JP2003272651A - Manufacturing method of metal separator for fuel cell - Google Patents
Manufacturing method of metal separator for fuel cellInfo
- Publication number
- JP2003272651A JP2003272651A JP2002072804A JP2002072804A JP2003272651A JP 2003272651 A JP2003272651 A JP 2003272651A JP 2002072804 A JP2002072804 A JP 2002072804A JP 2002072804 A JP2002072804 A JP 2002072804A JP 2003272651 A JP2003272651 A JP 2003272651A
- Authority
- JP
- Japan
- Prior art keywords
- fuel cell
- separator
- manufacturing
- conductive
- metal separator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、固体高分子型燃料
電池が備える金属製セパレータの製造方法に関する。
【0002】
【従来の技術】固体高分子型燃料電池は、平板状の電極
構造体(MEA:Membrane ElectrodeAssembly)の両側
にセパレータが積層された積層体が1ユニットとされ、
複数のユニットが積層されて燃料電池スタックとして構
成される。電極構造体は、正極(カソード)および負極
(アノード)を構成する一対のガス拡散電極の間にイオ
ン交換樹脂等からなる電解質膜が挟まれた三層構造であ
る。ガス拡散電極は、電解質膜に接触する電極触媒層の
外側にガス拡散層が形成されたものである。また、セパ
レータは、電極構造体のガス拡散電極に接触するように
積層され、ガス拡散電極との間にガスを流通させるガス
流路や冷媒流路が形成されている。このような燃料電池
によると、例えば、負極側のガス拡散電極に面するガス
流路に燃料である水素ガスを流し、正極側のガス拡散電
極に面するガス流路に酸素や空気等の酸化性ガスを流す
と電気化学反応が起こり、電気が発生する。
【0003】上記セパレータは、負極側の水素ガスの触
媒反応により発生した電子を外部回路へ供給する一方、
外部回路からの電子を正極側に送給する機能を具備する
必要がある。そこで、セパレータには黒鉛系材料や金属
系材料からなる導電性材料が用いられており、特に金属
系材料のものは、機械的強度に優れている点や、薄板化
による軽量・コンパクト化が可能である点で有利であ
る。金属製のセパレータとしては、導電経路を形成する
非金属の導電性介在物が金属組織中に分散したステンレ
ス鋼板をプレス成形したものが、経済的な面から有望と
されている。
【0004】
【発明が解決しようとする課題】しかしながら、ステン
レス鋼板には、表面圧延影響層が存在するため、上記の
ようなセパレータの製造においては、この表面圧延影響
層を研削除去して母材表面に圧延の影響を受けていない
健全な導電性介在物を露出させる工程と、さらに、この
露出された導電性介在物を突出させて接触抵抗を低減さ
せる工程が必要である。ところが、この表面圧延影響層
の研削除去工程と導電性介在物の突出工程との間に、母
材表面に自然酸化皮膜が形成してしまうことが問題とな
っていた。自然酸化皮膜が母材表面に形成されてしまう
と、その後に導電性介在物の突出工程を行っても、自然
酸化皮膜の存在により、導電性介在物突出工程による導
電性向上の効果が充分に得られなくなってしまう。その
ため、充分な導電性を得るためには、さらに複雑な工程
を行わなければならず、製造コストが高くなってしまう
という問題も生じていた。
【0005】よって、本発明は、一工程において、母材
の表面圧延影響層を研削するとともに、導電性介在物を
突出することを可能とした燃料電池用金属製セパレータ
の製造方法を提供することを目的としている。
【0006】
【課題を解決するための手段】本発明の燃料電池用金属
製セパレータの製造方法は、金属組織中に導電性介在物
を有する燃料電池用金属製セパレータの製造方法におい
て、圧延後の素材板に、異なる粒径を有する2種類以上
の研磨材を含む液体を噴射する工程を備えたことを特徴
としている。
【0007】上記の金属製セパレータの素材板は、金属
組織中に、母材よりも高い硬度を有する導電性介在物が
存在しているので、通常、燃料電池用金属製セパレータ
の製造方法においては、母相のみならず導電性介在物ま
でも研削する母材表面の研削除去工程と、母材表面のみ
を研削する導電性介在物の突出工程とが必要となる。こ
れらの工程で用いられる共通の手段としては、ウェット
ブラスト法が挙げられる。このウェットブラスト法と
は、一般的には、1種類の研磨材を含む液体をスリット
状の噴射口から被削体に吹き付ける方法であり、母材表
面の研削除去工程においては、母相のみならず導電性介
在物までも研削可能な大きな運動エネルギーが得られる
粒径の大きな研磨材を用い、また、導電性介在物の突出
工程においては、母材表面のみを研削可能な小さな運動
エネルギーが得られる粒径の小さな研磨材が用いられ
る。
【0008】これに対し、本発明の燃料電池用金属製セ
パレータの製造方法においては、異なる粒径を有する2
種類以上の研磨材を含む液体をセパレータに吹き付ける
特異的なウェットブラスト法を用いることを最大の特徴
としている。したがって、本発明によれば、粒径の大き
な研磨材により母相のみならず導電性介在物までもが研
削除去され、それと同時に、粒径の小さな研磨材により
母材表面のみが研削されるため、一工程で、母材表面の
研削除去と導電性介在物の突出とを可能とし、母材表面
での自然酸化皮膜の形成を防ぎ、優れた導電性向上効果
を得ることができる。また、本発明によれば、従来のよ
うな複雑な工程を必要としないため、製造コストが低く
抑えられるといった効果も奏する。さらに、このセパレ
ータを用いた燃料電池においては、優れた発電電圧を発
揮することができる。
【0009】また、この異なる粒径を有する2種類以上
の研磨材を含む液体を噴射する工程は、セパレータ素材
板をプレス成形した後に行ってもよく、プレス成形の前
に行ってもよい。さらに、本発明の製造方法において
は、セパレータ素材板の表面に、不動態化処理を施すこ
とが好ましく、この不動態化処理工程は、上記のウェッ
トブラスト工程の後であれば、いずれの段階で行っても
よい。また、不動態化処理液としては、セパレータの母
材表面に不動態皮膜を形成し得るものであれば特に限定
されるものではない。
【0010】本発明に係るセパレータの材質としては、
導電性介在物を有するオーステナイト系ステンレス鋼板
が挙げられる。具体的には、表1に示す各成分と、残部
がFe,Bおよび不可避的不純物とを含有したものであ
り、かつ、Cr、MoおよびBが次の(1)式を満足し
ており、Bが、M2BおよびMB型の硼化物、M
23(C,B)6型の硼化物として表面に析出してお
り、これら硼化物が、セパレータの表面に導電経路を形
成する導電性介在物であるオーステナイト系ステンレス
鋼板である。
Cr(wt%)+3×Mo(wt%)−2.5×B(wt%)≧17…(1)
【0011】
【表1】
【0012】
【実施例】次に、本発明の実施例を用いて本発明の効果
について詳細に説明する。
A.セパレータの製造
<実施例>表2に示す各成分と、残部がFeおよび不可
避的不純物とを含有する厚さ0.2mmのオーステナイ
ト系ステンレス鋼板を、100mm×100mmの正方
形状に切り出してセパレータの素材板を得た。次いで、
この素材板の両面に、粒径60μmと180μmの2種
類のアルミナ粒を砥粒として1:1の重量比で33.3
重量%混合した30℃に保持された水道水を、スプレー
ノズルより吹き付け圧1kg/cm2で30秒間吹き付
け、ウェットブラスト法による母相の研削および導電性
介在物の突出を行った。次に、素材板を水洗、乾燥後、
50tonのプレス荷重でプレス成形し、実施例のセパ
レータを得た。
【0013】
【表2】
【0014】<比較例>実施例と同様のセパレータの素
材板の両面に、粒径180μmのアルミナ粒を砥粒とし
て33.3重量%混合した30℃に保持された水道水
を、スプレーノズルより吹き付け圧1kg/cm2で3
0秒間吹き付け、ウェットブラスト法による研削を行っ
た。次に、この素材板の両面に、粒径60μmのアルミ
ナ粒を砥粒として33.3重量%混合した30℃に保持
された水道水を、スプレーノズルより吹き付け圧1kg
/cm2で30秒間吹き付け、ウェットブラスト法によ
る導電性介在物の突出を行った。その後、素材板を水
洗、乾燥後、50tonのプレス荷重でプレス成形し、
比較例のセパレータを得た。
【0015】B.発電電圧の経時変化
上記のようにして得られた実施例および比較例のセパレ
ータを用いて、電極構造体(MEA)の両側にセパレー
タを積層した1つの燃料電池ユニットを構成し、このユ
ニットを発電させて、発電電流密度の上昇に伴う発電電
圧の変化を測定した。その結果を図1に示す。
【0016】図1で明らかなように、表面圧延影響層の
研削と導電性介在物の突出を同時に行った実施例のセパ
レータを用いた燃料電池ユニットでは、表面圧延影響層
の研削と導電性介在物の突出とをそれぞれ順次行った比
較例のセパレータを用いた燃料電池ユニットに比べ、発
電電流密度の上昇に伴う発電電圧の低下が極めて少なか
った。
【0017】
【発明の効果】以上説明したように、本発明によれば、
異なる粒径を有する2種類以上の研磨材を含む液体を圧
延後の素材板に噴射する特異的なウェットブラスト法を
用いることにより、母材の表面圧延影響層の研削と導電
性介在物の突出を同時に行うことができるため、母材表
面での自然酸化皮膜の形成を防ぎ、優れた導電性向上効
果を得ることができ、このセパレータを用いた燃料電池
においては、優れた発電電圧を発揮することができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a metal separator provided in a polymer electrolyte fuel cell. 2. Description of the Related Art A polymer electrolyte fuel cell has a unit structure in which separators are stacked on both sides of a plate-shaped electrode structure (MEA: Membrane Electrode Assembly).
A plurality of units are stacked to form a fuel cell stack. The electrode structure has a three-layer structure in which an electrolyte membrane made of an ion exchange resin or the like is interposed between a pair of gas diffusion electrodes constituting a positive electrode (cathode) and a negative electrode (anode). The gas diffusion electrode has a gas diffusion layer formed outside the electrode catalyst layer in contact with the electrolyte membrane. Further, the separator is laminated so as to be in contact with the gas diffusion electrode of the electrode structure, and a gas flow path and a refrigerant flow path for flowing gas between the separator and the gas diffusion electrode are formed. According to such a fuel cell, for example, hydrogen gas, which is a fuel, flows through the gas flow path facing the gas diffusion electrode on the negative electrode side, and oxidizes oxygen or air into the gas flow path facing the gas diffusion electrode on the positive electrode side. When an inert gas flows, an electrochemical reaction occurs to generate electricity. The separator supplies electrons generated by a catalytic reaction of hydrogen gas on the negative electrode side to an external circuit,
It is necessary to have a function of sending electrons from an external circuit to the positive electrode side. For this reason, conductive materials made of graphite or metal materials are used for the separator. Metallic materials, in particular, have excellent mechanical strength and can be made lighter and more compact by making them thinner. This is advantageous in that As a metallic separator, a stainless steel plate in which nonmetallic conductive inclusions forming conductive paths are dispersed in a metal structure is press-formed from the economical point of view. [0004] However, since the stainless steel sheet has a surface rolling affected layer, in the production of the separator as described above, the surface rolling affected layer is removed by grinding. A step of exposing sound conductive inclusions that are not affected by rolling on the surface and a step of projecting the exposed conductive inclusions to reduce contact resistance are required. However, there has been a problem that a natural oxide film is formed on the surface of the base material between the step of grinding and removing the surface rolling-affected layer and the step of projecting the conductive inclusions. Once the natural oxide film is formed on the surface of the base material, the effect of improving the conductivity by the conductive inclusion protruding process is sufficient due to the presence of the natural oxide film even if the conductive inclusion protruding process is performed thereafter. You won't get it. Therefore, in order to obtain sufficient conductivity, a more complicated process must be performed, and there has been a problem that the manufacturing cost is increased. Accordingly, the present invention provides a method of manufacturing a metal separator for a fuel cell, which can grind the surface rolling-affected layer of a base material and protrude conductive inclusions in one step. It is an object. [0006] A method of manufacturing a metal separator for a fuel cell according to the present invention is directed to a method of manufacturing a metal separator for a fuel cell having conductive inclusions in a metal structure. The method is characterized in that a step of injecting a liquid containing two or more types of abrasives having different particle diameters onto the material plate is provided. [0007] In the above-mentioned material plate of the metal separator, since a conductive inclusion having a hardness higher than that of the base material is present in the metal structure, a method of manufacturing a metal separator for a fuel cell is usually employed in the metal plate. In addition, a step of grinding and removing the base material surface for grinding not only the base phase but also the conductive inclusions and a step of projecting the conductive inclusions for grinding only the base material surface are required. A common means used in these steps includes a wet blast method. Generally, the wet blast method is a method in which a liquid containing one kind of abrasive is sprayed onto a workpiece from a slit-shaped injection port. Use a large-grain abrasive that can provide a large kinetic energy that can grind even conductive inclusions.In the process of projecting conductive inclusions, a small kinetic energy that can grind only the base metal surface is obtained. An abrasive having a small particle size is used. On the other hand, in the method for producing a metal separator for a fuel cell according to the present invention, two particles having different particle sizes are used.
The most characteristic feature is that a specific wet blast method in which a liquid containing more than one kind of abrasive is sprayed on the separator is used. Therefore, according to the present invention, not only the base phase but also the conductive inclusions are ground and removed by the abrasive having a large particle diameter, and at the same time, only the surface of the base material is ground by the abrasive having a small particle diameter. In a single step, it is possible to grind and remove the surface of the base material and project the conductive inclusions, prevent the formation of a natural oxide film on the surface of the base material, and obtain an excellent conductivity improving effect. Further, according to the present invention, since there is no need for a complicated process as in the related art, there is an effect that the manufacturing cost can be kept low. Further, in a fuel cell using this separator, an excellent power generation voltage can be exhibited. The step of injecting the liquid containing two or more types of abrasives having different particle diameters may be performed after the press forming of the separator material plate, or may be performed before the press forming. Further, in the production method of the present invention, it is preferable to passivate the surface of the separator material plate, and this passivation step can be performed at any stage after the above-mentioned wet blasting step. May go. Further, the passivation treatment liquid is not particularly limited as long as it can form a passivation film on the surface of the base material of the separator. The material of the separator according to the present invention includes:
An austenitic stainless steel sheet having conductive inclusions is exemplified. Specifically, each component shown in Table 1 and the balance contain Fe, B and unavoidable impurities, and Cr, Mo and B satisfy the following equation (1): B is an M 2 B and MB type boride, M
23 (C, B) 6- type borides are precipitated on the surface, and these borides are austenitic stainless steel sheets that are conductive inclusions that form conductive paths on the surface of the separator. Cr (wt%) + 3 × Mo (wt%) − 2.5 × B (wt%) ≧ 17 (1) Next, the effects of the present invention will be described in detail using embodiments of the present invention. A. Manufacture of Separator <Example> A 0.2 mm thick austenitic stainless steel sheet containing the components shown in Table 2 and the balance Fe and unavoidable impurities is cut into a square of 100 mm x 100 mm to form a separator material. I got a board. Then
23.3 types of alumina particles having a particle size of 60 μm and 180 μm are used as abrasive grains on both sides of the material plate at a weight ratio of 1: 1 to 33.3.
Tap water maintained at 30 ° C. mixed with a weight% was sprayed from a spray nozzle at a spray pressure of 1 kg / cm 2 for 30 seconds to grind the mother phase by wet blasting and to project conductive inclusions. Next, after washing and drying the material plate,
Press forming was performed with a pressing load of 50 tons to obtain the separator of Example. [Table 2] <Comparative Example> On both surfaces of the same material plate of the separator as in the embodiment, tap water maintained at 30 ° C. mixed with 33.3% by weight of alumina particles having a particle size of 180 μm as abrasive particles was sprayed from a spray nozzle. 3 with a spray pressure of 1 kg / cm 2
Spraying was performed for 0 second, and grinding by wet blasting was performed. Next, on both surfaces of this material plate, tap water maintained at 30 ° C., which was obtained by mixing 33.3% by weight of alumina particles having a particle size of 60 μm as abrasive particles, was sprayed from a spray nozzle at a pressure of 1 kg.
/ Cm 2 for 30 seconds to project the conductive inclusions by wet blasting. After that, the material plate was washed with water, dried, and then press-formed with a press load of 50 tons.
A separator of a comparative example was obtained. B. Time-dependent change in power generation voltage Using the separators of the examples and the comparative examples obtained as described above, one fuel cell unit in which separators are laminated on both sides of the electrode structure (MEA) is formed, and this unit is used for power generation. Then, the change in the generated voltage with the increase in the generated current density was measured. The result is shown in FIG. As is apparent from FIG. 1, in the fuel cell unit using the separator of the embodiment in which the grinding of the surface rolling affected layer and the projection of the conductive inclusions are simultaneously performed, the grinding of the surface rolling affected layer and the conductive intermediate are performed. In comparison with the fuel cell unit using the separator of the comparative example in which the protrusion of the object was sequentially performed, the decrease in the generated voltage due to the increase in the generated current density was extremely small. As described above, according to the present invention,
By using a special wet blast method that sprays a liquid containing two or more abrasives having different particle diameters onto a rolled material plate, grinding of the surface rolling affected layer of the base material and protrusion of conductive inclusions At the same time, the formation of a natural oxide film on the surface of the base material can be prevented, and an excellent conductivity improving effect can be obtained.In the fuel cell using this separator, an excellent power generation voltage is exhibited. be able to.
【図面の簡単な説明】
【図1】 本発明または比較例のセパレータを用いた燃
料電池における発電電流密度と発電電圧の関係を示す線
図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a relationship between a power generation current density and a power generation voltage in a fuel cell using a separator of the present invention or a comparative example.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小谷 耕爾 埼玉県和光市中央一丁目4番1号 株式会 社本田技術研究所内 (72)発明者 宇都宮 政男 埼玉県和光市中央一丁目4番1号 株式会 社本田技術研究所内 Fターム(参考) 5H026 AA06 BB00 BB02 EE02 EE08 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koji Kotani 1-4-1, Chuo, Wako-shi, Saitama Stock Association Inside the Honda Research Laboratory (72) Inventor Masao Utsunomiya 1-4-1, Chuo, Wako-shi, Saitama Stock Association Inside the Honda Research Laboratory F term (reference) 5H026 AA06 BB00 BB02 EE02 EE08
Claims (1)
電池用金属製セパレータの製造方法において、圧延後の
素材板に、異なる粒径を有する2種類以上の研磨材を含
む液体を噴射する工程を備えたことを特徴とする燃料電
池用金属製セパレータの製造方法。Claims: 1. A method for manufacturing a metal separator for a fuel cell having conductive inclusions in a metal structure, wherein two or more types of abrasives having different particle diameters are formed on a rolled material plate. A method for producing a metal separator for a fuel cell, comprising a step of injecting a liquid containing:
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002072804A JP2003272651A (en) | 2002-03-15 | 2002-03-15 | Manufacturing method of metal separator for fuel cell |
CA002413558A CA2413558C (en) | 2001-12-05 | 2002-12-04 | Fuel cell metallic separator and method for manufacturing same |
CA002558686A CA2558686A1 (en) | 2001-12-05 | 2002-12-04 | Fuel cell metallic separator and method for manufacturing same |
CA002558801A CA2558801C (en) | 2001-12-05 | 2002-12-04 | Fuel cell metallic separator and method for manufacturing same |
US10/309,320 US7325432B2 (en) | 2001-12-05 | 2002-12-04 | Method for manufacturing fuel cell metallic separator |
DE10256922.3A DE10256922B4 (en) | 2001-12-05 | 2002-12-05 | Method for producing a metallic separator of a fuel cell |
US11/966,374 US20080292937A1 (en) | 2001-12-05 | 2007-12-28 | Method for manufacturing fuel cell metallic separator |
US11/966,262 US20080108282A1 (en) | 2001-12-05 | 2007-12-28 | Method for manufacturing fuel cell metallic separator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002072804A JP2003272651A (en) | 2002-03-15 | 2002-03-15 | Manufacturing method of metal separator for fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003272651A true JP2003272651A (en) | 2003-09-26 |
Family
ID=29202697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002072804A Pending JP2003272651A (en) | 2001-12-05 | 2002-03-15 | Manufacturing method of metal separator for fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003272651A (en) |
-
2002
- 2002-03-15 JP JP2002072804A patent/JP2003272651A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7214440B2 (en) | Metallic separator for fuel cell and production method for the same | |
US20080108282A1 (en) | Method for manufacturing fuel cell metallic separator | |
JP3423799B2 (en) | Method for forming reaction layer of fuel cell | |
KR101597721B1 (en) | Titanium material for solid polymer fuel cell separators, method for producing same, and solid polymer fuel cell using same | |
JP2005327732A (en) | Reformer for fuel cell system, its manufacturing method, and fuel cell including this | |
JP4901864B2 (en) | Separator for solid polymer fuel cell made of pure titanium or titanium alloy and method for producing the same | |
CA2469410C (en) | Metal separator for fuel cell and its production method | |
KR101022153B1 (en) | Separator for fuel cell and method for fabricating the same | |
US7049022B2 (en) | Metal separator for fuel cell and production method therefor | |
US20030124406A1 (en) | Fuel cell separator | |
US20050014053A1 (en) | Fuel cell | |
JP2003272651A (en) | Manufacturing method of metal separator for fuel cell | |
JP2003272650A (en) | Manufacturing method of metal separator for fuel cell | |
JP2007005112A (en) | Separator for solid polymer fuel cell and its manufacturing method | |
JP2004071321A (en) | Metal separator for fuel cell and manufacturing method therefor | |
JP2005166276A (en) | Stainless steel for solid polymer fuel cell separator, the solid polymer fuel cell separator using the same, and solid polymer fuel cell | |
US11228042B2 (en) | Aluminum separator for fuel cell and manufacturing method thereof | |
CA2558801C (en) | Fuel cell metallic separator and method for manufacturing same | |
CA2469805C (en) | Metal separator for fuel cell and its production method | |
JP3971267B2 (en) | Material plate for metal separator for fuel cell and metal separator for fuel cell using the same | |
JP4068344B2 (en) | Fuel cell and manufacturing method thereof | |
JP4545129B2 (en) | Manufacturing method of fuel cell separator | |
JP2003187817A (en) | Separator for fuel cell | |
KR20150038970A (en) | Method for preparing bipolar plate for unitized regenerative fuel cell and bipolar plate for unitized regenerative fuel cell prepared by the same | |
WO2020195862A1 (en) | Composite material, method for producing same, and separator, cell and stack for fuel cells, each using said composite material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060731 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060925 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061121 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071220 |