12b is etched by a predetermined amount. (See FIG. 4C).

【0030】次に、レジスト31を除去し、新たなレジ
スト31を塗布し(図4(D)参照)、該レジスト31
をパターニングすると共にさらに所定量エッチング処理
する(図4(E)参照)。
Next, the resist 31 is removed, and a new resist 31 is applied (see FIG. 4D).
Is patterned and is further etched by a predetermined amount (see FIG. 4E).

【0031】次に、レジスト31を除去し、新たなレジ
スト31を塗布し(図4(F)参照)、該レジスト31
をパターニングすると共にさらに所定量エッジング処理
し(図4(G)参照)、レジスト31を除去する(図4
(H)参照)。これにて、下部クラッド層12bに3段
ピラミッド形状のフォトニック結晶周期構造体21bが
形成されたことになる。
Next, the resist 31 is removed, and a new resist 31 is applied (see FIG. 4 (F)).
And patterned by a predetermined amount (see FIG. 4G) to remove the resist 31 (FIG. 4).
(See (H)). As a result, the three-step pyramid-shaped photonic crystal periodic structure 21b is formed in the lower cladding layer 12b.

【0032】その後、下部クラッド層12bを表裏反転
させ(図5(A)参照)、基板11上に積層されている
下部クラッド層12a上に下部クラッド層12bを融着
させる(図5(B)参照)。完成した状態は図5(C)
に示すとおりである。なお、下部クラッド層12bには
活性層13及び上部クラッド層14が予め積層されてい
る。また、その後に、図8に示したように、基板11の
下面に下部電極16が設けられ、上部クラッド層14の
上面に上部電極17が設けられる。
Thereafter, the lower clad layer 12b is turned upside down (see FIG. 5A), and the lower clad layer 12b is fused on the lower clad layer 12a laminated on the substrate 11 (FIG. 5B). reference). The completed state is shown in Fig. 5 (C).
As shown in. The active layer 13 and the upper clad layer 14 are previously laminated on the lower clad layer 12b. After that, as shown in FIG. 8, the lower electrode 16 is provided on the lower surface of the substrate 11, and the upper electrode 17 is provided on the upper surface of the upper cladding layer 14.

【0033】また、下部クラッド層12bをフォトリソ
グラフィ法で加工した際、周知のマストランスポート効
果によって段差部を消滅させて傾斜面を形成すると、前
記第1実施形態で示した垂直断面が三角形状の周期構造
体21aを形成することができる。
Further, when the lower clad layer 12b is processed by the photolithography method, if the step portion is eliminated by the well-known mass transport effect to form the inclined surface, the vertical section shown in the first embodiment has a triangular shape. The periodic structure 21a can be formed.

【0034】InP、InGaAs、InGaP、In
As、GaAs、GaP、AlGaAs等のIII−V族半
導体は、水素ガス、窒素ガスあるいは希ガスの雰囲気中
で、450℃以上30分以上の熱処理を加えることで強
くマストランスポートが生じる。この条件は以下に説明
する第4実施形態での傾斜面の形成工程でもほぼ同様で
ある。
InP, InGaAs, InGaP, In
III-V group semiconductors such as As, GaAs, GaP, AlGaAs, etc. strongly undergo mass transport by heat treatment at 450 ° C. or higher for 30 minutes or longer in an atmosphere of hydrogen gas, nitrogen gas or rare gas. This condition is almost the same in the inclined surface forming step in the fourth embodiment described below.

【0035】(第4実施形態、図6、図7参照)本発明
に係る2次元フォトニック結晶面発光レーザの第4実施
形態は、図6に示すように、下部クラッド層12a,1
2bの対向面に互いに直交する方向に形成した断面三角
形状の陸部22a、23a及び溝部22b、23bによ
って井桁構造の2次元フォトニック結晶20を構成した
ものである。その他の構成は図8に示した2次元フォト
ニック結晶面発光レーザ10と基本的構成を同じくし、
同種の材料を用いて製作される。従って、図6において
図8と同じ部材には同じ符号が付されている。
(Fourth Embodiment, See FIGS. 6 and 7) In the fourth embodiment of the two-dimensional photonic crystal surface emitting laser according to the present invention, as shown in FIG.
A two-dimensional photonic crystal 20 having a double cross structure is constituted by land portions 22a and 23a and groove portions 22b and 23b, which have triangular cross sections and are formed on the opposing surfaces of 2b in directions orthogonal to each other. Other configurations are the same as those of the two-dimensional photonic crystal surface emitting laser 10 shown in FIG.
It is manufactured using the same material. Therefore, in FIG. 6, the same members as those in FIG. 8 are designated by the same reference numerals.

【0036】陸部22a,23a及び溝部22b,23
bが接合されることにより、井桁構造の2次元フォトニ
ック結晶20が形成される。図7はこの2次元フォトニ
ック結晶20を示す平面図であり、陸部22a,23a
及び溝部22b,23bの重なり状態の異なる、即ち屈
折率がそれぞれ異なる2次元の周期構造体21d,21
e,21f,21g(それぞれ斜線を付して示す)が市
松模様状に密集して配列されている。
Land portions 22a, 23a and groove portions 22b, 23
By joining b, the two-dimensional photonic crystal 20 having a double beam structure is formed. FIG. 7 is a plan view showing the two-dimensional photonic crystal 20. The land portions 22a, 23a are shown in FIG.
And the two-dimensional periodic structures 21d, 21 having different overlapping states of the groove portions 22b, 23b, that is, different refractive indexes.
e, 21f and 21g (shown by hatching) are arranged in a checkered pattern.

【0037】このような2次元の周期構造体によって光
が2次回折して共振し、1次回折によって面発光する。
この1次回折において、図6に示すように、1次回折光
L2の発生が抑えられ、より多くの1次回折光L1が出
射され、光の利用効率が向上する。
Light is second-order diffracted and resonated by such a two-dimensional periodic structure, and surface emission is performed by the first-order diffraction.
In this first-order diffraction, as shown in FIG. 6, generation of the first-order diffracted light L2 is suppressed, more first-order diffracted light L1 is emitted, and the light utilization efficiency is improved.

【0038】井桁を構成する断面三角形状体は、図4に
示したフォトリソグラフィ法で多段に加工した際、マス
トランスポート効果によって段差部を消滅させて傾斜面
を形成すればよい。
When a triangular body having a triangular cross-section that constitutes a double girder is processed in multiple steps by the photolithography method shown in FIG. 4, the step portion may be eliminated by the mass transport effect to form an inclined surface.

【0039】(他の実施形態)なお、本発明に係る2次
元フォトニック結晶面発光レーザ及びその製造方法は前
記実施形態に限定するものではなく、その要旨の範囲内
で種々に変更することができる。
(Other Embodiments) The two-dimensional photonic crystal surface emitting laser and the method for manufacturing the same according to the present invention are not limited to the above embodiments, but may be variously modified within the scope of the invention. it can.

【0040】特に、半導体層、フォトニック結晶、電極
の材料や、光の偏光を揃えるための構造、格子形状等は
任意である。また、前記各実施形態では、フォトニック
結晶周期構造体を下部クラッド層に設けた例を示した
が、上部クラッド層内の活性層近傍もしくは活性層内に
設けてもよい。
In particular, the materials for the semiconductor layer, the photonic crystal, the electrodes, the structure for aligning the polarization of light, the lattice shape, etc. are arbitrary. Further, in each of the above-described embodiments, the example in which the photonic crystal periodic structure is provided in the lower clad layer is shown, but it may be provided in the upper clad layer near the active layer or in the active layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施形態である2次元フォトニッ
ク結晶面発光レーザの要部を示す断面図。
FIG. 1 is a sectional view showing a main part of a two-dimensional photonic crystal surface emitting laser according to a first embodiment of the present invention.

【図2】本発明の第2実施形態である2次元フォトニッ
ク結晶面発光レーザの要部を示す断面図。
FIG. 2 is a sectional view showing a main part of a two-dimensional photonic crystal surface emitting laser according to a second embodiment of the present invention.

【図3】本発明の第3実施形態である2次元フォトニッ
ク結晶面発光レーザの要部を示す断面図。
FIG. 3 is a sectional view showing a main part of a two-dimensional photonic crystal surface emitting laser according to a third embodiment of the present invention.

【図4】前記第2実施形態でのフォトニック結晶周期構
造体の加工工程を示す説明図。
FIG. 4 is an explanatory view showing a process of processing the photonic crystal periodic structure in the second embodiment.

【図5】前記第2実施形態でのフォトニック結晶周期構
造体の加工工程を示す説明図、図4の続き。
FIG. 5 is an explanatory view showing a processing step of the photonic crystal periodic structure in the second embodiment, a continuation of FIG. 4;

【図6】本発明の第4実施形態である2次元フォトニッ
ク結晶面発光レーザを示す斜視図。
FIG. 6 is a perspective view showing a two-dimensional photonic crystal surface emitting laser according to a fourth embodiment of the present invention.

【図7】前記第4実施形態での2次元フォトニック結晶
を示す説明図。
FIG. 7 is an explanatory diagram showing a two-dimensional photonic crystal according to the fourth embodiment.

【図8】本発明に先行する2次元フォトニック結晶面発
光レーザを示す斜視図。
FIG. 8 is a perspective view showing a two-dimensional photonic crystal surface emitting laser prior to the present invention.

【図9】2次元フォトニック結晶面発光レーザの共振作
用を示す説明図。
FIG. 9 is an explanatory diagram showing a resonance action of a two-dimensional photonic crystal surface emitting laser.

【図10】図8に示した面発光レーザでのフォトニック
結晶周期構造体を示す断面図。
10 is a sectional view showing a photonic crystal periodic structure in the surface emitting laser shown in FIG.

【符号の説明】[Explanation of symbols]

10…2次元フォトニック結晶面発光レーザ 11…基板 12…下部クラッド層 13…活性層 14…上部クラッド層 20…2次元フォトニック結晶 21a〜21g…フォトニック結晶周期構造体 10. Two-dimensional photonic crystal surface emitting laser 11 ... Substrate 12 ... Lower clad layer 13 ... Active layer 14 ... Upper clad layer 20 ... Two-dimensional photonic crystal 21a-21g ... Photonic crystal periodic structure

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 光 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 (72)発明者 関根 孝二郎 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 Fターム(参考) 5F073 AA63 AA74 AA75 AA89 AB17 CA12 DA16    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yokoyama Hikaru             2-3-3 Azuchi-cho, Chuo-ku, Osaka-shi, Osaka Prefecture               Osaka International Building Minolta Co., Ltd. (72) Inventor Kojiro Sekine             2-3-3 Azuchi-cho, Chuo-ku, Osaka-shi, Osaka Prefecture               Osaka International Building Minolta Co., Ltd. F-term (reference) 5F073 AA63 AA74 AA75 AA89 AB17                       CA12 DA16

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 キャリアの注入により発光する活性層を
クラッド層で挟み込み、該クラッド層又は該活性層に2
次元的に屈折率周期を配置したフォトニック結晶周期構
造体を備えた2次元フォトニック結晶面発光レーザにお
いて、 前記フォトニック結晶周期構造体の結晶面に対する断面
形状の幅が主たる発光方向に沿って漸減していること、 を特徴とする2次元フォトニック結晶面発光レーザ。
1. An active layer that emits light by carrier injection is sandwiched between clad layers, and the clad layer or the active layer is provided with 2
A two-dimensional photonic crystal surface emitting laser including a photonic crystal periodic structure having a three-dimensionally arranged refractive index period, wherein the width of the cross-sectional shape of the photonic crystal periodic structure with respect to the crystal plane is along the main light emitting direction. A two-dimensional photonic crystal surface emitting laser characterized by being gradually reduced.
【請求項2】 フォトニック結晶周期構造体の前記断面
形状が三角形状に近似した多段形状であることを特徴と
する請求項1記載の2次元フォトニック結晶面発光レー
ザ。
2. The two-dimensional photonic crystal surface emitting laser according to claim 1, wherein the cross-sectional shape of the photonic crystal periodic structure is a multi-step shape approximated to a triangular shape.
【請求項3】 フォトニック結晶周期構造体が断面ほぼ
三角形状体を重ね合わせた井桁構造であることを特徴と
する請求項1記載の2次元フォトニック結晶面発光レー
ザ。
3. The two-dimensional photonic crystal surface emitting laser according to claim 1, wherein the photonic crystal periodic structure has a double-girder structure in which substantially triangular cross-sections are stacked.
【請求項4】 請求項1記載の2次元フォトニック結晶
面発光レーザの製造方法であって、フォトニック結晶周
期構造体を結晶面に対する垂直方向の断面形状を段差を
有するほぼ三角形状にフォトリソグラフィ法で加工した
際、マストランスポート効果によって段差部を消滅させ
て傾斜面を形成することを特徴とする2次元フォトニッ
ク結晶面発光レーザの製造方法。
4. The method of manufacturing a two-dimensional photonic crystal surface emitting laser according to claim 1, wherein the photonic crystal periodic structure is photolithographically formed into a substantially triangular cross-section having a step in a direction perpendicular to the crystal plane. A method for manufacturing a two-dimensional photonic crystal surface emitting laser, characterized in that when processed by the method, the step portion is eliminated by a mass transport effect to form an inclined surface.
【請求項5】 請求項3記載の2次元フォトニック結晶
面発光レーザの製造方法であって、フォトニック結晶周
期構造体を構成する三角形状体をフォトリソグラフィ法
で多段に加工した際、マストランスポート効果によって
段差部を消滅させて傾斜面を形成することを特徴とする
2次元フォトニック結晶面発光レーザの製造方法。
5. The method for manufacturing a two-dimensional photonic crystal surface emitting laser according to claim 3, wherein a mass transformer is used when a triangular body forming the photonic crystal periodic structure is processed in multiple stages by photolithography. A method for manufacturing a two-dimensional photonic crystal surface emitting laser, characterized in that a step portion is eliminated by a port effect to form an inclined surface.
JP2002071086A 2002-03-14 2002-03-14 Two-dimensional photonic crystal surface emitting laser and manufacturing method thereof Expired - Fee Related JP3833953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002071086A JP3833953B2 (en) 2002-03-14 2002-03-14 Two-dimensional photonic crystal surface emitting laser and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002071086A JP3833953B2 (en) 2002-03-14 2002-03-14 Two-dimensional photonic crystal surface emitting laser and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003273455A true JP2003273455A (en) 2003-09-26
JP3833953B2 JP3833953B2 (en) 2006-10-18

Family

ID=29201449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071086A Expired - Fee Related JP3833953B2 (en) 2002-03-14 2002-03-14 Two-dimensional photonic crystal surface emitting laser and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3833953B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086302A1 (en) * 2004-03-05 2005-09-15 Kyoto University Two-dimensional photonic crystal surface-emitting laser light source
WO2007029661A1 (en) * 2005-09-05 2007-03-15 Kyoto University Two-dimensional photonic crystal surface light emitting laser light source
US20070201526A1 (en) * 2006-02-28 2007-08-30 Canon Kabushiki Kaisha Vertical cavity surface emitting laser
JP2009295904A (en) * 2008-06-09 2009-12-17 Canon Inc Surface-emitting laser
JP5327234B2 (en) * 2009-01-28 2013-10-30 コニカミノルタ株式会社 Two-dimensional photonic crystal surface emitting laser and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005086302A1 (en) * 2004-03-05 2005-09-15 Kyoto University Two-dimensional photonic crystal surface-emitting laser light source
CN100456583C (en) * 2004-03-05 2009-01-28 国立大学法人京都大学 Two-dimensional photonic crystal surface-emitting laser light source
US7535943B2 (en) 2004-03-05 2009-05-19 Kyoto University Surface-emitting laser light source using two-dimensional photonic crystal
KR101128944B1 (en) 2004-03-05 2012-03-27 로무 가부시키가이샤 Two-dimensional photonic crystal surface-emitting laser light source
WO2007029661A1 (en) * 2005-09-05 2007-03-15 Kyoto University Two-dimensional photonic crystal surface light emitting laser light source
US8711895B2 (en) 2005-09-05 2014-04-29 Kyoto University Surface-emitting laser light source using two-dimensional photonic crystal
US20070201526A1 (en) * 2006-02-28 2007-08-30 Canon Kabushiki Kaisha Vertical cavity surface emitting laser
JP2007234835A (en) * 2006-02-28 2007-09-13 Canon Inc Vertical resonator type surface-emitting laser
US8411722B2 (en) 2006-02-28 2013-04-02 Canon Kabushiki Kaisha Vertical cavity surface emitting laser
JP2009295904A (en) * 2008-06-09 2009-12-17 Canon Inc Surface-emitting laser
JP5327234B2 (en) * 2009-01-28 2013-10-30 コニカミノルタ株式会社 Two-dimensional photonic crystal surface emitting laser and manufacturing method thereof

Also Published As

Publication number Publication date
JP3833953B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
KR101128944B1 (en) Two-dimensional photonic crystal surface-emitting laser light source
JP3983933B2 (en) Semiconductor laser and manufacturing method of semiconductor laser
US7978745B2 (en) Two-dimensional photonic crystal surface-emitting laser
EP1610427B1 (en) Two-dimensional photonic crystal surface-emitting laser
US8711895B2 (en) Surface-emitting laser light source using two-dimensional photonic crystal
JP4927411B2 (en) Two-dimensional photonic crystal surface emitting laser
JP2003273456A (en) Two-dimensional photonic crystal face emitting laser
US7457340B2 (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
JP4492986B2 (en) Semiconductor surface light emitting device
US20070075318A1 (en) Two-dimensional photonic crystal surface-emitting laser
JP4294023B2 (en) Two-dimensional photonic crystal surface emitting laser light source
US20220131343A1 (en) Two-dimensional photonic-crystal surface-emitting laser
JP2006165309A (en) Semiconductor laser element
US6885686B2 (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
JP2003273455A (en) Two-dimensional photonic crystal face emitting laser and its manufacturing method
JP5309877B2 (en) Photonic crystal surface emitting laser element
JP2003273453A (en) Two-dimensional photonic crystal face emitting laser and its manufacturing method
JP2003273454A (en) Two-dimensional photonic crystal face emitting laser
JPS63150981A (en) Semiconductor laser
JP2006303052A (en) Semiconductor laser device and manufacturing method thereof
JPS62199085A (en) Semiconductor laser
JP2875929B2 (en) Semiconductor laser device and method of manufacturing the same
JP2008258453A (en) Distributed feedback semiconductor laser
JPS61190992A (en) Semiconductor laser with quantum well type optical modulator

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3833953

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees