JP2003272455A - Surface treating method of covered wire and manufacturing method of covered wire - Google Patents

Surface treating method of covered wire and manufacturing method of covered wire

Info

Publication number
JP2003272455A
JP2003272455A JP2002068493A JP2002068493A JP2003272455A JP 2003272455 A JP2003272455 A JP 2003272455A JP 2002068493 A JP2002068493 A JP 2002068493A JP 2002068493 A JP2002068493 A JP 2002068493A JP 2003272455 A JP2003272455 A JP 2003272455A
Authority
JP
Japan
Prior art keywords
electric wire
surface treatment
plasma
covered electric
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002068493A
Other languages
Japanese (ja)
Other versions
JP4004824B2 (en
Inventor
Shigeru Kobayashi
茂 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshinokawa Electric Wire & Ca
Yoshinogawa Electric Wire and Cable Co Ltd
Original Assignee
Yoshinokawa Electric Wire & Ca
Yoshinogawa Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshinokawa Electric Wire & Ca, Yoshinogawa Electric Wire and Cable Co Ltd filed Critical Yoshinokawa Electric Wire & Ca
Priority to JP2002068493A priority Critical patent/JP4004824B2/en
Publication of JP2003272455A publication Critical patent/JP2003272455A/en
Application granted granted Critical
Publication of JP4004824B2 publication Critical patent/JP4004824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treating method of a covered wire capable of improving wettability of an insulator layer and having a high productivity and manufacturing method of the covered wire. <P>SOLUTION: In the surface treating method of the covered wire 11A having the insulator layer around a conductor, an atmospheric plasma generator is used for the surface treatment. By doing so, the surface treatment of the covered wire made of an extruded insulator can be performed in a relatively easy and continuous manner. Especially, as plasma treatment can be efficiently applied to a thin covered wire by using a plasma treater for irradiating plasma from its nozzle, the surface treatment process can be incorporated in a manufacturing line of a conventional covered wire and the surface treatment can be conducted efficiently. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、フッ素系樹脂材料
等で形成された絶縁体層を有する被覆電線の表面処理方
法及び被覆電線の製造方法に関し、被覆電線は各種電気
ケーブルの他、耐屈曲性シールド付きケーブルなどに好
適に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method for a covered electric wire having an insulating layer formed of a fluorine resin material or the like and a method for manufacturing the covered electric wire. It is preferably used for cables with a sex shield.

【0002】[0002]

【従来の技術】一般的に、被覆電線は、所定の直径を有
する単線又は多心線からなる導体の表面に絶縁体層を施
したものであり、絶縁体層としては、耐屈曲性用途にフ
ッ素樹脂が用いられている。
2. Description of the Related Art Generally, a covered electric wire is a conductor formed of a single wire or a multifilamentary wire having a predetermined diameter and an insulating layer applied to the surface of the electric wire. Fluororesin is used.

【0003】また、このような被覆電線は、導体に絶縁
体層を連続的に押出成形することにより製造されるが、
使用時に製品を識別できるように、製造時に絶縁体層表
面に識別標識となる文字等を印字する。
Further, such a covered electric wire is manufactured by continuously extruding an insulating layer on a conductor.
In order to identify the product at the time of use, characters or the like to be an identification mark are printed on the surface of the insulating layer at the time of manufacturing.

【0004】このようなマーキングを行う場合、インク
ジェット式記録ヘッドを用いて非接触で印字する試みが
されている。しかしながら、このようなインクジェット
式記録ヘッドで用いられるインクは一般的には水溶性な
ので、フッ素系樹脂材料からなる絶縁体層には容易には
印字できないという問題がある。
In making such marking, it has been attempted to print in a non-contact manner using an ink jet recording head. However, since the ink used in such an ink jet recording head is generally water-soluble, there is a problem that printing cannot be easily performed on an insulating layer made of a fluororesin material.

【0005】一方、絶縁体層に直接金属メッキを施して
シールドとしたものが提案されている。例えば、特開平
6−119824号公報には、導体の外周に設けた紫外
線硬化型樹脂からなるエナメル層上に、無電解メッキに
よる金属メッキシールドを設けた金属メッキシールドエ
ナメル線が開示されている。また、特開2000−13
8013号公報には、導体上にフッ素樹脂からなる絶縁
体、絶縁体上に無電解金属メッキによる金属層、この上
にさらに電解メッキによる金属層を設けた同軸ケーブル
が、特開2000−138014号公報には、導体上に
フッ素樹脂からなる絶縁体、絶縁体上に塗布したABS
樹脂被覆層、この被覆層上に設けられた無電解金属メッ
キによる金属層、この上にさらに電解メッキによる金属
層を設けた同軸ケーブルがそれぞれ開示されている。
On the other hand, it has been proposed that the insulator layer is directly metal-plated to form a shield. For example, Japanese Patent Laid-Open No. 6-119824 discloses a metal-plated shield enameled wire in which a metal plating shield formed by electroless plating is provided on an enamel layer made of an ultraviolet curable resin provided on the outer periphery of a conductor. In addition, JP-A-2000-13
JP-A-2000-138014 discloses a coaxial cable in which an insulator made of fluorocarbon resin is provided on a conductor, a metal layer is formed on the insulator by electroless metal plating, and a metal layer is formed on the insulator by electrolytic plating. In the official gazette, an insulator made of fluororesin on a conductor and ABS coated on the insulator
A coaxial cable in which a resin coating layer, a metal layer provided on the coating layer by electroless metal plating, and a metal layer formed on the coating layer by electrolytic plating are further provided is disclosed.

【0006】しかしながら、何れも細線のシールド付き
ケーブルを高生産性で製造するものではなく、構造が複
雑であり、また、シールドの耐屈曲性に問題がある。す
なわち、フッ素系樹脂材料からなる絶縁体層と金属メッ
キ層との密着性が悪く、シールドが剥離し易いという問
題がある。
However, none of them is intended to manufacture thin-line shielded cables with high productivity, their structure is complicated, and there is a problem in bending resistance of the shield. That is, there is a problem in that the adhesion between the insulating layer made of a fluororesin material and the metal plating layer is poor, and the shield is easily peeled off.

【0007】そこで、印字やメッキを施した場合の密着
性を向上させるために、絶縁体層の表面をあらして濡れ
性を向上させるなどの処理が必要となる。
Therefore, in order to improve the adhesion when printing or plating, it is necessary to treat the surface of the insulating layer to improve the wettability.

【0008】[0008]

【発明が解決しようとする課題】上述したように絶縁体
層の表面をあらすためには、微粒子を照射して行う物理
的な表面処理や、酸やアルカリで処理する化学的な表面
処理などが考えられるが、何れも絶縁体層を被覆した被
覆電線を連続的に処理する方法としては好ましくないと
いう問題がある。また、インクジェット印字手段での印
刷を高温環境下で行うことが考えられるが、高品位の印
刷が難しいという問題がある。
As described above, in order to roughen the surface of the insulator layer, physical surface treatment performed by irradiating fine particles, chemical surface treatment performed with acid or alkali, and the like are required. Although conceivable, all of them have a problem that they are not preferable as a method for continuously treating a coated electric wire coated with an insulating layer. Further, it is considered that printing by the inkjet printing means is performed in a high temperature environment, but there is a problem that high quality printing is difficult.

【0009】本発明はこのような事情に鑑み、高生産性
で絶縁体層の濡れ性を改善することができる被覆電線の
表面処理方法及び被覆電線の製造方法を提供することを
課題とする。
In view of such circumstances, it is an object of the present invention to provide a surface treatment method for a covered electric wire and a method for manufacturing a covered electric wire, which can improve the wettability of an insulating layer with high productivity.

【0010】[0010]

【課題を解決するための手段】前記課題を解決する本発
明の第1の態様は、導体の周囲に絶縁体層を有する被覆
電線の表面処理方法において、大気圧プラズマ発生器を
用いて表面処理を行うことを特徴とする被覆電線の表面
処理方法にある。
A first aspect of the present invention which solves the above-mentioned problems is a surface treatment method for a covered electric wire having an insulating layer around a conductor, the surface treatment using an atmospheric pressure plasma generator. The surface treatment method for a covered electric wire is characterized in that

【0011】かかる第1の態様では、絶縁体層を被覆し
た被覆電線を大気圧プラズマ発生器を用いて連続的に処
理することにより、絶縁体層の濡れ性を向上する。
In the first aspect, the wettability of the insulating layer is improved by continuously treating the coated electric wire coated with the insulating layer using the atmospheric pressure plasma generator.

【0012】本発明の第2の態様は、第1の態様におい
て、前記表面処理を、押出被覆されて搬送される被覆電
線にプラズマトリーターのノズルからプラズマを照射す
ることにより行うことを特徴とする被覆電線の表面処理
方法にある。
A second aspect of the present invention is characterized in that, in the first aspect, the surface treatment is performed by irradiating a coated electric wire that is extrusion coated and conveyed with plasma from a nozzle of a plasma treater. There is a surface treatment method for the covered electric wire.

【0013】かかる第2の態様では、プラズマトリータ
ーのノズルからのプラズマを被覆電線に照射することに
より、絶縁体層の濡れ性を容易に改善することができ
る。
In the second aspect, the wettability of the insulating layer can be easily improved by irradiating the coated electric wire with the plasma from the nozzle of the plasma treater.

【0014】本発明の第3の態様は、第2の態様におい
て、前記プラズマの照射を、前記被覆電線の搬送方向に
対して30°〜60°傾斜した方向から行うことを特徴
とする被覆電線の表面処理方法にある。
According to a third aspect of the present invention, in the second aspect, the plasma irradiation is performed from a direction inclined by 30 ° to 60 ° with respect to the conveying direction of the coated electric wire. Surface treatment method.

【0015】かかる第3の態様では、プラズマトリータ
ーのノズルからのプラズマの照射を搬送方向に対して所
定の角度だけ傾斜させることにより、絶縁体層の表面処
理の効率を向上させることができる。
In the third aspect, the efficiency of the surface treatment of the insulator layer can be improved by inclining the plasma irradiation from the nozzle of the plasma treater by a predetermined angle with respect to the transport direction.

【0016】本発明の第4の態様は、第2又は3の態様
において、前記プラズマの照射を、前記被覆電線の周囲
の複数方向から行うことを特徴とする被覆電線の表面処
理方法にある。
A fourth aspect of the present invention is the surface treatment method for a covered electric wire according to the second or third aspect, characterized in that the plasma irradiation is performed from a plurality of directions around the covered electric wire.

【0017】かかる第4の態様では、プラズマの照射を
被覆電線の周囲の複数方向から行うことにより、表面処
理を効率よく行うことができる。
In the fourth aspect, the surface treatment can be efficiently performed by irradiating the plasma from a plurality of directions around the covered electric wire.

【0018】本発明の第5の態様は、第1〜4の何れか
の態様において、前記表面処理の後、濡れ性を向上させ
る対象の溶媒中に浸漬することを特徴とする被覆電線の
表面処理方法にある。
According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the surface of the covered electric wire is characterized in that after the surface treatment, the surface is covered with a solvent to be improved in wettability. It is in the processing method.

【0019】かかる第5の態様では、表面処理した後、
経時変化による濡れ性の低下が抑えられる。
In the fifth aspect, after the surface treatment,
The deterioration of wettability due to aging can be suppressed.

【0020】本発明の第6の態様は、導体の周囲に絶縁
体層を設けて被覆電線とする被覆電線の製造方法におい
て、押出被覆されて搬送される被覆電線に大気圧プラズ
マ発生器を用いて表面処理を施す工程と、表面処理され
た絶縁体層表面にインクジェット印字手段を用いてマー
キングを行う工程とを具備することを特徴とする被覆電
線の製造方法にある。
A sixth aspect of the present invention is a method for producing a covered electric wire in which an insulating layer is provided around a conductor to form a covered electric wire, wherein an atmospheric pressure plasma generator is used for the covered electric wire which is extruded and conveyed. And a step of marking the surface of the surface-treated insulating layer with an inkjet printing means.

【0021】かかる第6の態様では、絶縁体層を被覆し
た被覆電線を大気圧プラズマ発生器を用いて連続的に処
理することにより、絶縁体層の濡れ性を改善し、インク
ジェット印字手段によるマーキングを高品質で行うこと
ができる。
In the sixth aspect, the coated electric wire coated with the insulating layer is continuously treated by using the atmospheric pressure plasma generator to improve the wettability of the insulating layer and to mark by the ink jet printing means. Can be done with high quality.

【0022】本発明の第7の態様は、第6の態様におい
て、前記表面処理を、押出被覆されて搬送される被覆電
線にプラズマトリーターのノズルからプラズマを照射す
ることにより行うことを特徴とする被覆電線の製造方法
にある。
A seventh aspect of the present invention is characterized in that, in the sixth aspect, the surface treatment is performed by irradiating a coated electric wire, which is extrusion-coated and conveyed, with plasma from a nozzle of a plasma treater. There is a method for manufacturing a covered electric wire.

【0023】かかる第7の態様では、プラズマトリータ
ーのノズルからのプラズマを被覆電線に照射することに
より、絶縁体層の濡れ性を容易に改善することができ、
且つインクジェット印字手段によるマーキングを高品質
で行うことができる。
In the seventh aspect, the wettability of the insulating layer can be easily improved by irradiating the coated electric wire with the plasma from the nozzle of the plasma treater.
In addition, marking with the inkjet printing means can be performed with high quality.

【0024】本発明の第8の態様は、第7の態様におい
て、前記プラズマの照射を、前記被覆電線の搬送方向に
対して30°〜60°傾斜した方向から行うことを特徴
とする被覆電線の製造方法にある。
An eighth aspect of the present invention is the coated electric wire according to the seventh aspect, wherein the plasma irradiation is performed from a direction inclined by 30 ° to 60 ° with respect to the conveying direction of the coated electric wire. In the manufacturing method.

【0025】かかる第8の態様では、プラズマトリータ
ーのノズルからのプラズマの照射を搬送方向に対して所
定の角度だけ傾斜させることにより、絶縁体層の表面処
理の効率を向上させることができる。
In the eighth aspect, the efficiency of the surface treatment of the insulator layer can be improved by inclining the irradiation of plasma from the nozzle of the plasma treater by a predetermined angle with respect to the transport direction.

【0026】本発明によると、大気圧プラズマ発生器を
用いて被覆電線の絶縁体層を処理するので、絶縁体層を
押出成形した被覆電線に対して比較的容易に且つ連続的
に表面処理を施すことができる。特に、プラズマをノズ
ルから照射するプラズマトリーターを用いると、細い被
覆電線に対しても効率よくプラズマ処理を施すことがで
きるので、従来の被覆電線の製造ラインに表面処理工程
を容易に組み込み、効率よく表面処理を行うことができ
る。なお、プラズマを発生するための処理ガスは特に限
定されず、空気で行えばよいが、適宜ヘリウムなどの他
の処理ガスを用いてもよい。
According to the present invention, since the insulator layer of the covered electric wire is treated using the atmospheric pressure plasma generator, the covered electric wire extruded with the insulator layer can be surface-treated relatively easily and continuously. Can be given. In particular, by using a plasma treater that irradiates plasma with a nozzle, it is possible to efficiently perform plasma treatment even on thin coated electric wires, so it is easy to incorporate the surface treatment process into the conventional coated electric wire production line and efficiently Surface treatment can be performed. The processing gas for generating plasma is not particularly limited and may be air, but other processing gas such as helium may be used as appropriate.

【0027】ここで、プラズマをノズルから照射して表
面処理を施す場合、被覆電線に対して30°〜60°傾
斜した方向から照射するのが好ましい。表面処理を効率
よく行うためである。従って、この範囲を外れた場合に
も効率は低下するが、表面処理を行うことができる。照
射方向は搬送方向前方又は後方など特に限定されず、材
料によって有利な方向が異なるので、材料によって適宜
有利な方向を選択するのが好ましい。
Here, when the plasma is irradiated from the nozzle to perform the surface treatment, it is preferable to irradiate the covered electric wire from a direction inclined by 30 ° to 60 °. This is for efficient surface treatment. Therefore, even if it deviates from this range, the surface treatment can be performed although the efficiency is lowered. The irradiation direction is not particularly limited, such as the front or rear of the transport direction, and the advantageous direction differs depending on the material. Therefore, it is preferable to appropriately select the advantageous direction depending on the material.

【0028】また、このようにプラズマをノズルから照
射して被覆電線の周囲全体を表面処理する場合には、被
覆電線の周囲の複数方向からプラズマを照射するのが好
ましい。また、周囲の複数方向から照射する場合、搬送
方向に亘って異なる位置で照射するのが好ましい。表面
処理を効率よく行うためである。このように被覆電線全
体を表面処理することにより、その外周に設けるメッキ
層や印字との密着性を改善することができる。
Further, when the plasma is irradiated from the nozzle in this way to surface-treat the entire periphery of the covered electric wire, it is preferable to irradiate the plasma from a plurality of directions around the covered electric wire. Moreover, when irradiating from a plurality of surrounding directions, it is preferable to irradiate at different positions along the transport direction. This is for efficient surface treatment. By surface-treating the entire covered electric wire in this manner, it is possible to improve the adhesion to the plating layer provided on the outer periphery of the electric wire and the printing.

【0029】ただし、連続的にマーキングを行う場合、
少なくとも周方向の一方向の表面のみを表面処理すれば
よいので、この場合には、一方向からプラズマ処理を行
えばよい。さらに、プラズマ処理の効率を上げるため
に、プラズマトリーターを搬送方向に複数段設けてプラ
ズマ処理を行ってもよい。
However, in the case of marking continuously,
Since it is sufficient to perform the surface treatment only on the surface in at least one circumferential direction, in this case, the plasma treatment may be performed from one direction. Furthermore, in order to increase the efficiency of plasma processing, a plurality of plasma treaters may be provided in the transport direction to perform plasma processing.

【0030】ここで、プラズマトリーターによるプラズ
マ照射条件は特に限定されず、表面処理できる条件で照
射すればよい。すなわち、照射されるプラズマが被覆電
線に効率よく接触するような条件で照射すればよく、絶
縁体層の材質、表面改質をどの程度まで行うかなど、適
宜検討して行えばよい。
Here, the plasma irradiation conditions by the plasma treater are not particularly limited, and the irradiation may be performed under the condition that the surface treatment can be performed. That is, the irradiation may be performed under the condition that the irradiated plasma efficiently contacts the coated electric wire, and the material of the insulating layer and the extent to which the surface modification is performed may be appropriately examined.

【0031】このように本発明方法により表面処理した
後の濡れ性は、例えば、蒸留水に対する接触角で測定す
ると、直径によっても異なるが、80度以下となる程度
となる。
As described above, the wettability after the surface treatment by the method of the present invention is about 80 degrees or less, although it varies depending on the diameter when measured by the contact angle with distilled water.

【0032】本発明の表面処理を行った後、濡れ性を改
善したい溶媒中、例えば、水中に浸漬しておくのが好ま
しい。これにより経時変化による濡れ性の低下を防止す
ることができる。
After performing the surface treatment of the present invention, it is preferable to immerse it in a solvent whose wettability is desired to be improved, for example, water. This makes it possible to prevent deterioration of wettability due to aging.

【0033】ここで、本発明の被覆電線に含まれる導線
は、所定の直径を有する単線、例えば、直径30μm〜
0.8mm程度の線材を単独で用いたものでもよいし、
多心線、例えば、直径10〜120μm程度の極細線を
複数本集合させたものでもよい。
Here, the conductive wire included in the coated electric wire of the present invention is a single wire having a predetermined diameter, for example, a diameter of 30 μm.
A wire of about 0.8 mm may be used alone,
A multifilamentary wire, for example, a collection of a plurality of ultrafine wires having a diameter of about 10 to 120 μm may be used.

【0034】また、導体の周囲に絶縁体層を施した被覆
電線の構造としては、単線に絶縁体層を被せた構造で
も、多心線に絶縁体層を被せた構造でもよく、さらに、
同軸線構造として中心の導体の周りに設けた絶縁体層上
に導体を設けてさらに絶縁体層を設けた構造としてもよ
い。
The structure of the covered electric wire in which the insulating layer is applied around the conductor may be a single wire covered with the insulating layer or a multi-core wire covered with the insulating layer.
The coaxial line structure may have a structure in which a conductor is provided on the insulator layer provided around the central conductor and further an insulator layer is provided.

【0035】本発明では、導体としては、例えば、電気
用軟銅、電気用硬銅、スズ含有銅合金、クロム−ジルコ
ニウム含有銅合金又はその場繊維強化銅合金からなるも
のを挙げることができるが、その場繊維強化銅合金から
なる導体が耐屈曲性の点では好ましい。
In the present invention, the conductor may be, for example, an electric soft copper, an electric hard copper, a tin-containing copper alloy, a chromium-zirconium-containing copper alloy or an in-situ fiber-reinforced copper alloy. A conductor made of an in-situ fiber-reinforced copper alloy is preferable in terms of bending resistance.

【0036】ここで、その場繊維強化銅合金からなる導
線は、繊維で強化された銅マトリックスであり、特に、
繊維をその場で、すなわち、線材を形成する工程で形成
した線材をいう。例えば、銅マトリックス中に、最大径
2.5μm以下で平均径が1.0μm以下のその場形成
繊維状クロムを含む線材等をいう。
Here, the in-situ fiber-reinforced copper alloy wire is a fiber-reinforced copper matrix, in particular:
It refers to a wire formed by forming fibers on the spot, that is, in the step of forming the wire. For example, it refers to a wire or the like containing in-situ formed fibrous chromium having a maximum diameter of 2.5 μm or less and an average diameter of 1.0 μm or less in a copper matrix.

【0037】かかるその場繊維強化銅合金からなる導線
は、例えば、クロム含有率1〜25重量%で残部が実質
的に銅からなる合金材料を、必要に応じてスエージ加工
し、続いて第1の冷間伸線加工を施し、次いで溶体化処
理し、しかる後に第2の冷間伸線加工を施すことによ
り、銅マトリックス中で繊維状クロムをその場形成して
線材を得、該線材を少なくとも一本用いて導線を形成す
ることにより得られる。なお、材料となる合金材料とし
ては、上述したものに限定されず、例えば、クロム含有
率1〜25重量%で、銀又はジルコニウムの含有率が
0.01〜8重量%で残部が実質的に銅からなる合金材
料も用いることができる。
The conductor made of such an in-situ fiber-reinforced copper alloy is obtained by, for example, swaging an alloy material having a chromium content of 1 to 25% by weight and a balance of substantially copper, followed by the first step. Cold drawing, then solution treatment, and then second cold drawing to form a fibrous chrome in situ in a copper matrix to obtain a wire. It is obtained by forming a conductive wire using at least one piece. The alloy material used as the material is not limited to those described above, and for example, the chromium content is 1 to 25% by weight, the silver or zirconium content is 0.01 to 8% by weight, and the balance is substantially the same. An alloy material made of copper can also be used.

【0038】このような複合材料からなる線材は、高導
電性は電流が銅マトリックス中を流れることで確保で
き、且つ機械的強度は繊維強化で確保でき、高機械的強
度と高導電率の特性を併せもつ。
In the wire rod made of such a composite material, high conductivity can be ensured by the flow of electric current in the copper matrix, and mechanical strength can be secured by fiber reinforcement, and characteristics of high mechanical strength and high conductivity are obtained. Also has.

【0039】本発明の被覆電線の絶縁体層としては、例
えば同軸ケーブル用として、ポリエステル系樹脂、フッ
素系樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂
などを挙げることができる。しかしながら、低誘電率で
細径化に好ましく且つ耐屈曲性の点ではフッ素系樹脂又
はポリエチレンが好適であり、フッ素系樹脂が最も好適
である。
Examples of the insulating layer of the covered electric wire of the present invention include polyester resins, fluorine resins, polystyrene resins, polyolefin resins, etc. for coaxial cables. However, a fluororesin or polyethylene is preferable, and a fluororesin is most preferable from the viewpoint of low dielectric constant, favorable for diameter reduction, and bending resistance.

【0040】フッ素系樹脂としては、エチレンテトラフ
ルオロエチレン共重合体(ETFE)、テトラフルオロ
エチレンパーフルオロアルコキシエチレン共重合体(P
FA)、フルオロエチレンヘキサフルオロプロピレン共
重合体(FEP)などを挙げることができる。
As the fluorine-based resin, ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene perfluoroalkoxyethylene copolymer (P
FA), fluoroethylene hexafluoropropylene copolymer (FEP) and the like.

【0041】導体に絶縁体層を形成して被覆電線を製造
する方法は、特に限定されず、例えば、導体の製造工程
と絶縁体層の製造工程とを連続的に行ってもよいし、別
工程としてもよいが、被覆工程の後、連続的に表面処理
工程を行い、さらに、インクジェット印字手段によるマ
ーキングを実行するのが好ましい。
The method of forming an insulating layer on a conductor to produce a covered electric wire is not particularly limited, and, for example, the step of producing a conductor and the step of producing an insulator layer may be carried out continuously or separately. Although it may be a step, it is preferable that after the coating step, a surface treatment step is continuously performed, and further marking by an inkjet printing means is performed.

【0042】なお、インクジェット印字手段は、被覆電
線の表面にインク滴を吐出させて印字するものであれば
特に限定されず、インクの種類も、水溶性インク、油溶
性インクなど特に限定されない。
The ink jet printing means is not particularly limited as long as it prints by ejecting ink droplets on the surface of the covered electric wire, and the type of ink is not particularly limited such as water-soluble ink and oil-soluble ink.

【0043】本発明の被覆電線は、例えば、複数本撚り
あわせ等したものにシールドを形成してシールド付きケ
ーブルとしてもよいし、複数本を撚りあわせ等したもの
にさらに絶縁体層を設けた後、シースを設けたシールド
付きケーブルとしてもよい。
The covered electric wire of the present invention may be used as a shielded cable by forming a shield on, for example, a plurality of twisted pieces, or after providing an insulating layer on a plurality of twisted pieces. Alternatively, a shielded cable provided with a sheath may be used.

【0044】また、本発明の被覆電線は絶縁体層の濡れ
性が改善されているので、その上に金属メッキ層を容易
に形成することができる。すなわち、例えば、0.5μ
m〜6μmの厚さの金属メッキ層を形成するとシールド
として十分に作用し且つ耐屈曲性の面でも問題とならな
いシールドが得られ、剥離しがたいという利点がある。
なお、このような金属メッキ層は、無電解メッキのみで
形成しても、無電解メッキと電気メッキとを併せてもよ
い。また、スパッタリング、CVD、真空蒸着などの乾
式法により形成してもよい。また、かかる金属メッキ層
としては、銅、銀、ニッケル、金など、又はこれらの複
合メッキや合金メッキを挙げることができる。
In addition, since the coated electric wire of the present invention has improved wettability of the insulating layer, the metal plating layer can be easily formed thereon. That is, for example, 0.5 μ
Forming a metal plating layer having a thickness of m to 6 μm has the advantage that a shield that sufficiently functions as a shield and does not pose a problem in terms of bending resistance is obtained, and that peeling is difficult.
Note that such a metal plating layer may be formed only by electroless plating, or electroless plating and electroplating may be combined. Alternatively, it may be formed by a dry method such as sputtering, CVD, or vacuum evaporation. Examples of the metal plating layer include copper, silver, nickel, gold, etc., or composite plating or alloy plating of these.

【0045】[0045]

【発明の実施の形態】以下、本発明の表面処理方法及び
被覆電線の製造方法を実施例を参照しながら説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the surface treatment method and the method for producing a covered electric wire according to the present invention will be described with reference to Examples.

【0046】図1には、本実施形態で製造する被覆電線
の断面構造を示す。図1に示す被覆電線1は、単線の導
体2に絶縁体層3を施したものである。すなわち、被覆
電線1は、その場クロム繊維強化銅合金(クロム含有量
約10%)からなる導体2にフッ素系樹脂からなる絶縁
体層3を設けたものである。
FIG. 1 shows a sectional structure of a covered electric wire manufactured in this embodiment. The covered electric wire 1 shown in FIG. 1 is a single wire conductor 2 provided with an insulating layer 3. That is, the covered electric wire 1 is a conductor 2 made of an in-situ chromium fiber reinforced copper alloy (chromium content of about 10%) and an insulator layer 3 made of a fluororesin provided on the conductor 2.

【0047】このような被覆電線1の製造工程を示す概
略構成を図2に示す。図2に示すように、図示しない送
出機から送られた導体11には、押出機12で絶縁体層
3が形成されて被覆電線11Aとされた後、第1の冷却
槽13、引取機14、水平ガイド15、垂直ガイド16
を経て第2の冷却槽17へ導かれ、さらに、水平ガイド
18、垂直ガイド19、引取機20を介して巻取機21
へ巻き取られる。
FIG. 2 shows a schematic structure showing a manufacturing process of such a covered electric wire 1. As shown in FIG. 2, on the conductor 11 sent from a not-shown feeder, the insulating layer 3 is formed by the extruder 12 to form the covered electric wire 11A, and then the first cooling tank 13 and the take-up machine 14 are provided. , Horizontal guide 15, vertical guide 16
And is guided to the second cooling tank 17 via the horizontal guide 18, the vertical guide 19, and the take-up machine 20.
To be wound up.

【0048】本実施形態では、第1の冷却槽13の直前
にプラズマトリーター31を配置し、第2の冷却槽17
の前にロータリーエンコーダ32及びインクジェット印
字ヘッド33を配置した。
In the present embodiment, the plasma treater 31 is arranged immediately before the first cooling tank 13 and the second cooling tank 17 is provided.
The rotary encoder 32 and the inkjet print head 33 are arranged in front of.

【0049】これによると、被覆電線11Aは、プラズ
マトリーター31のプラズマにより表面処理され、その
後、ロータリーエンコーダ32で測定された所定位置毎
にインクジェット印字ヘッド33によりマーキングが施
される。
According to this, the covered electric wire 11A is surface-treated by the plasma of the plasma treater 31, and thereafter, marking is performed by the ink jet print head 33 at each predetermined position measured by the rotary encoder 32.

【0050】ここで、プラズマトリーター31を配置す
る位置は特に限定されず、少なくともインクジェット印
字ヘッド33の上流側に設ければよく、例えば、図3に
示すように、第1の冷却槽13と引取機14との間に配
置してもよい。
Here, the position where the plasma treater 31 is arranged is not particularly limited, and may be provided at least on the upstream side of the ink jet print head 33. For example, as shown in FIG. You may arrange | position between the machine 14 and it.

【0051】また、プラズマトリーター31からのプラ
ズマの照射方向は、後述する試験例に示すように、被覆
電線11Aの搬送方向に対して30°〜60°傾斜した
方向から、後方から搬送方向に向かって照射するのが好
ましい。すなわち、図4(a)に示すように、搬送方向
とプラズマトリーター31との成す角θが30°〜60
°であるのが好ましい。
Further, the irradiation direction of the plasma from the plasma treater 31 is, as shown in a test example described later, from a direction inclined by 30 ° to 60 ° with respect to the conveying direction of the covered electric wire 11A, and from the rear side toward the conveying direction. It is preferable to irradiate. That is, as shown in FIG. 4A, the angle θ between the transport direction and the plasma treater 31 is 30 ° to 60 °.
It is preferably °.

【0052】さらに、プラズマトリーター31は、一台
のみ配置してもよいが、2台若しくは3台又はそれ以上
設けてもよく、図4(b)に示すように、搬送方向に亘
って複数台、例えば、2台のプラズマトリーター31
A、31Bを配置してもよい。複数台設けて被覆電線1
1Aの周方向全体を表面処理する場合には、図4(c)
に示すように、搬送方向に亘って異なる位置に異なる方
向から照射するようにプラズマトリーター31A、31
Bを配置するのが好ましい。
Further, only one plasma treater 31 may be provided, but two or three or more plasma treaters 31 may be provided. As shown in FIG. 4B, a plurality of plasma treaters 31 may be provided in the transport direction. , For example, two plasma treaters 31
A and 31B may be arranged. Provide a plurality of insulated wires 1
In the case of surface-treating the entire circumferential direction of 1A, FIG.
As shown in FIG. 3, the plasma treaters 31A and 31A are configured to irradiate different positions to different positions along the transport direction.
It is preferable to arrange B.

【0053】一方、インクジェット印字ヘッド33の配
置も特に限定されず、印字後、少なくとも1秒程度乾燥
させることができればよく、例えば、図5に示すよう
に、第2の冷却槽17の後にロータリーエンコーダ32
を設け、水平ガイド18及び垂直ガイド19の間にイン
クジェット印字ヘッド33を配置してもよい。
On the other hand, the arrangement of the ink jet print head 33 is not particularly limited as long as it can be dried for at least 1 second after printing. For example, as shown in FIG. 5, a rotary encoder is provided after the second cooling tank 17. 32
The inkjet print head 33 may be disposed between the horizontal guide 18 and the vertical guide 19.

【0054】(実施例1)絶縁体層の材料をPFA(実
施例1a)、FEP(実施例1b)、ETFE(実施例
1c)、PTFE(実施例1d)、ポリエチレン(実施
例1e)とした、外径約1mmの被覆電線に、図2に示
すような装置構成で表面処理を施した。但し、プラズマ
トリーター31は、搬送方向に対して60°傾斜させた
が、図2とは反対に搬送方向に逆行する方向からプラズ
マを照射するように配置し、出力を490V,16Aと
し、ノズル先端から被覆電線までの距離は約4mmとし
た。
(Example 1) Materials for the insulating layer were PFA (Example 1a), FEP (Example 1b), ETFE (Example 1c), PTFE (Example 1d) and polyethylene (Example 1e). A coated electric wire having an outer diameter of about 1 mm was subjected to a surface treatment with an apparatus configuration as shown in FIG. However, although the plasma treater 31 is inclined by 60 ° with respect to the carrying direction, it is arranged so as to irradiate the plasma from the direction opposite to the carrying direction, contrary to FIG. 2, and the output is 490 V, 16 A, and the nozzle tip is The distance from to the covered electric wire was about 4 mm.

【0055】表面処理後の接触角(前進角及び後退角)
をメニスカス法による接触角測定器により測定し、直角
のものと60°のものとの差も表1に併せて示した。ま
た、表面処理前のものの接触角を表2に示した。
Contact angle after surface treatment (advancing angle and receding angle)
Was measured by a contact angle measuring device according to the meniscus method, and the difference between the right angle and the right angle was also shown in Table 1. In addition, Table 2 shows the contact angles before the surface treatment.

【0056】この結果より、絶縁体層の材質によって表
面処理の効果が異なるが、表面処理により濡れ性の向上
が見られ、また、直角照射より60°照射の方が濡れ性
の改善が顕著であった。
From these results, although the effect of the surface treatment varies depending on the material of the insulating layer, the wettability is improved by the surface treatment, and the wettability is remarkably improved by the irradiation at 60 ° rather than the right angle irradiation. there were.

【0057】なお、プラズマトリーター31の出力を4
30Vで11A、377Vで8.5Aとして同様に実施
したが、ほぼ同等な表面処理効果が認められた。
The output of the plasma treater 31 is set to 4
The same operation was carried out at 11 A at 30 V and 8.5 A at 377 V, but almost the same surface treatment effect was observed.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】(実施例2)絶縁体層の材料をPFA(実
施例2a)、FEP(実施例2b)、ETFE(実施例
2c)、PTFE(実施例2d)とした、外径約1mm
の被覆電線に、図2に示す装置構成で表面処理を施し
た。なお、プラズマトリーター31を搬送方向に対して
45°傾斜させた以外は実施例1と同様にした。
(Example 2) PFA (Example 2a), FEP (Example 2b), ETFE (Example 2c), and PTFE (Example 2d) were used as the material of the insulating layer, and the outer diameter was about 1 mm.
The coated electric wire of 1 was subjected to a surface treatment with the apparatus configuration shown in FIG. In addition, the same procedure as in Example 1 was performed except that the plasma treater 31 was inclined at 45 ° with respect to the transport direction.

【0061】表面処理後の接触角(前進角及び後退角)
をメニスカス法による接触角測定器により測定し、直角
のものと45°のものとの差も表3に併せて示した。
Contact angle after surface treatment (advancing angle and receding angle)
Was measured with a contact angle measuring device according to the meniscus method, and the difference between the right angle and the 45 ° is also shown in Table 3.

【0062】この結果より、絶縁体層の材質によって表
面処理の効果が異なるが、表面処理により濡れ性の向上
が見られ、また、直角照射より45°照射の方が濡れ性
の改善が顕著であった。
From these results, although the effect of the surface treatment varies depending on the material of the insulating layer, the wettability is improved by the surface treatment, and the wettability is more significantly improved by the 45 ° irradiation than by the right angle irradiation. there were.

【0063】[0063]

【表3】 [Table 3]

【0064】(実施例3)図2に示すように、プラズマ
トリーター31のプラズマの照射方向を搬送方向と同じ
方向(正方向)とし且つ搬送方向に対する傾斜角度を4
5°(図4のθ=45°)とした以外は実施例1と同様
にして、絶縁体層をFEP(実施例3b)、ETFE
(実施例3c)とした、外径約1mmの被覆電線に、図
2に示すような装置構成で表面処理を施した。
(Embodiment 3) As shown in FIG. 2, the plasma irradiating direction of the plasma treater 31 is the same as the carrying direction (positive direction), and the inclination angle with respect to the carrying direction is 4 degrees.
The insulator layer was FEP (Example 3b) and ETFE in the same manner as in Example 1 except that the angle was 5 ° (θ = 45 ° in FIG. 4).
The coated electric wire of (Example 3c) having an outer diameter of about 1 mm was subjected to a surface treatment with an apparatus configuration as shown in FIG.

【0065】この結果を逆方向(実施例2)の結果と比
較して表4に示した。
The results are shown in Table 4 in comparison with the results in the opposite direction (Example 2).

【0066】この結果より、絶縁体層をFEPとした場
合には、逆方向の方が効果的であったが、ETFEを用
いた場合には、正方向の方が有利であることがわかっ
た。
From these results, it was found that when the insulating layer was FEP, the reverse direction was more effective, but when ETFE was used, the positive direction was more advantageous. .

【0067】[0067]

【表4】 [Table 4]

【0068】(実施例4)ETFE(実施例4c)とし
た外径約1mmの被覆電線に、実施例3と同様に正方向
から45°傾斜させたプラズマトリーターで表面処理を
施した後、空気中放置1日後と、水中放置1日後のサン
プルについて、接触角を測定した結果を表5に示した。
(Example 4) A coated electric wire having an outer diameter of about 1 mm, which was ETFE (Example 4c), was subjected to a surface treatment with a plasma treater inclined at 45 ° from the positive direction as in Example 3, and then air-treated. Table 5 shows the results of measuring the contact angles of the samples after one day of standing in the medium and one day after leaving in the water.

【0069】この結果、ETFEからなる絶縁体層は空
中放置により経時的に表面処理の効果が低減してしまう
が、水中浸漬で保存すると、経時変化が低減できること
がわかった。なお、FEPやPFAからなる絶縁体層を
用いた場合には、経時変化は顕著ではなかった。
As a result, it was found that the effect of the surface treatment on the insulator layer made of ETFE is reduced with time by leaving it in the air, but the change with time can be reduced by storing it in water. When an insulator layer made of FEP or PFA was used, the change with time was not remarkable.

【0070】[0070]

【表5】 [Table 5]

【0071】(実施例5〜7)プラズマトリーター31
を被覆電線を挟んだ二カ所に設けた以外は図2に示すも
のと同様な構成で被覆電線を製造した。プラズマトリー
ター31は、搬送方向に5cmずらして相対向する位置
に、搬送方向から60°傾斜させて配置した。
(Examples 5 to 7) Plasma treater 31
A coated electric wire having the same structure as that shown in FIG. 2 was manufactured except that the electric wires were provided at two positions sandwiching the covered electric wire. The plasma treater 31 was placed at a position opposed to each other with a shift of 5 cm in the carrying direction and inclined by 60 ° from the carrying direction.

【0072】被覆電線の搬送速度を3.5m/min
(実施例5)、10.5m/min(実施例6)、40
m/min(実施例7)とし、インクジェット印字ヘッ
ド33で印字したマーキングの耐久性を試験した。
Transport speed of the covered electric wire is 3.5 m / min
(Example 5), 10.5 m / min (Example 6), 40
The durability of the marking printed by the inkjet print head 33 was tested at m / min (Example 7).

【0073】摩擦テストでは、指腹によりマーキングを
10回こすった結果、印字が消えなかったものを○、一
部消えたものを△、全く消えたものを×として評価し
た。また、ピールテストでは、セロファンテープを印字
の上に指腹で強く貼り付け、貼り付け面と45°の方向
に瞬時に剥離し、印字がセロファンテープに移らなかっ
たものを○、一部移ったものを△、全部移ったものを×
として評価した。
In the friction test, as a result of rubbing the markings with the finger pad 10 times, the mark in which the printing was not erased was evaluated as ◯, the mark in which the printing was partially erased was evaluated as Δ, and the mark which was completely erased was evaluated as x. In the peel test, the cellophane tape was strongly adhered to the print with the finger pad, and the film was instantaneously peeled off in 45 ° direction from the adhered surface. Things are △, all things are moved ×
Evaluated as.

【0074】なお、比較のため、被覆電線に表面処理を
施さず、押出直後(被覆電線の温度230℃)にインク
ジェット印字ヘッドでマーキングを行ったもの(比較
例)についても同様に評価した。比較例での被覆電線の
搬送速度は50m/minとした。
For comparison, the same evaluation was carried out for the case where the coated electric wire was not surface-treated but was marked with the ink jet print head immediately after extrusion (the temperature of the covered electric wire was 230 ° C.) (Comparative Example). The conveyance speed of the covered electric wire in the comparative example was 50 m / min.

【0075】この結果を表6に示した。この結果より、
被覆電線が高温のうちにマーキングを施した比較例と比
較して、プラズマ照射による表面処理を施した実施例5
〜7の方がマーキングの耐久性が良好であることがわか
った。
The results are shown in Table 6. From this result,
Example 5 in which the surface treatment by plasma irradiation was applied, as compared with the comparative example in which the coated electric wire was marked at high temperature
It was found that marking durability of 7 to 7 was better.

【0076】[0076]

【表6】 [Table 6]

【0077】[0077]

【発明の効果】以上説明したように、大気圧プラズマ発
生器を用いて表面処理を行うので、高生産性で絶縁体層
の濡れ性を改善することができるという効果を奏する。
As described above, since the surface treatment is performed by using the atmospheric pressure plasma generator, the wettability of the insulator layer can be improved with high productivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態に係るシールド付きケーブ
ルの断面図である。
FIG. 1 is a cross-sectional view of a shielded cable according to an embodiment of the present invention.

【図2】本発明の一実施形態に係る被覆電線の製造工程
の概略を示す図である。
FIG. 2 is a diagram schematically showing a manufacturing process of a covered electric wire according to an embodiment of the present invention.

【図3】本発明の他の実施形態に係る被覆電線の製造工
程の概略を示す図である。
FIG. 3 is a diagram showing an outline of a manufacturing process of a covered electric wire according to another embodiment of the present invention.

【図4】本発明のプラズマトリーターの配置例を示す図
である。
FIG. 4 is a diagram showing an arrangement example of a plasma treater of the present invention.

【図5】本発明の他の実施形態に係る被覆電線の製造工
程の概略を示す図である。
FIG. 5 is a diagram schematically showing a manufacturing process of a covered electric wire according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 被覆電線 2 導体 3 絶縁体層 11 導体 11A 被覆電線 31 プラズマトリーター 33 インクジェット印字ヘッド 1 covered electric wire 2 conductors 3 Insulator layer 11 conductors 11A covered electric wire 31 Plasma Treater 33 inkjet print head

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 導体の周囲に絶縁体層を有する被覆電線
の表面処理方法において、大気圧プラズマ発生器を用い
て表面処理を行うことを特徴とする被覆電線の表面処理
方法。
1. A surface treatment method for a coated electric wire having an insulator layer around a conductor, wherein the surface treatment is performed using an atmospheric pressure plasma generator.
【請求項2】 請求項1において、前記表面処理を、押
出被覆されて搬送される被覆電線にプラズマトリーター
のノズルからプラズマを照射することにより行うことを
特徴とする被覆電線の表面処理方法。
2. The surface treatment method for a coated electric wire according to claim 1, wherein the surface treatment is performed by irradiating a coated electric wire that is extrusion-coated and conveyed with plasma from a nozzle of a plasma treater.
【請求項3】 請求項2において、前記プラズマの照射
を、前記被覆電線の搬送方向に対して30°〜60°傾
斜した方向から行うことを特徴とする被覆電線の表面処
理方法。
3. The surface treatment method for a covered electric wire according to claim 2, wherein the irradiation of the plasma is performed from a direction inclined by 30 ° to 60 ° with respect to a conveying direction of the covered electric wire.
【請求項4】 請求項2又は3において、前記プラズマ
の照射を、前記被覆電線の周囲の複数方向から行うこと
を特徴とする被覆電線の表面処理方法。
4. The surface treatment method for a covered electric wire according to claim 2, wherein the plasma irradiation is performed from a plurality of directions around the covered electric wire.
【請求項5】 請求項1〜4の何れかにおいて、前記表
面処理の後、濡れ性を向上させる対象の溶媒中に浸漬す
ることを特徴とする被覆電線の表面処理方法。
5. The surface treatment method for a covered electric wire according to claim 1, wherein the surface treatment is followed by immersion in a solvent that is an object for improving wettability.
【請求項6】 導体の周囲に絶縁体層を設けて被覆電線
とする被覆電線の製造方法において、押出被覆されて搬
送される被覆電線に大気圧プラズマ発生器を用いて表面
処理を施す工程と、表面処理された絶縁体層表面にイン
クジェット印字手段を用いてマーキングを行う工程とを
具備することを特徴とする被覆電線の製造方法。
6. A method of manufacturing a covered electric wire, wherein an insulating layer is provided around a conductor to form a covered electric wire, and a step of subjecting the covered electric wire that is extrusion-coated and conveyed to a surface treatment using an atmospheric pressure plasma generator, And a step of marking the surface-treated insulating layer surface with an inkjet printing means.
【請求項7】 請求項6において、前記表面処理を、押
出被覆されて搬送される被覆電線にプラズマトリーター
のノズルからプラズマを照射することにより行うことを
特徴とする被覆電線の製造方法。
7. The method for producing a coated electric wire according to claim 6, wherein the surface treatment is performed by irradiating a coated electric wire that is extrusion-coated and conveyed with plasma from a nozzle of a plasma treater.
【請求項8】 請求項7において、前記プラズマの照射
を、前記被覆電線の搬送方向に対して30°〜60°傾
斜した方向から行うことを特徴とする被覆電線の製造方
法。
8. The method for manufacturing a covered electric wire according to claim 7, wherein the irradiation of the plasma is performed from a direction inclined by 30 ° to 60 ° with respect to a conveying direction of the covered electric wire.
JP2002068493A 2002-03-13 2002-03-13 Surface treatment method for coated electric wire and method for producing coated electric wire Expired - Lifetime JP4004824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002068493A JP4004824B2 (en) 2002-03-13 2002-03-13 Surface treatment method for coated electric wire and method for producing coated electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002068493A JP4004824B2 (en) 2002-03-13 2002-03-13 Surface treatment method for coated electric wire and method for producing coated electric wire

Publications (2)

Publication Number Publication Date
JP2003272455A true JP2003272455A (en) 2003-09-26
JP4004824B2 JP4004824B2 (en) 2007-11-07

Family

ID=29199579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002068493A Expired - Lifetime JP4004824B2 (en) 2002-03-13 2002-03-13 Surface treatment method for coated electric wire and method for producing coated electric wire

Country Status (1)

Country Link
JP (1) JP4004824B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104021894A (en) * 2014-06-17 2014-09-03 安徽宏源特种电缆集团有限公司 Inkjet printing identification process for fluorine plastic sheath phase-stabilized cable
CN107221379A (en) * 2017-07-20 2017-09-29 苏州科宝光电科技有限公司 Medical monitoring instrumentation cable
JP2017204436A (en) * 2016-05-13 2017-11-16 日立金属株式会社 Insulated wire and cable, and mold-molding
JP2019110022A (en) * 2017-12-18 2019-07-04 日立金属株式会社 Cable for signal transmission
WO2022165892A1 (en) * 2021-02-03 2022-08-11 江苏亨通高压海缆有限公司 Buffer layer wrapping and metal sheath extrusion production line for high-voltage cable

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104021894A (en) * 2014-06-17 2014-09-03 安徽宏源特种电缆集团有限公司 Inkjet printing identification process for fluorine plastic sheath phase-stabilized cable
JP2017204436A (en) * 2016-05-13 2017-11-16 日立金属株式会社 Insulated wire and cable, and mold-molding
CN107221379A (en) * 2017-07-20 2017-09-29 苏州科宝光电科技有限公司 Medical monitoring instrumentation cable
JP2019110022A (en) * 2017-12-18 2019-07-04 日立金属株式会社 Cable for signal transmission
JP7195735B2 (en) 2017-12-18 2022-12-26 日立金属株式会社 Cable for signal transmission
US11678472B2 (en) * 2017-12-18 2023-06-13 Proterial, Ltd. Signal transmission cable
JP7428226B2 (en) 2017-12-18 2024-02-06 株式会社プロテリアル Signal transmission cable
WO2022165892A1 (en) * 2021-02-03 2022-08-11 江苏亨通高压海缆有限公司 Buffer layer wrapping and metal sheath extrusion production line for high-voltage cable

Also Published As

Publication number Publication date
JP4004824B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP6245402B1 (en) Differential signal transmission cable, multi-core cable, and differential signal transmission cable manufacturing method
RU2149225C1 (en) Wire manufacturing method
JP6959774B2 (en) Signal transmission cable Multi-core cable and signal transmission cable manufacturing method
JP7428226B2 (en) Signal transmission cable
CN104994984B (en) Line electro-discharge machining electrode wires and its manufacture method
JPH08148043A (en) Coaxial cable
JP4004824B2 (en) Surface treatment method for coated electric wire and method for producing coated electric wire
CN106169647B (en) A kind of laser carving gold plating method
JP4424649B2 (en) Surface treatment method for coated electric wire and method for producing coated electric wire
JP2005149892A (en) Small diameter coaxial cable with metal-plated shield conductor, and its manufacturing method
JP6977628B2 (en) Signal transmission cable manufacturing equipment and manufacturing method
JP7114945B2 (en) Differential signal transmission cable, multicore cable, and method for manufacturing differential signal transmission cable
JP7073840B2 (en) Manufacturing method of differential signal transmission cable, multi-core cable, and differential signal transmission cable
JP6662009B2 (en) Cable and manufacturing method thereof
JP7138947B2 (en) PLATING METHOD, BUBBLE EJECTING MEMBER, PLATING APPARATUS, AND DEVICE
JP3685510B2 (en) In-vivo insertion device having electrical conduction path and method for manufacturing the same
US4369204A (en) Integrated fire-resistant flexible metal conductor derived insulated coating
JP2017123303A (en) Laminate sheet and method for producing the same
JP4098567B2 (en) Method for producing film with plating film
JP7208372B2 (en) polymer coated wire
JP6963723B2 (en) Manufacturing method of differential signal transmission cable, multi-core cable, and differential signal transmission cable
JP7448119B2 (en) Method for manufacturing an article having a plating film on the surface of a carbon fiber reinforced resin base material
JP2005093368A (en) Coaxial cable, apparatus for manufacturing coaxial cable and method of manufacturing coaxial cable
CN111462945A (en) Linear member and method for manufacturing same
KR20230129923A (en) Method for manufacturing transparent conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041105

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20041105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R150 Certificate of patent or registration of utility model

Ref document number: 4004824

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140831

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term