JP2003270402A - Method for manufacturing antireflection film having favorable adhesiveness - Google Patents

Method for manufacturing antireflection film having favorable adhesiveness

Info

Publication number
JP2003270402A
JP2003270402A JP2002068587A JP2002068587A JP2003270402A JP 2003270402 A JP2003270402 A JP 2003270402A JP 2002068587 A JP2002068587 A JP 2002068587A JP 2002068587 A JP2002068587 A JP 2002068587A JP 2003270402 A JP2003270402 A JP 2003270402A
Authority
JP
Japan
Prior art keywords
antireflection film
film
metal
producing
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002068587A
Other languages
Japanese (ja)
Inventor
Junichiro Mitsunami
淳一郎 三並
Toshio Muranaga
外志雄 村永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP2002068587A priority Critical patent/JP2003270402A/en
Publication of JP2003270402A publication Critical patent/JP2003270402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an antireflection film by a new sputtering method. <P>SOLUTION: When an antireflection film is manufactured on the surface of a plastic base material by sputtering, a metal film is preliminarily introduced as an intermediate layer onto the surface of the base material. The metal film is preferably introduced by sputtering. The metal to form the metal film is preferably one or more kinds selected from a group consisting of titanium, silicon, aluminum, zinc, zirconium, tantalum and magnesium. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、スパッタリング法
を用いたプラスチック基材表面への反射防止膜の作製技
術に関する。
TECHNICAL FIELD The present invention relates to a technique for producing an antireflection film on a surface of a plastic substrate by using a sputtering method.

【0002】[0002]

【従来の技術】反射防止膜は、光学、電子光学の分野で
広く使用されており、とりわけメガネのレンズやカメラ
のレンズ、CRTパネル、最近では携帯電話やPDAの表示装
置などをコートするのに頻繁に使用されている。
2. Description of the Related Art Anti-reflection coatings are widely used in the fields of optics and electro-optics, especially for coating lenses for glasses, lenses for cameras, CRT panels, and recently display devices for mobile phones and PDAs. Used frequently.

【0003】従来、反射防止膜の作製方法としては、フ
イルムへ成膜を行い基材へ貼りつける方法や、直接基材
へ成膜を行う方法などが知られている。直接基材へ成膜
する方法としては真空蒸着法が主に用いられている。し
かしながら、前者の方法では成膜工程が煩雑となり、歩
止まりの低下は避けられない。一方、後者の方法では蒸
着装置の大規模化が困難であり、汎用的に用いられる比
較的小規模の装置では処理面積が限られることや、メン
テナンス頻度が高いといった問題点がある。また実機生
産を行った場合不良品の発生率が高く、製造コストが高
くなる問題点を持つことから、不良品発生率の低い大量
生産向けの成膜方法が望まれる。
Conventionally, as a method for producing an antireflection film, there are known a method of forming a film on a film and adhering it to a base material, and a method of forming a film directly on the base material. A vacuum deposition method is mainly used as a method for directly forming a film on a substrate. However, with the former method, the film forming process becomes complicated, and a decrease in yield is unavoidable. On the other hand, with the latter method, it is difficult to increase the scale of the vapor deposition apparatus, and there are problems that the processing area is limited and the frequency of maintenance is high in a relatively small-scale apparatus that is commonly used. In addition, since the defective product generation rate is high when the actual production is performed, and the manufacturing cost is increased, a film forming method for mass production with a low defective product generation rate is desired.

【0004】ところで、これらの問題点を解決するため
の成膜方法としてスパッタリング法が注目される。比較
的容易に装置の大型化が可能である点や、メンテナンス
頻度が少なくなるといったメリットがあり、工業化に最
も適していると考えられる。しかしながら、スパッタリ
ング法の場合、成膜時に発生する輻射熱が大きいため、
熱的観点から使用に適したプラスチック基材が制限され
る不都合が生じる。従って広範なプラスチック基材にス
パッタリング法を応用するとすれば成膜温度を必然的に
下げざるを得ないが、そうすると特にThorntonによる薄
膜の微細構造モデルにあるように、成膜時の基板の温度
が低い場合は密度が低い膜が成膜され、基板との密着性
は通常より悪くなる。加えてプラスチック基材に金属酸
化物を成膜した際は特に密着性が悪くなり、その結果透
過率が著しく低下し、反射防止膜としての特性を示さな
くなる。
By the way, a sputtering method is drawing attention as a film forming method for solving these problems. It is considered to be most suitable for industrialization because it has the advantages that the device can be made relatively large in size and that the frequency of maintenance is reduced. However, in the case of the sputtering method, since the radiant heat generated during film formation is large,
The disadvantage arises that from a thermal point of view plastic substrates suitable for use are limited. Therefore, if the sputtering method is applied to a wide range of plastic base materials, the film formation temperature must be lowered, and then the temperature of the substrate during film formation is particularly high, as shown in Thornton's thin film microstructure model. When it is low, a film having a low density is formed, and the adhesion to the substrate becomes worse than usual. In addition, when a metal oxide film is formed on a plastic substrate, the adhesion becomes particularly poor, and as a result, the transmittance is remarkably reduced and the properties as an antireflection film are not exhibited.

【0005】[0005]

【発明が解決しようとする課題】以上の問題点を解決す
るための手段としては、成膜前に基材の表面に荒さを付
ける方法や、ハードコート処理を施す方法(特開平7‐
318703、特開平6−337302、特開平10−
123301)等があるが、前者の場合は基材表面を荒
らすことで入射光が基材との界面で反射すると考えられ
光学部材として使用する場合は望ましくなく、また後者
の場合処理行程が多いことを考えると、さらに簡便な方
法が望ましいと考えられる。
As means for solving the above problems, a method of roughening the surface of a substrate before film formation and a method of applying a hard coat treatment (Japanese Patent Laid-Open No. 7-
318703, JP-A-6-337302, JP-A-10-
123301), etc., but in the former case the incident light is considered to be reflected at the interface with the base material by roughening the surface of the base material, which is not desirable when used as an optical member, and in the latter case there are many treatment steps. Considering the above, it seems that a simpler method is desirable.

【0006】本発明は、上述の実状に鑑み、ハードコー
ト処理等の複雑な工程を経ることなく、広範囲の樹脂基
材に応用可能な、とりわけ光学部材に好適な、スパッタ
リング法による密着性の良好な反射防止膜の作製方法を
提供することを課題とする。
In view of the above situation, the present invention can be applied to a wide range of resin substrates without complicated processes such as hard coat treatment, and is particularly suitable for optical members and has good adhesion by a sputtering method. An object of the present invention is to provide a method for producing a simple antireflection film.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく研究を重ねた結果、プラスチック基材に対
する下記の新規なスパッタリング法による反射防止膜の
作製方法を見出し、本発明を完成するに至った。
Means for Solving the Problems As a result of repeated studies to solve the above-mentioned problems, the present inventors have found a method for producing an antireflection film on a plastic substrate by the following novel sputtering method and found the present invention. It came to completion.

【0008】即ち、本発明は、スパッタリング法により
プラスチック基材表面へ反射防止膜を作製する際、該基
材表面に予め中間層として金属膜を導入形成しておくこ
とを特徴とする反射防止膜の作製方法を提供するもので
ある。
That is, the present invention is characterized in that, when an antireflection film is formed on the surface of a plastic substrate by a sputtering method, a metal film is previously formed as an intermediate layer on the surface of the substrate to form an antireflection film. The present invention provides a method for producing.

【0009】プラスチック基材へ反射防止膜を作製する
際に、予めプラスチック基材と反射防止膜の間に導入さ
れる中間層としての金属膜はいかなる方法により形成さ
れてよいが、好ましくはスパッタリング法により成膜す
ることが望ましい。これにより反射防止膜作製に係る全
工程をスパッタリング法により行うことができ、工程の
簡素化を図ることができる。なお、ここでいうスパッタ
リング法とは、低圧不活性気体中、金属を加熱又はイオ
ン衝撃することにより蒸発又は衝突によって金属面から
気体中に飛散した金属原子を基材表面上に付着させる手
段であると一般に定義されるものである。
When the antireflection film is formed on the plastic substrate, the metal film as an intermediate layer which is previously introduced between the plastic substrate and the antireflection film may be formed by any method, but the sputtering method is preferable. It is desirable to form a film by As a result, all the steps for producing the antireflection film can be performed by the sputtering method, and the steps can be simplified. Note that the sputtering method here is a means for depositing metal atoms scattered in the gas from the metal surface by vaporization or collision by heating or ion bombarding the metal in a low-pressure inert gas on the surface of the base material. Is generally defined as.

【0010】導入形成される金属膜の構成元素は特に限
定されないが、チタニウム、ケイ素、アルミニウム、亜
鉛、ジルコニウム、タンタルおよびマグネシウムからな
る群から選択された一つ以上のもの好ましく用いられ、
更に好ましくはチタニウムまたはケイ素が特に望まし
い。
The constituent element of the metal film to be introduced and formed is not particularly limited, but one or more selected from the group consisting of titanium, silicon, aluminum, zinc, zirconium, tantalum and magnesium is preferably used.
More preferably titanium or silicon is particularly desirable.

【0011】導入形成される金属膜の膜厚(d)につい
ては特に制限されないが、好ましくは10nm≦d≦30
nmの範囲内で望ましく用いることができる。
The thickness (d) of the metal film formed by introduction is not particularly limited, but preferably 10 nm ≦ d ≦ 30.
It can be preferably used in the range of nm.

【0012】本発明で用いられるプラスチック基材は、
熱可塑性、熱硬化性を問わず、広範囲の合成樹脂を使用
することができ、例えば、(メタ)アクリル樹脂、ポリ
カーボネート樹脂、ポリ塩化ビニル樹脂、ジアリルフタ
レート樹脂、エポキシ樹脂、ポリアリレート樹脂、ノル
ボルネン樹脂等が好ましく例示される。耐熱性および透
明性を有する樹脂が更に好ましく、ノルボルネン樹脂が
特に好ましく例示される。
The plastic substrate used in the present invention is
A wide range of synthetic resins can be used regardless of whether they are thermoplastic or thermosetting. For example, (meth) acrylic resin, polycarbonate resin, polyvinyl chloride resin, diallyl phthalate resin, epoxy resin, polyarylate resin, norbornene resin. Etc. are preferably exemplified. A resin having heat resistance and transparency is more preferable, and a norbornene resin is particularly preferable.

【0013】本発明において、上記方法により形成され
た金属膜上に金属酸化物を導入するためのスパッタリン
グ法は、上述の定義に従い、通常の方法であれば特に限
定されるものではないが、例えば、成膜の際、スパッタ
リングと同時に酸素ガスを導入して行う、いわゆる反応
性スパッタリング方式を好ましく用いることができる。
In the present invention, the sputtering method for introducing the metal oxide onto the metal film formed by the above method is not particularly limited as long as it is an ordinary method according to the above definition, and for example, A so-called reactive sputtering method, in which oxygen gas is introduced at the same time as sputtering during film formation, can be preferably used.

【0014】また、反射防止膜は上記1層のみならず、
屈折率の異なる2種類以上の材料を多層化することによ
り、膜の密着性を損なうことなく、透明基材の透過率を
高めることができる。
The antireflection film is not limited to the above-mentioned one layer,
By forming two or more kinds of materials having different refractive indexes into multiple layers, the transmittance of the transparent base material can be increased without impairing the adhesiveness of the film.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例をいくつか
挙げ、本発明を具体的に説明する。但し、これら実施例
は本発明を限定するものではない。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be specifically described below with reference to some examples of the present invention. However, these examples do not limit the present invention.

【0016】[0016]

【実施例】〔実施例1〕 (1)クラス10,000のクリーンルーム内に設置さ
れたスパッタリング装置(ヒラノ光音製 HK-3S)の真
空室内に、ターゲット材としてチタン及びケイ素を取り
付けた。基材には透明耐熱樹脂のノルボルネン樹脂(ア
ートン成形品)を加工したものを用意した。これを真空
室内に設置された基板ホルダーに取り付けた後、真空室
内を1.3×10-3(Pa)まで排気した。排気終了後媒
質ガスとしてアルゴンを導入し、真空室内の全圧を0.
5(Pa)とした。 (2)基材表面上に中間層として第1層目であるチタン
を膜厚で15nm成膜した。中間層成膜後、真空室内へ酸
素ガスを導入して行う反応性スパッタリング法を用い
て、下記の構成による酸化チタン及び酸化ケイ素からな
る反射防止膜を成膜した。これらを図1に示した。な
お、基板ホルダー部分に装備された冷却装置により、成
膜の際の基板温度は100℃以下を維持した。 第2層 TiO2(屈折率2.35)を光学膜厚で28(nm) 第3層 SiO2(屈折率1.46)を光学膜厚で41(nm) 第4層 TiO2(屈折率2.35)を光学膜厚で277(n
m) 第5層 SiO2(屈折率1.46)を光学膜厚で131(n
m) (3)反射防止膜の性能評価の結果を表1に示した。ま
た、このサンプルの分光特性グラフを図3に示した。
EXAMPLES Example 1 (1) Titanium and silicon were attached as target materials in a vacuum chamber of a sputtering apparatus (HK-3S manufactured by Hirano Koson) installed in a clean room of class 10,000. As the base material, a processed transparent norbornene resin (Arton molded product) was prepared. After this was attached to the substrate holder installed in the vacuum chamber, the vacuum chamber was evacuated to 1.3 × 10 −3 (Pa). After exhaustion, argon was introduced as a medium gas to reduce the total pressure in the vacuum chamber to 0.
It was set to 5 (Pa). (2) Titanium, which is the first layer, was formed as an intermediate layer on the surface of the substrate to a thickness of 15 nm. After forming the intermediate layer, an antireflection film made of titanium oxide and silicon oxide having the following constitution was formed by a reactive sputtering method in which oxygen gas was introduced into the vacuum chamber. These are shown in FIG. The substrate temperature during film formation was maintained at 100 ° C. or lower by a cooling device provided in the substrate holder portion. The second layer TiO 2 (refractive index 2.35) has an optical thickness of 28 (nm), the third layer SiO 2 (refractive index 1.46) has an optical thickness of 41 (nm) the fourth layer TiO 2 (refractive index 2.35) with an optical film thickness of 277 (n
m) The fifth layer of SiO 2 (refractive index 1.46) has an optical thickness of 131 (n).
m) (3) The results of performance evaluation of the antireflection film are shown in Table 1. A spectral characteristic graph of this sample is shown in FIG.

【0017】〔実施例2〕実施例1の(2)で、基材表
面上に中間層として第1層目をケイ素により膜厚で15
nm成膜した以外は全て実施例1と同様に行った。反射防
止膜の性能評価の結果を表1に示した。また、このサン
プルの分光特性グラフを図4に示した。
[Embodiment 2] In (2) of Embodiment 1, the first layer as a middle layer on the surface of the substrate is made of silicon to a thickness of 15
The same procedure as in Example 1 was performed except that the film was formed to a thickness of nm. The results of performance evaluation of the antireflection film are shown in Table 1. A spectral characteristic graph of this sample is shown in FIG.

【0018】〔比較例1〕 (1)クラス10,000のクリーンルーム内に設置さ
れたスパッタリング装置(ヒラノ光音製 HK-3S)の真
空室内に、ターゲット材としてチタン及びケイ素を取り
付けた。基材には透明耐熱樹脂のノルボルネン樹脂(ア
ートン成形品)を加工したものを用意した。これを真空
室内に設置された基板ホルダーに取り付けた後、真空室
内を1.3×10-3(Pa)まで排気した。排気終了後媒
質ガスとしてアルゴンを導入し、真空室内の全圧を0.
5(Pa)とした。 (2)真空室内へ酸素ガスを導入して行う反応性スパッ
タリング法を用いて、下記の構成による酸化チタン及び
酸化ケイ素からなる反射防止膜を成膜した。これらを図
2に示した。なお、基板ホルダー部分に装備された冷却
装置により、成膜の際の基板温度は100℃以下を維持し
た。 第1層 TiO2(屈折率2.35)を光学膜厚で28(nm) 第2層 SiO2(屈折率1.46)を光学膜厚で41(nm) 第3層 TiO2(屈折率2.35)を光学膜厚で277(n
m) 第4層 SiO2(屈折率1.46)を光学膜厚で131(n
m) (3)反射防止膜の性能評価の結果を表1に示した。ま
た、このサンプルの分光特性グラフを図5に示した。
Comparative Example 1 (1) Titanium and silicon were attached as target materials in a vacuum chamber of a sputtering apparatus (HK-3S manufactured by Hirano Koson) installed in a clean room of class 10,000. As the base material, a processed transparent norbornene resin (Arton molded product) was prepared. After this was attached to the substrate holder installed in the vacuum chamber, the vacuum chamber was evacuated to 1.3 × 10 −3 (Pa). After exhaustion, argon was introduced as a medium gas to reduce the total pressure in the vacuum chamber to 0.
It was set to 5 (Pa). (2) An antireflection film made of titanium oxide and silicon oxide having the following constitution was formed by a reactive sputtering method performed by introducing oxygen gas into the vacuum chamber. These are shown in FIG. The substrate temperature during film formation was maintained at 100 ° C. or lower by a cooling device provided in the substrate holder portion. The first layer TiO 2 (refractive index 2.35) has an optical film thickness of 28 (nm) the second layer SiO 2 (refractive index 1.46) has an optical film thickness of 41 (nm) the third layer TiO 2 (refractive index 2.35) with an optical film thickness of 277 (n
m) Fourth layer SiO 2 (refractive index 1.46) with an optical film thickness of 131 (n
m) (3) The results of performance evaluation of the antireflection film are shown in Table 1. A spectral characteristic graph of this sample is shown in FIG.

【0019】[0019]

【表1】 [Table 1]

【0020】性能評価 表1の各試験方法を以下に示す。 a)密着性 成膜後のサンプルに関して、JIS規格 Z2307−20
00に準拠して90度方向引っ張り試験を行った。サン
プルのテープ剥離部分を対象に、光学顕微鏡(倍率30
0倍)にて表面観察を行い、反射防止膜の密着性の確認
を行った。判定は次のように行った。 A:表面観察した範囲において反射防止膜の剥離は確認
されなかった。 B:表面観察した範囲の1〜10%の部分で反射防止膜の剥
離を確認。 C:表面観察した範囲の11〜30%の部分で反射防止膜の
剥離を確認。 D:表面観察した範囲の31〜50%の部分で反射防止膜の
剥離を確認。 E:表面観察した範囲の51%以上の部分で反射防止膜の
剥離を確認。
Each test method in the performance evaluation table 1 is shown below. a) Adhesion Regarding the sample after film formation, JIS standard Z2307-20
A 90-degree direction tensile test was conducted in accordance with No. 00. For the tape peeling portion of the sample, use an optical microscope (magnification 30
The surface was observed with 0 times) to confirm the adhesion of the antireflection film. The judgment was performed as follows. A: No peeling of the antireflection film was confirmed in the range of the surface observation. B: Peeling of the antireflection film was confirmed in 1 to 10% of the area observed on the surface. C: Peeling of the antireflection film was confirmed in 11 to 30% of the area observed on the surface. D: Peeling of the antireflection film was confirmed in 31 to 50% of the area observed on the surface. E: Peeling of the antireflection film was confirmed in 51% or more of the surface observed area.

【0021】b)耐熱試験 成膜後のサンプルを70℃の温風オーブンの中に入れ3
時間加熱を行ったのち、光学顕微鏡(倍率300倍)に
て表面観察を行った。判定は次のように行った。 A:表面観察した範囲では、反射防止膜に変化は見られ
なかった。 B:表面観察した範囲の1〜10%の部分で表面にクラ
ックが発生した。 C:表面観察した範囲の11〜30%の部分で表面にク
ラックが発生した。 D:表面観察した範囲の31〜50%の部分で表面にク
ラックが発生した。 E:表面観察した範囲の51%以上の部分で表面にクラ
ックが発生した。
B) Heat resistance test The sample after film formation was placed in a hot air oven at 70 ° C. 3
After heating for a period of time, the surface was observed with an optical microscope (magnification: 300 times). The judgment was performed as follows. A: No change was observed in the antireflection film in the range where the surface was observed. B: Cracks were generated on the surface in 1 to 10% of the range of the surface observed. C: Cracks were generated on the surface in 11% to 30% of the surface observed range. D: Cracks were generated on the surface in 31 to 50% of the range of the surface observed. E: Cracks were generated on the surface in 51% or more of the area observed on the surface.

【0022】c)表面観察 反射防止膜成膜後のサンプルを蛍光管にかざして目視に
より観察し、成膜面に干渉縞等が見られないかどうかの
確認を行った。
C) Surface observation The sample on which the antireflection film was formed was held by a fluorescent tube and visually observed to confirm whether or not interference fringes were observed on the film formation surface.

【0023】d)反射率の測定 反射防止膜成膜後のサンプルを光学膜特性解析装置(オ
リンパス光学(株)製USPM-RU)により波長380〜780(n
m)の領域で反射率について測定を行った。
D) Measurement of reflectance The sample after the antireflection film was formed was measured with an optical film characteristic analyzer (USPM-RU manufactured by Olympus Optical Co., Ltd.) at wavelengths of 380 to 780 (n).
The reflectance was measured in the region m).

【0024】[0024]

【発明の効果】本発明によれば、広範囲のプラスチック
基材に応用可能な、とりわけ光学部材に好適な、スパッ
タリング法による密着性・耐熱性の良好な反射防止膜を
得ることができる。また、ハードコート処理等の複雑な
工程を経ることがないため大幅に作業効率が上がり、さ
らに成膜全工程をスパッタリング法にて行えることによ
り、一連の成膜行程を自動化できるメリットがある。
According to the present invention, it is possible to obtain an antireflection film which is applicable to a wide range of plastic base materials and is particularly suitable for optical members and has good adhesion and heat resistance by the sputtering method. Further, there is an advantage that a series of film forming steps can be automated because the work efficiency can be greatly improved because a complicated process such as hard coating process is not performed and the whole film forming process can be performed by the sputtering method.

【0025】[0025]

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1による反射防止膜の膜構成を示す図で
ある。
FIG. 1 is a diagram showing a film configuration of an antireflection film according to Example 1.

【図2】比較例1による反射防止膜の膜構成を示す図で
ある。
2 is a diagram showing a film configuration of an antireflection film according to Comparative Example 1. FIG.

【図3】実施例1の分光反射率を測定した結果を示すグ
ラフである。
3 is a graph showing the results of measuring the spectral reflectance of Example 1. FIG.

【図4】実施例2の分光反射率を測定した結果を示すグ
ラフである。
FIG. 4 is a graph showing the results of measuring the spectral reflectance of Example 2.

【図5】比較例1の分光反射率を測定した結果を示すグ
ラフである。
5 is a graph showing the results of measuring the spectral reflectance of Comparative Example 1. FIG.

【0026】[0026]

【符号の説明】[Explanation of symbols]

a: プラスチック基板 b: 金属膜 cおよびe: 金属酸化物1(高屈折率) dおよびf: 金属酸化物2(低屈折率) a: plastic substrate b: Metal film c and e: Metal oxide 1 (high refractive index) d and f: Metal oxide 2 (low refractive index)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】スパッタリング法によりプラスチック基材
表面へ反射防止膜を作製する際、該基材表面に予め中間
層として金属膜を導入形成しておくことを特徴とする反
射防止膜の作製方法。
1. A method for producing an antireflection film, comprising the steps of: when an antireflection film is produced on the surface of a plastic substrate by a sputtering method, a metal film is previously formed as an intermediate layer on the surface of the substrate.
【請求項2】金属膜の導入形成が、スパッタリング法に
よることを特徴とする請求項1記載の反射防止膜の作製
方法。
2. The method for producing an antireflection film according to claim 1, wherein the metal film is introduced and formed by a sputtering method.
【請求項3】金属膜を形成する金属が、チタニウム、ケ
イ素、アルミニウム、亜鉛、ジルコニウム、タンタルお
よびマグネシウムからなる群から選択された一つ以上も
のであることを特徴とする請求項1又は2記載の反射防
止膜の作製方法。
3. The metal forming the metal film is one or more selected from the group consisting of titanium, silicon, aluminum, zinc, zirconium, tantalum and magnesium. Method for producing antireflection film of the above.
【請求項4】金属膜を形成する金属が、チタニウム又は
ケイ素であることを特徴とする請求項1〜3のいずれか
に記載の反射防止膜作製方法。
4. The method for producing an antireflection film according to claim 1, wherein the metal forming the metal film is titanium or silicon.
【請求項5】金属膜の膜厚(d)が10(nm)≦d≦30
(nm)であることを特徴とする請求項1〜4のいずれかに
記載の反射防止膜の作製方法。
5. The film thickness (d) of the metal film is 10 (nm) ≦ d ≦ 30.
(nm) is a manufacturing method of the antireflection film in any one of Claims 1-4 characterized by the above-mentioned.
【請求項6】該プラスチック基材が透明耐熱樹脂である
ことを特徴とする請求項1〜5のいずれかに記載の反射
防止膜の作製方法。
6. The method for producing an antireflection film according to claim 1, wherein the plastic substrate is a transparent heat resistant resin.
【請求項7】反射防止膜が金属酸化物を多層化してなる
ことを特徴とする請求項1〜6のいずれかに記載の反射
防止膜の作製方法。
7. The method for producing an antireflection film according to claim 1, wherein the antireflection film is a multilayered structure of metal oxides.
JP2002068587A 2002-03-13 2002-03-13 Method for manufacturing antireflection film having favorable adhesiveness Pending JP2003270402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002068587A JP2003270402A (en) 2002-03-13 2002-03-13 Method for manufacturing antireflection film having favorable adhesiveness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002068587A JP2003270402A (en) 2002-03-13 2002-03-13 Method for manufacturing antireflection film having favorable adhesiveness

Publications (1)

Publication Number Publication Date
JP2003270402A true JP2003270402A (en) 2003-09-25

Family

ID=29199653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002068587A Pending JP2003270402A (en) 2002-03-13 2002-03-13 Method for manufacturing antireflection film having favorable adhesiveness

Country Status (1)

Country Link
JP (1) JP2003270402A (en)

Similar Documents

Publication Publication Date Title
US9459379B2 (en) Optical member and method for producing same
JP3808917B2 (en) Thin film manufacturing method and thin film
JP5268931B2 (en) Method for producing nanostructures on plastic surfaces
CN111621756B (en) Method for preparing crystalline transparent alumina film by room temperature sputtering
CN114335392B (en) Preparation process of anti-reflection film for OLED flexible display
JP2001295032A (en) Optical composite thin film deposition method and optical article using it
WO2018188072A1 (en) OPTICS AL-MIRROR WITH HIGH VOLUME FRACTION SiCp/Al COMPOSITE-TITANIUM ALLOY-BISMUTHATE GLASS METAL PLUS DIELECTRIC MULTIPLE FILMS AND METHOD FOR MANUFACTURING THE SAME
US8512867B2 (en) Coated glass article and method for manufacturing same
JPH01273001A (en) Antireflection film of optical parts made of synthetic resin
US8304100B2 (en) Coated glass and method for making the same
US11091830B2 (en) Moth-eye transfer mold, method of manufacturing moth-eye transfer mold, and method of transferring moth-eye structure
JP2003270402A (en) Method for manufacturing antireflection film having favorable adhesiveness
TWI615494B (en) Closed high energy magnetron sputtering device for coating optical hard film and manufacturing method thereof
JP5667896B2 (en) Anti-fingerprint decorative film and method for producing anti-fingerprint decorative film
US7033855B2 (en) Optical component and method of manufacturing the same
JPH06306591A (en) Production of water-repellent hard-coated coating film
JP3689923B2 (en) Method for producing plastic film having antireflection film
WO2022156820A1 (en) Metal substrate coatings
JP2009093068A (en) Method of manufacturing scratch-resistant article
JP4060898B2 (en) Synthetic resin spectacle lens manufacturing method
CN116288277A (en) Preparation method of high-transmittance optical lens
JP3332271B2 (en) Reflecting mirror and manufacturing method thereof
JP2005241740A (en) Manufacturing method for antireflection film
JP3353944B2 (en) Antireflection film for optical component and optical component formed with this antireflection film
JPH04132639A (en) Heat ray screening glass