JP2003273411A - Thermoelectric conversion material and thermoelectric conversion device using the same - Google Patents

Thermoelectric conversion material and thermoelectric conversion device using the same

Info

Publication number
JP2003273411A
JP2003273411A JP2002074446A JP2002074446A JP2003273411A JP 2003273411 A JP2003273411 A JP 2003273411A JP 2002074446 A JP2002074446 A JP 2002074446A JP 2002074446 A JP2002074446 A JP 2002074446A JP 2003273411 A JP2003273411 A JP 2003273411A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
sintered body
electric conductivity
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002074446A
Other languages
Japanese (ja)
Inventor
Makoto Mizutani
眞 水谷
Kazuyoshi Inoue
一吉 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2002074446A priority Critical patent/JP2003273411A/en
Publication of JP2003273411A publication Critical patent/JP2003273411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion material having excellent electric conductivity and a high thermoelectromotive force, and also to provide a thermoelectric conversion device using the same. <P>SOLUTION: The thermoelectric conversion material is formed of a composite oxide, main component of which is In and Zn, with a composition ratio of In and Zn being 0.2<In/(In+Zn)<1. The thermoelectric conversion material can raise both the absolute value of a thermoelectromotive force and electric conductivity, or can suppress a decline in the absolute value of the thermoelectromotive force. The thermoelectric conversion material is used as an n-type thermoelectric conversion material 2 to manufacture the thermoelectric conversion device 1. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する分野】本発明は、良電気伝導性で、高い
熱起電力を持つ熱電変換材料及びそれを用いた熱電変換
素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric conversion material having good electric conductivity and high thermoelectromotive force, and a thermoelectric conversion element using the same.

【0002】[0002]

【従来の技術】熱電発電は、熱電効果を利用して熱エネ
ルギーを直接電力に変換する技術であり、可動部がなく
安定性に優れるため、この技術は体温で作動する腕時計
や僻地用電源、宇宙用電源、軍事用電源等として一部で
実用化されている。
2. Description of the Related Art Thermoelectric power generation is a technology for directly converting thermal energy into electric power by utilizing the thermoelectric effect. Since this technology has no moving parts and is excellent in stability, this technology uses wristwatches and remote power sources that operate at body temperature, It has been put to practical use as a power source for space and a military power source.

【0003】しかし、これまでに用いられてきたPbT
e系やBi2Te3系等の熱電変換材料は、Te等の高価
な元素や、Pb等の有毒な元素を用いるため、発電用の
材料としては、価格と毒性の点に問題があった。
However, PbT that has been used so far
Since the e-type and Bi 2 Te 3 -type thermoelectric conversion materials use expensive elements such as Te and toxic elements such as Pb, there is a problem in terms of price and toxicity as a material for power generation. .

【0004】そこで、上記問題点を改良した熱電変換材
料として、特開平9−321346号公報及び特開平1
0−256612号公報では、毒性が少なく、価格の安
い元素からなるNaを含む層状ペロブスカイト型酸化物
で、高い熱電性能を持つ材料が開示されている。
Therefore, as thermoelectric conversion materials which have improved the above problems, Japanese Patent Laid-Open No. 9-321346 and Japanese Patent Laid-Open No. 1-321346 have been proposed.
JP-A 0-256612 discloses a layered perovskite oxide containing Na, which is an element having low toxicity and low cost, and having high thermoelectric performance.

【0005】しかし、上記公報で開示されたNa系の複
合酸化物は、いずれもp型の熱電変換材料であるため、
安全で化学的に安定な酸化物を用いた熱電変換素子の実
現のためには、n型の熱電変換材料と組み合わせて用い
ることが必要とされた。n型の熱電変換材料としては、
例えば、Nd2CuO4にZrをドープした複合酸化物
(特開2000−012914号公報)、酸化インジウ
ムにマンガンを含有させた複合酸化物(特開平7−23
1122号公報)及びZnOにインジウムをドープした
複合酸化物(特開2000−012915号公報)等が
開示されている。
However, since the Na-based composite oxides disclosed in the above publications are p-type thermoelectric conversion materials,
In order to realize a thermoelectric conversion element using a safe and chemically stable oxide, it was necessary to use it in combination with an n-type thermoelectric conversion material. As the n-type thermoelectric conversion material,
For example, a composite oxide in which Nd 2 CuO 4 is doped with Zr (Japanese Patent Laid-Open No. 2000-012914) and a composite oxide in which indium oxide contains manganese (Japanese Patent Laid-Open No. 7-23).
No. 1122) and a complex oxide in which ZnO is doped with indium (Japanese Patent Laid-Open No. 2000-012915) and the like are disclosed.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0006】しかし、上記公報で開示された複合酸化物
は、いずれも、特に、比較的低温(室温〜200℃)に
おける熱発電性能に難点があり、熱電変換材料として使
用するには性能的に不十分という課題があった。従っ
て、p型熱電変換材料と組み合わせて用いることができ
る、より高性能のn型熱電変換材料の開発が求められて
いた。
However, all of the composite oxides disclosed in the above publications have a problem in thermoelectric power generation performance at a relatively low temperature (room temperature to 200 ° C.), so that they are not suitable for use as a thermoelectric conversion material. There was a problem of being insufficient. Therefore, there has been a demand for the development of a higher performance n-type thermoelectric conversion material that can be used in combination with the p-type thermoelectric conversion material.

【0007】本発明は、良電気伝導性で、高熱起電力を
持つ熱電変換材料及びそれを用いた熱電変換素子を提供
することを目的とする。
An object of the present invention is to provide a thermoelectric conversion material having good electric conductivity and high thermoelectromotive force, and a thermoelectric conversion element using the same.

【0008】本発明者等は、上記課題を解決すべく鋭意
検討した結果、In及びZnを主体とする複合酸化物
が、比較的低温(室温〜200℃)でも、高い電気伝導
性と負の高熱起電力を併せ持ち、熱電変換材料として優
れた特性を有することを見い出した。
As a result of intensive studies to solve the above problems, the present inventors have found that a composite oxide mainly composed of In and Zn has high electric conductivity and negative conductivity even at a relatively low temperature (room temperature to 200 ° C.). It was found that they also have high thermoelectromotive force and have excellent properties as a thermoelectric conversion material.

【0009】[0009]

【課題を解決するための手段】本発明の第一の態様によ
れば、In及びZnを主体とし、In及びZnの組成比
率が0.2<In/(In+Zn)<1である複合酸化
物からなる熱電変換材料が提供される。
According to the first aspect of the present invention, a composite oxide mainly composed of In and Zn and having a composition ratio of In and Zn of 0.2 <In / (In + Zn) <1. A thermoelectric conversion material is provided.

【0010】本発明の第二の態様によれば、上記の熱電
変換材料を用いてなる熱電変換素子が提供される。
According to a second aspect of the present invention, there is provided a thermoelectric conversion element using the above thermoelectric conversion material.

【0011】[0011]

【発明の実施の形態】本発明の熱電変換材料は、In及
びZnを主体とし、その組成比率が0.2<In/(I
n+Zn)<1(0<Zn/(In+Zn)<0.8)
の複合酸化物からなる。この複合酸化物において、Zn
は、酸化インジウムに固溶又は一般式In23(Zn
O)m(m=2〜20)で表される六方晶層状化合物を
形成して、複合酸化物の電気伝導性を向上させる効果を
発現する。Znが入っていないと、電気伝導度が低くな
り、その結果、出力因子が低下する。一方、Znが多す
ぎると、ZnOが生成し、このZnOが電子の散乱原因
となるため、電気伝導度が低くなり、その結果、出力因
子が低下する。組成比率は、好ましくは0.3<In/
(In+Zn)<1(0<Zn/(In+Zn)<0.
7)、より好ましくは0.5<In/(In+Zn)<
1(0<Zn/(In+Zn)<0.5)である。
BEST MODE FOR CARRYING OUT THE INVENTION The thermoelectric conversion material of the present invention is mainly composed of In and Zn and has a composition ratio of 0.2 <In / (I
n + Zn) <1 (0 <Zn / (In + Zn) <0.8)
It consists of a complex oxide of. In this composite oxide, Zn
Is a solid solution in indium oxide or the general formula In 2 O 3 (Zn
O) A hexagonal layered compound represented by m (m = 2 to 20) is formed to exert the effect of improving the electrical conductivity of the composite oxide. If Zn is not contained, the electric conductivity will be low, and as a result, the output factor will be low. On the other hand, if the amount of Zn is too large, ZnO is generated, and this ZnO becomes a cause of electron scattering, so that the electrical conductivity becomes low and, as a result, the output factor decreases. The composition ratio is preferably 0.3 <In /
(In + Zn) <1 (0 <Zn / (In + Zn) <0.
7), more preferably 0.5 <In / (In + Zn) <
1 (0 <Zn / (In + Zn) <0.5).

【0012】これら各種組成の複合酸化物は、必要な元
素源を含む原料を、粉末等として均一に混合し、焼成す
ることにより得られる。複合酸化物を製造するに際して
用いられる原料としては、各成分元素、各成分元素の酸
化物又はその焼成時に酸化物となる原料が使用できる。
In源としては、例えば、金属(In)、酸化物(In
23)、水酸化物[In(OH)3]、硝酸塩[In(NO
3)3]等が用いられ、Zn源としては、例えば、金属
(Zn)、酸化物(ZnO)、水酸化物[(Zn(OH)
2)]、硝酸塩[Zn(NO3)2]等が用いられる。
The complex oxides having various compositions are obtained by uniformly mixing raw materials containing a necessary element source in the form of powder or the like and firing. As a raw material used for producing the composite oxide, each component element, an oxide of each component element, or a raw material that becomes an oxide when firing the component element can be used.
Examples of the In source include metal (In) and oxide (In
2 O 3 ), hydroxide [In (OH) 3 ], nitrate [In (NO
3 ) 3 ] etc. are used, and examples of the Zn source include metal (Zn), oxide (ZnO), and hydroxide [(Zn (OH)
2 )], nitrate [Zn (NO 3 ) 2 ] and the like are used.

【0013】本発明の熱電変換材料は、電気伝導性が高
く、かつ、負の大きな熱起電力を持っているため、熱電
発電の性能の指標である出力因子(電気伝導度×ゼーベ
ック係数の二乗)が高く、室温でも、約1μW/K2
mの値を示す。尚、一般に、熱起電力の絶対値の大きさ
と電気伝導度とは負の相関関係にあり、電気伝導度が上
がると熱起電力の絶対値は低下してしまうが、本発明の
熱電変換材料では、In及びZnを主体とする複合酸化
物からなるため、従来の複合酸化物に比べ、熱起電力の
絶対値と電気伝導度とを共に上昇させるか、又は熱起電
力の絶対値の低下を抑制することができる。
Since the thermoelectric conversion material of the present invention has a high electric conductivity and a large negative thermoelectromotive force, the output factor (electric conductivity × square of Seebeck coefficient) which is an index of the performance of thermoelectric generation. ) Is high and about 1 μW / K 2 c even at room temperature
The value of m is shown. In general, the magnitude of the absolute value of the thermoelectromotive force and the electric conductivity have a negative correlation, and the absolute value of the thermoelectromotive force decreases as the electric conductivity increases, but the thermoelectric conversion material of the present invention. Since it is composed of a composite oxide mainly composed of In and Zn, both the absolute value of thermoelectromotive force and the electric conductivity are increased or the absolute value of thermoelectromotive force is decreased as compared with the conventional composite oxide. Can be suppressed.

【0014】本発明の熱電変換素子は、上述の熱電変換
材料を用いた熱電変換素子であり、熱電変換材料をn型
熱電変換材料として用いる。それ以外の他の構成部分
は、公知の材料で構成できる。例えば、n型熱電変換材
料と併用するp型熱電変換材料としては、上述の公報に
開示された材料を用いることができる。
The thermoelectric conversion element of the present invention is a thermoelectric conversion element using the above-mentioned thermoelectric conversion material, and the thermoelectric conversion material is used as an n-type thermoelectric conversion material. Other components can be made of known materials. For example, as the p-type thermoelectric conversion material used together with the n-type thermoelectric conversion material, the materials disclosed in the above publications can be used.

【0015】図1は、本発明の熱電変換素子の一実施形
態を示す模式図である。熱電変換素子1において、n型
熱電変換材料2及びp型熱電変換材料3は、共通の高温
側電極4と、2つの低温側電極5及び6に接合してい
る。ここで、高温側電極4を加熱すると、高温側接合部
7の温度が上がりThとなり、低温側接合部8の温度T
cとの間に温度差ΔT(ΔT=Th−Tc)が生じ、高
温側電極4と低温側電極5及び6との間に電圧が発生す
る。そして、低温側電極5及び6の間に負荷抵抗(R)
を接続すると電流(I)が流れ、この電流を電力(W)
として取り出すことができる。このように構成される熱
電変換素子は、温度差から起電力を取り出せるだけでな
く、電力を逆に加えることで冷却や加熱を行なうヒート
ポンプとしても用いることができる。
FIG. 1 is a schematic view showing an embodiment of the thermoelectric conversion element of the present invention. In the thermoelectric conversion element 1, the n-type thermoelectric conversion material 2 and the p-type thermoelectric conversion material 3 are bonded to the common high temperature side electrode 4 and the two low temperature side electrodes 5 and 6. Here, when the high temperature side electrode 4 is heated, the temperature of the high temperature side joint portion 7 rises to Th, and the temperature T of the low temperature side joint portion 8 is increased.
A temperature difference ΔT (ΔT = Th−Tc) is generated between the high temperature side electrode 4 and the low temperature side electrode 5, and a voltage is generated between the high temperature side electrode 4 and the low temperature side electrodes 5 and 6. The load resistance (R) is applied between the low temperature side electrodes 5 and 6.
Current (I) flows when this is connected, and this current is converted to power (W)
Can be taken out as. The thermoelectric conversion element configured in this way can not only extract electromotive force from the temperature difference, but can also be used as a heat pump for cooling or heating by applying electric power in the opposite direction.

【0016】[0016]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明はこれら実施例に限定されない。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to these examples.

【0017】実施例1 酸化インジウム(In)粉(純度4N、平均粒径
約2μm)を9.78g、酸化亜鉛(ZnO)粉(純度
3N、平均粒径約2μm)を2.2g秤量し、自動乳鉢
で2時間混合、粉砕した。次に、この混合粉末を、1,
200℃で8時間焼成した。このとき、昇温速度は10
℃/分とし、焼成後の冷却は、焼成炉内での自然放冷と
した。得られた焼成物を、再度自動乳鉢で2時間粉砕し
た後、金型に入れて、幅5mm、厚さ2mm、長さ20
mmの棒状に加圧成形した。得られた成形体を、1,3
80℃で5時間焼成して焼結体(複合酸化物)を得た。
このとき、昇温速度は4℃/分、降温速度は10℃/分
とした。この焼結体の組成を分析した結果、インジウム
と亜鉛との比(モル%)は、96.3:3.7であっ
た。また、この焼結体の密度は6.7g/cmであっ
た。
Example 1 9.78 g of indium oxide (In 2 O 3 ) powder (purity 4N, average particle size about 2 μm) and 2.2 g of zinc oxide (ZnO) powder (purity 3N, average particle size about 2 μm) Weighed, mixed in an automatic mortar for 2 hours and crushed. Next, this mixed powder is
It was baked at 200 ° C. for 8 hours. At this time, the heating rate is 10
C./min., And the cooling after firing was spontaneous cooling in the firing furnace. The obtained fired product was pulverized again in an automatic mortar for 2 hours and then put into a mold to have a width of 5 mm, a thickness of 2 mm and a length of 20.
It was pressure molded into a rod shape of mm. The obtained molded body is 1,3
It was fired at 80 ° C. for 5 hours to obtain a sintered body (composite oxide).
At this time, the rate of temperature increase was 4 ° C./minute, and the rate of temperature decrease was 10 ° C./minute. As a result of analyzing the composition of this sintered body, the ratio (mol%) of indium and zinc was 96.3: 3.7. The density of this sintered body was 6.7 g / cm 3 .

【0018】得られた焼結体の60℃及び200℃にお
ける電気伝導度及びゼーベック係数を以下の方法で測定
し、これらの値から出力因子を求めた。結果を表1に示
す。 (1)電気伝導度 直流4端子法を用いて測定した。 (2)ゼーベック係数 焼結体の両端に熱電対を接着させ、焼結体の温度を直接
計った。二つの銅ブロックに焼結体を渡し、銅ブロック
間に温度差をつけて熱起電力を測定し、温度差と熱起電
力の直線との傾きからゼーベック係数を求めた。
The electrical conductivity and Seebeck coefficient at 60 ° C. and 200 ° C. of the obtained sintered body were measured by the following methods, and the output factor was determined from these values. The results are shown in Table 1. (1) Electric conductivity Measured using a direct current 4-terminal method. (2) Seebeck coefficient A thermocouple was adhered to both ends of the sintered body, and the temperature of the sintered body was directly measured. The sintered body was passed between two copper blocks, a temperature difference was made between the copper blocks, the thermoelectromotive force was measured, and the Seebeck coefficient was obtained from the slope of the temperature difference and the straight line of the thermoelectromotive force.

【0019】この焼結体は、60℃及び200℃のいず
れの温度においても、電気伝導度が高いにもかかわら
ず、ゼーベック係数は大きな負の値を示すことから、n
型の熱電変換材料として有用であることが分かった。
This sintered body has a large negative Seebeck coefficient at both temperatures of 60 ° C. and 200 ° C. even though it has a high electric conductivity.
It has been found to be useful as a thermoelectric conversion material for molds.

【0020】実施例2 酸化インジウム(In23)粉(純度4N、平均粒径約
2μm)を8.9g、酸化亜鉛(ZnO)粉(純度3
N、平均粒径約2μm)を1.1g秤量し、自動乳鉢で
2時間混合、粉砕した。次に、この混合粉末を、1,2
00℃で8時間焼成した。このとき、昇温速度は10℃
/分とし、焼成後の冷却は、焼成炉内での自然放冷とし
た。得られた焼成物を、再度自動乳鉢で2時間粉砕した
後、金型に入れて、幅5mm、厚さ2mm、長さ20m
mの棒状に加圧成形した。得られた成形体を、1,38
0℃で5時間焼成して焼結体(複合酸化物)を得た。こ
のとき、昇温速度は4℃/分、降温速度は10℃/分と
した。この焼結体の組成を分析した結果、インジウムと
亜鉛との比(モル%)は、83:17であった。また、
この焼結体の密度は6.9g/cm3であった。この焼
結体の電気伝導度及びゼーベック係数を実施例1と同様
に測定し、これらの値から出力因子を求めた。結果を表
1に示す。
Example 2 8.9 g of indium oxide (In 2 O 3 ) powder (purity 4N, average particle size of about 2 μm), zinc oxide (ZnO) powder (purity 3
1.1 g of N, average particle size of about 2 μm) were weighed, mixed in an automatic mortar for 2 hours and pulverized. Next, the mixed powder
It was baked at 00 ° C. for 8 hours. At this time, the heating rate is 10 ° C
/ Min, and the cooling after firing was spontaneous cooling in the firing furnace. The obtained fired product was crushed again in an automatic mortar for 2 hours, and then put in a mold to have a width of 5 mm, a thickness of 2 mm and a length of 20 m.
m was pressed into a rod shape. The obtained molded product was 1,38
It was fired at 0 ° C. for 5 hours to obtain a sintered body (composite oxide). At this time, the rate of temperature increase was 4 ° C./minute, and the rate of temperature decrease was 10 ° C./minute. As a result of analyzing the composition of this sintered body, the ratio (mol%) of indium and zinc was 83:17. Also,
The density of this sintered body was 6.9 g / cm 3 . The electrical conductivity and Seebeck coefficient of this sintered body were measured in the same manner as in Example 1, and the output factor was determined from these values. The results are shown in Table 1.

【0021】この焼結体は、60℃及び200℃のいず
れの温度においても、電気伝導度が高いにもかかわら
ず、ゼーベック係数は大きな負の値を示すことから、n
型の熱電変換材料として有用であることが分かった。
This sintered body has a large negative Seebeck coefficient at both temperatures of 60 ° C. and 200 ° C. even though it has a high electric conductivity.
It has been found to be useful as a thermoelectric conversion material for molds.

【0022】実施例3 酸化インジウム(In23)粉(純度4N、平均粒径約
2μm)を12.6g、酸化亜鉛(ZnO)粉(純度3
N、平均粒径約2μm)を7.4g秤量し、自動乳鉢で
2時間混合、粉砕した。次に、この混合粉末を、1,2
00℃で8時間焼成した。このとき、昇温速度は10℃
/分とし、焼成後の冷却は、焼成炉内での自然放冷とし
た。得られた焼成物を、再度自動乳鉢で2時間粉砕した
後、金型に入れて、幅5mm、厚さ2mm、長さ20m
mの棒状に加圧成形した。得られた成形体を、1,38
0℃で5時間焼成して焼結体(複合酸化物)を得た。こ
のとき、昇温速度は4℃/分、降温速度は10℃/分と
した。この焼結体の組成を分析した結果、インジウムと
亜鉛との比(モル%)は、50:50であった。また、
この焼結体の密度は6.9g/cm3であった。この焼
結体の電気伝導度及びゼーベック係数を実施例1と同様
に測定し、これらの値から出力因子を求めた。結果を表
1に示す。
Example 3 12.6 g of indium oxide (In 2 O 3 ) powder (purity 4N, average particle size of about 2 μm) and zinc oxide (ZnO) powder (purity 3
7.4 g of N, average particle size of about 2 μm) was weighed, mixed and pulverized in an automatic mortar for 2 hours. Next, the mixed powder
It was baked at 00 ° C. for 8 hours. At this time, the heating rate is 10 ° C
/ Min, and the cooling after firing was spontaneous cooling in the firing furnace. The obtained fired product was crushed again in an automatic mortar for 2 hours, and then put in a mold to have a width of 5 mm, a thickness of 2 mm and a length of 20 m.
m was pressed into a rod shape. The obtained molded product was 1,38
It was fired at 0 ° C. for 5 hours to obtain a sintered body (composite oxide). At this time, the rate of temperature increase was 4 ° C./minute, and the rate of temperature decrease was 10 ° C./minute. As a result of analyzing the composition of this sintered body, the ratio (mol%) of indium and zinc was 50:50. Also,
The density of this sintered body was 6.9 g / cm 3 . The electrical conductivity and Seebeck coefficient of this sintered body were measured in the same manner as in Example 1, and the output factor was determined from these values. The results are shown in Table 1.

【0023】この焼結体は、60℃及び200℃のいず
れの温度においても、電気伝導度が高いにもかかわら
ず、ゼーベック係数は大きな負の値を示すことから、n
型の熱電変換材料として有用であることが分かった。
This sintered body has a large negative Seebeck coefficient at both temperatures of 60 ° C. and 200 ° C. even though it has a high electric conductivity.
It has been found to be useful as a thermoelectric conversion material for molds.

【0024】比較例1 酸化インジウム(In23)粉(純度4N、平均粒径約
10μm)を10g秤量し、自動乳鉢で2時間粉砕し
た。次に、この粉末を金型に入れて、幅5mm、厚さ2
mm、長さ20mmの棒状に加圧成形した。得られた成
形体を、1,100℃で5時間焼成して焼結体を得た。
このとき、昇温速度は4℃/分、降温速度は10℃/分
とした。この焼結体の密度は4.0g/cm3であっ
た。この焼結体の電気伝導度及びゼーベック係数を実施
例1と同様に測定し、これらの値から出力因子を求め
た。結果を表1に示す。
Comparative Example 1 10 g of indium oxide (In 2 O 3 ) powder (purity 4N, average particle size of about 10 μm) was weighed and pulverized in an automatic mortar for 2 hours. Next, put this powder in a mold, width 5 mm, thickness 2
mm was pressed into a rod shape having a length of 20 mm. The obtained molded body was fired at 1,100 ° C. for 5 hours to obtain a sintered body.
At this time, the rate of temperature increase was 4 ° C./minute, and the rate of temperature decrease was 10 ° C./minute. The density of this sintered body was 4.0 g / cm 3 . The electrical conductivity and Seebeck coefficient of this sintered body were measured in the same manner as in Example 1, and the output factor was determined from these values. The results are shown in Table 1.

【0025】この焼結体は、60℃及び200℃のいず
れの温度においても、ゼーベック係数は非常に大きな負
の値をとるが、電気伝導度が小さいため、出力因子が6
0℃では0.053μW/K2cm、200℃では0.
14μW/K2cmと低い値であった。
This sintered body has a very large negative Seebeck coefficient at both temperatures of 60.degree. C. and 200.degree. C., but its electric conductivity is small, so that the output factor is 6
0.053 μW / K 2 cm at 0 ° C., and 0.2 at 200 ° C.
The value was as low as 14 μW / K 2 cm.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明によれば、良電気伝導性で、高熱
起電力を持つ熱電変換材料及びそれを用いた熱電変換素
子が提供できる。
According to the present invention, a thermoelectric conversion material having good electric conductivity and high thermoelectromotive force and a thermoelectric conversion element using the same can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱電変換素子の一実施形態を示す模式
図である。
FIG. 1 is a schematic view showing an embodiment of a thermoelectric conversion element of the present invention.

【符号の説明】 1 熱電変換素子 2 n型熱電変換材料(複合酸化物) 3 p型熱電変換材料 4 高温側電極 5、6 低温側電極 7 高温側接合部 8 低温側接合部[Explanation of symbols] 1 Thermoelectric conversion element 2 n-type thermoelectric conversion material (composite oxide) 3 p-type thermoelectric conversion material 4 High temperature side electrode 5, 6 Low temperature side electrode 7 High temperature side joint 8 Low temperature side joint

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 In及びZnを主体とし、前記In及び
Znの組成比率が0.2<In/(In+Zn)<1で
ある複合酸化物からなる熱電変換材料。
1. A thermoelectric conversion material comprising a composite oxide mainly composed of In and Zn and having a composition ratio of In and Zn of 0.2 <In / (In + Zn) <1.
【請求項2】 請求項1に記載の熱電変換材料を用いて
なる熱電変換素子。
2. A thermoelectric conversion element comprising the thermoelectric conversion material according to claim 1.
JP2002074446A 2002-03-18 2002-03-18 Thermoelectric conversion material and thermoelectric conversion device using the same Pending JP2003273411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002074446A JP2003273411A (en) 2002-03-18 2002-03-18 Thermoelectric conversion material and thermoelectric conversion device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002074446A JP2003273411A (en) 2002-03-18 2002-03-18 Thermoelectric conversion material and thermoelectric conversion device using the same

Publications (1)

Publication Number Publication Date
JP2003273411A true JP2003273411A (en) 2003-09-26

Family

ID=29203837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002074446A Pending JP2003273411A (en) 2002-03-18 2002-03-18 Thermoelectric conversion material and thermoelectric conversion device using the same

Country Status (1)

Country Link
JP (1) JP2003273411A (en)

Similar Documents

Publication Publication Date Title
EP1672709B1 (en) Conductive paste for connecting thermoelectric conversion material
WO2021153550A1 (en) Thermoelectric conversion module
JP3727945B2 (en) Thermoelectric conversion material and production method thereof
JP2006347861A (en) Manufacturing method of zinc-based oxide and zinc-based oxide manufactured by the method
JP3069701B1 (en) Composite oxide with high Seebeck coefficient and high electrical conductivity
JP3089301B1 (en) Thermoelectric conversion material and method for producing composite oxide sintered body
JP2003008086A (en) Composite oxide and thermoelectric converter using the same
JP2003273411A (en) Thermoelectric conversion material and thermoelectric conversion device using the same
JP6426824B2 (en) Material for thermoelectric device and method of manufacturing material for thermoelectric device
KR20190046484A (en) Thermoelectric materials and fabrication method of the same
JPH08186293A (en) Material for thermal power generation
JP4338956B2 (en) Oxide sintered body, n-type thermoelectric conversion material, and thermoelectric conversion element using the same
CN102460753A (en) Thermoelectric transducing material
KR102273056B1 (en) Copper-doped thermoelectric material
JP2002118296A (en) N-type thermoelectric conversion element for high temperature having high electric conductivity, and thermoelectric conversion module using it
JP2004217499A (en) Complex oxide, n-type thermoelectric conversion material, and thermoelectric conversion element using it
JP3585696B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP2007051345A (en) Clathrate compound, and thermoelectric conversion element using the same
JP2010228927A (en) Cobalt-manganese compound oxide
JP7209957B2 (en) THERMOELECTRIC MATERIAL, MANUFACTURING METHOD THEREOF AND THERMOELECTRIC GENERATION ELEMENT USING THE SAME
JP2007073640A (en) Clathrate compound and thermoelectric conversion element using same
JP2003002662A (en) Composite oxide and thermoelectric conversion element using the same
JP2004006590A (en) Thermoelectric converting material and its manufacturing method, and thermoelectric converting element
JP2000012914A (en) Thermoelectric conversion material and thermoelectric conversion element
TWI538894B (en) Delafossite sintered body, method for producing the same and uses thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080219