JP2003268580A - Method of pickling stainless steel - Google Patents

Method of pickling stainless steel

Info

Publication number
JP2003268580A
JP2003268580A JP2002115509A JP2002115509A JP2003268580A JP 2003268580 A JP2003268580 A JP 2003268580A JP 2002115509 A JP2002115509 A JP 2002115509A JP 2002115509 A JP2002115509 A JP 2002115509A JP 2003268580 A JP2003268580 A JP 2003268580A
Authority
JP
Japan
Prior art keywords
acid
pickling
urea
stainless steel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002115509A
Other languages
Japanese (ja)
Inventor
Masato Yamamoto
正登 山本
Yoshihiro Shiraishi
良弘 白石
Kozo Tao
幸三 田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Chemicals Inc
Original Assignee
Yamamoto Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Chemicals Inc filed Critical Yamamoto Chemicals Inc
Priority to JP2002115509A priority Critical patent/JP2003268580A/en
Publication of JP2003268580A publication Critical patent/JP2003268580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Cleaning By Liquid Or Steam (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of pickling stainless steel giving deodorization effect and a safe working environment by effectively decomposing nitrous acid gas produced by the reaction between stainless steel and nitric acid, and effectively shielding gas and mist caused from the surface of a pickling liquid, and to provide an environment improving effect by reusing and reproducing an aged and deteriorated pickling liquid. <P>SOLUTION: Solid urea is bound to a suspended body, or urea impregnated into a porous substance is bound to a suspended body, and the bound material is floated near the boundary of a liquid, and pickling is performed while the urea is slowly eluted, so that harmful nitrous acid gas caused on the pickling is decomposed, and simultaneously, the occurrence of acid mist and gas produced from the boundary of the liquid is suppressed to provide deodorization and safe working environment. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、ステンレス鋼の切断か
ら溶接、組立、熱処理等の諸工程に於て発生する焼け、
さび、汚れを除去するための酸洗作業方法において、硝
酸と弗酸若しくは硝酸と酸性弗化アンモニウムとを主剤
とする混酸の液面付近に、尿素の適量を結束して浮遊さ
せた浮遊物体から尿素を徐々に溶出降下させることによ
り、酸洗反応中に混酸の底部から発生、上昇する有害な
亜硝酸との反応を容易にさせながら安全無害な窒素と炭
酸ガスとに分解させると共に、さらに該尿素を結束した
浮遊性物体による混酸と気相との遮蔽効果により、混酸
表面から飛散するガスやミストを効果的に遮蔽して無臭
化の実現と安全な作業環境とを提供すると共に、またさ
らに、性能が低下して老化したこの種の混酸に適用する
ことにより、その酸洗能力を飛躍的に回復させることを
目的とするステンレス鋼の酸洗方法に係る。 【0002】 【従来の技術】従来この種の酸洗作業としては、ステン
レス鋼が先進国から技術導入された有史以来、硝酸に弗
酸若しくは酸性弗化アンモニウムを配合した混酸(以下
通称の「硝弗酸」と呼称する)が専ら一般に採用されて
きた。これに対し、ステンレス鋼管を抽伸する製造工程
などに於ては、硝弗酸の寿命延長を目的として硝弗酸に
尿素を添加する方法が採用されてきたが、尿素の添加量
ならびに酸洗温度が適当でないと(イ)硝弗酸の消耗が
著しい(ロ)ステンレス鋼管の母材に肌荒れを生じる
(ハ)尿素の反応効率が悪い(二)尿素の加水分解が起
きるなどの諸問題があり、その対策として一部に於て
は、特開昭54−123529号「ステンレス鋼の酸洗
方法」をもって、尿素の効率的な利用と弗素の寿命延長
を可能にした旨が述べられている。その具体的な実施例
として硝弗酸の液温が20℃から50℃が適当であり、
また尿素の添加法としては硝弗酸中の亜硝酸に対する尿
素のモル比が1未満となるように、しかも数回に分けて
添加することが好ましく、一定量の尿素を添加するにし
てもその全量を分割しながら添加した方が酸洗し得るス
テンレス鋼の表面積を大幅に増大し得ることを表1のデ
ーターに示している。 このような尿素を添加する酸洗法は、ステンレスが硝酸
と反応して発生する亜硝酸ガスを窒素と炭酸ガスとに分
解し得るものの、尿素を硝弗酸溶液中に添加すると硝弗
酸の底部に堆積してしまって溶解し難く、また酸洗によ
って発生する亜硝酸との反応が効果的に行われず、さら
に液表面から蒸発する硝弗酸の蒸気圧の発生を防ぐ具体
策がないため、一般にこの種酸洗現場に於ては亜硝酸に
起因する耐え難い悪臭が漂い、労働安全衛生の観点から
も作業環境の改善策が強く望まれていた。 【0003】 【発明が解決しょうとする課題】本発明は、硝弗酸に尿
素を添加する公知の酸洗方法の欠点として、尿素の一定
量を分割的に添加せざるを得ない煩雑さと、さらに添加
した尿素が溶けにくいため硝弗酸溶液の底部に散在して
酸洗作業に伴って発生する亜硝酸との反応が妨げられ効
果的に行われず、またこれに硝弗酸自体から発生するも
のと重なった強烈な悪臭と危険性とを伴う亜硝酸ガスが
発生するため、換気設備のない通常の室内での作業は全
く不可能であり、例え開放的な屋外作業に於ても防毒マ
スクなどの保護具なしでは作業出来ない程に劣悪なこの
種酸洗作業の改善と、さらに使用中の硝弗酸液の延命な
らびに老化、劣化した硝弗酸液の復活再生使用を図るこ
とを目的とする。 【0004】 【課題を解決するための手段】上述の課題に鑑み、これ
を解決するための手段として、次の如く提案する。即ち
その要旨とするところは、亜硝酸に対するモル比が1程
度の量の固形尿素を浮遊体に直接結束するか或は不織布
又は耐酸性多孔性物質に含浸させたうえで浮遊体に結束
したものを液表面付近に浮かせることにより、液表面か
らの硝弗酸蒸気の発生を抑制しながら液表面付近から下
方に向けて徐々に尿素を溶出させながら酸洗を行うこと
を特徴とする酸洗方法。 【0005】 【作用】硝弗酸溶液または硝酸と酸性弗化アンモニウム
を主剤とする混酸の液面付近で徐々に尿素を溶出させな
がらステンレスの酸洗を行うと、ステンレス鋼が硝酸と
反応し、(1)式に基づいて有害な亜硝酸を発生し、 この亜硝酸は液中に溶解し、その一部は亜硝酸ガスとな
って液表面に向かって上昇して行くが、ここで、液表面
に存在する尿素含有浮遊体から徐々に溶解降下する尿素
と効率的に接触して反応し、(2)式に示す如く全く無
害な窒素と炭酸ガスとに分解される。 また一方、硝弗酸溶液または硝酸と酸性弗化アンモニウ
ムを主剤とする混酸はそれ自体に蒸気圧を持っているた
め、液温度に応じて液表面から気相へと蒸発して行く
が、本発明方法によれば、液表面付近に存在する浮遊体
の遮蔽効果によって、蒸気発生は液相から気相へ移行す
るのを効果的に防ぐ事が出来る。 【0006】 【実施例】実施例1 尿素含有浮遊体の亜硝酸分解作用と蒸気発散の遮蔽効果
を確認するため、実験室的試験として表2に示す記号
A、B及びCの組成に調合した硝弗酸溶液の各2リット
ルを気相ガス濃度測定用容器に入れ、ステンレスSUS
304試験板(溶接焼けによるスケール付)を容器底部
に挿入、次いで尿素含有浮遊体を液表面の約3分の2を
覆うように添加した後、容器の蓋をして密閉状態にし、
25℃で30分間放置した後、その気相ガスをサンプリ
ングし、ガス中の亜硝酸ガス濃度をガス検知管で測定し
た。本試験では浮遊体は以下に記述する天ぷら方式で製
造した物を使用したが、トンネル炉方式で製造した物を
使用しても性能に大差はなかった。 【尿素含有浮遊体の製造法】天ぷら方式:尿素の分解
温度以下で溶融した尿素溶液の中にポリプロピレン製等
の不織布または発泡ガラスのような多孔性物質を浸漬
し、尿素を含浸させ、引き上げた後、冷却固化させる。 トンネル炉方式:固形尿素(通常、粒状)を適当な大
きさの容器に入れ、次いでポリプロピレン製等不織布ま
たは多孔性物質で覆い、加熱されたトンネル炉を通過さ
せ、その間に溶融した尿素をプラスチック性不織布又は
多孔性物質に含浸させ、冷却して尿素含浸固化体を作
る。 このままでは硝弗酸溶液上の液面に浮遊させる事は出
来ないので、発泡性スチロールか気泡性緩衝材(通称、
エアーキャップ)若しくは中空状の浮袋などの浮遊性物
体に前記またはを直接または間接的に結束する。 結束方法としては、又はを浮遊性物体と共に通気
性のあるシート、又は片面が通気性の無いポリエチレン
等のプラスチックシートでできた袋に収納して硝弗酸溶
液等に浮遊する如く添加して使用する。 【表2】 気相中の亜硝酸ガス濃度測定結果を表3に示す。本結果
から尿素添加による亜硝酸分解効果及び浮遊体添加によ
る遮蔽効果が確認された。 【表3】 実施例2 市販の硝弗酸(ラスノンウエル製造元萬商株式会社)に
ついて、尿素含有浮遊体の亜硝酸分解作用と蒸気発散の
遮蔽効果を確認するため、尿素を添加した物、更には尿
素含有浮遊体を添加した物について試験を行った。表4
に試験に供した市販硝弗酸の組成を示す。気相中の亜硝
酸ガス濃度測定法は実施例1と同様で、市販硝弗酸溶液
の各2リットルとステンレス試験板(溶接焼けによるス
ケール付)を気相ガス濃度測定用密閉容器に入れ、25
℃で30分間放置した後、その気相中の亜硝酸ガス濃度
をガス検知管で測定した。 【表4】気相中の亜硝酸ガス濃度測定結果を表5に示す。本結果
から尿素添加による亜硝酸分解効果と浮遊体添加による
遮蔽作用とによる亜硝酸ガスの絶大な飛散防止効果が確
認された。 【表5】 実施例3 尿素添加及び浮遊体添加による酸洗効果を確認するた
め、実施例1の表2で示した調合硝弗酸を試験液とし
て、ステンレスSUS304試験板(溶接焼けによるス
ケール付)を15分間浸漬して溶解減量を測定した。試
験結果を表5に示す。尿素含有浮遊体を添加した硝弗酸
溶液での酸洗速度は尿素を予め溶解した硝弗酸溶液に比
べ、やや酸洗速度は低下するものの、尿素の無添加に比
べて顕著な効果が有ることは明らかである。 【表5】 実施例4 実施例2と同じ市販の硝弗酸について尿素添加及び浮遊
体添加による酸洗効果を確認するため、実施例2の表4
に示した試験液にステンレスSUS304板(溶接焼け
によるスケール付)を15分間浸漬して溶解減量を測定
した。試験結果を表6に示す。尿素含有浮遊体を添加し
た硝弗酸溶液での酸洗速度は尿素を完全溶解した硝弗酸
溶液に比べ、やや酸洗速度は低下するものの、尿素の無
添加に比べて顕著な効果が有ることは明らかである。 【表6】 実施例5 第1図は調合した硝酸13.5重量%、弗酸3.6重量
%の常温硝弗酸溶液を使用して、尿素含有浮遊体添加前
後におけるSUS304材を酸洗した時の母材溶解量と
酸洗速度との関係を示すものである。これによると浮遊
体の添加により新液の時点では酸洗速度が向上し、又初
期酸洗速度の約10分の1程度に低下した劣化液の場合
でも酸洗速度が約20%向上、回復した。また、気相中
の亜硝酸ガス濃度を浮遊体添加後に検知管法により測定
したが、何れの測定結果も0.06ppm乃至は以下で
あった。これより尿素含有浮遊体の添加により、性能が
劣化した硝弗酸の酸洗能が向上、再生すると共に亜硝酸
ガスの気相中への発散が抑制されていることが確認され
た。 実施例6 約10年間使用して性能が劣化した市販硝弗酸液に尿素
含有浮遊体を添加してSUS304試験板(溶接焼けに
よるスケール付)を15分間浸漬してステンレスの溶解
減量と気相中の亜硝酸ガス濃度を測定した。試験結果を
表7に示す。これより尿素含有浮遊体の添加により劣化
硝弗酸の酸洗能力が向上して再生使用が可能になると共
に亜硝酸ガスの気相中への発散も抑制されていることを
示している。 【表7】 【0007】 【発明の効果】本発明に依れば、尿素の適量を液面上に
浮遊させて添加することにより次のような卓越した効果
が期待できる。 1.有害な亜硝酸を無害な窒素と炭酸ガスとに分解し効
果的に安全作業が出来る。 2.浮遊性物体による遮蔽作用によってガスとミストの
発生飛散が効果的に防止され、安全、環境保全上有益で
ある。 3.定期的に適量を添加すれば、老化液の再生効果が大
きくコスト低減とひいては公害、環境破壊防止にも役立
つ。 4.酸洗速度も効果的に速まる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to burns generated in various steps such as cutting, welding, assembling and heat treatment of stainless steel.
In the pickling operation method for removing rust and dirt, an appropriate amount of urea is bound and floated near the liquid surface of a mixed acid mainly composed of nitric acid and hydrofluoric acid or nitric acid and ammonium acid fluoride. By gradually dissolving and lowering the urea, the urea is decomposed into safe and harmless nitrogen and carbon dioxide while facilitating the reaction with the harmful nitrous acid generated and raised from the bottom of the mixed acid during the pickling reaction. The shielding effect of the mixed acid and gas phase by the buoyant substance bound with urea effectively shields the gas and mist scattered from the mixed acid surface to provide odorless realization and a safe working environment, and furthermore The present invention relates to a method for pickling stainless steel, which aims to drastically restore its pickling ability by applying to this kind of mixed acid whose performance has deteriorated and aged. 2. Description of the Related Art Conventionally, this type of pickling operation has been a mixed acid of nitric acid and hydrofluoric acid or acidic ammonium fluoride (hereinafter referred to as "nitrogen") since the history of stainless steel technology introduction from developed countries. Hydrofluoric acid) has been exclusively employed exclusively. On the other hand, in the manufacturing process of drawing stainless steel pipes, a method of adding urea to nitric acid has been adopted for the purpose of extending the life of nitric acid, but the amount of urea added and the pickling temperature If it is not appropriate, (a) nitric hydrofluoric acid will be significantly consumed (b) The surface of the stainless steel tube base material will be roughened (c) Inefficient reaction of urea (2) There will be various problems such as urea hydrolysis In part, as a countermeasure, it is stated that Japanese Patent Application Laid-Open No. 54-123529 "Method for pickling stainless steel" enables efficient use of urea and extension of the life of fluorine. As a specific example, the liquid temperature of nitric hydrofluoric acid is suitably from 20 ° C to 50 ° C,
The method of adding urea is preferably such that the molar ratio of urea to nitrite in nitric hydrofluoric acid is less than 1, and it is preferably added in several portions. The data in Table 1 shows that the addition of the total amount while splitting can greatly increase the surface area of the stainless steel that can be pickled. In the pickling method in which such urea is added, the nitrite gas generated by the reaction of stainless steel with nitric acid can be decomposed into nitrogen and carbon dioxide gas. It is difficult to dissolve because it accumulates on the bottom, does not react effectively with nitrous acid generated by pickling, and there is no specific measure to prevent the generation of vapor pressure of nitric hydrofluoric acid evaporating from the liquid surface. In general, at the seed pickling site, an unbearable odor caused by nitrous acid drifts, and measures for improving the working environment have been strongly desired from the viewpoint of occupational safety and health. DISCLOSURE OF THE INVENTION The disadvantages of the known pickling method of adding urea to nitric hydrofluoric acid are that the present invention has a disadvantage that a fixed amount of urea must be added in a divided amount, Furthermore, since the added urea is difficult to dissolve, the reaction with nitrous acid which is scattered at the bottom of the nitric hydrofluoric acid solution and generated during the pickling operation is hindered and is not effectively performed, and it is generated from nitric hydrofluoric acid itself. The production of nitrous acid with a strong odor and a dangerous odor that overlaps with anything makes it impossible to work in a normal room without ventilation equipment at all. The purpose is to improve the pickling work, which is so poor that it cannot be done without protective equipment, and to prolong the life of the nitric hydrofluoric acid solution in use and to regenerate and reuse the aged and deteriorated nitric hydrofluoric acid solution. And [0004] In view of the above problems, the following is proposed as means for solving the problems. That is, the gist is that solid urea having a molar ratio to nitrite of about 1 is directly bound to the floating body or is impregnated with a nonwoven fabric or an acid-resistant porous material and then bound to the floating body. A pickling method characterized by floating acid near the liquid surface to thereby suppress the generation of nitric hydrofluoric acid vapor from the liquid surface and performing pickling while gradually eluting urea downward from near the liquid surface. . When stainless steel is pickled while urea is gradually eluted near the liquid surface of a nitric hydrofluoric acid solution or a mixed acid containing nitric acid and ammonium acid fluoride as main components, the stainless steel reacts with nitric acid, Generating harmful nitrous acid based on the formula (1), This nitrous acid dissolves in the liquid, and a part of it becomes nitrous acid gas and rises toward the liquid surface, where urea gradually dissolves and drops from the urea-containing suspension present on the liquid surface. And reacts efficiently, and is decomposed into completely harmless nitrogen and carbon dioxide gas as shown in equation (2). On the other hand, a nitric hydrofluoric acid solution or a mixed acid mainly composed of nitric acid and ammonium acid fluoride has its own vapor pressure, and evaporates from the liquid surface to a gas phase according to the liquid temperature. According to the method of the present invention, the generation of vapor can be effectively prevented from shifting from the liquid phase to the gas phase due to the shielding effect of the floating body existing near the liquid surface. EXAMPLE 1 In order to confirm the nitrite decomposition action and the vapor shielding effect of a urea-containing suspension, the compositions of symbols A, B and C shown in Table 2 were prepared as laboratory tests. Put 2 liters each of nitric hydrofluoric acid solution into a gas phase gas concentration measurement container, and use stainless steel SUS
A 304 test plate (with a scale by welding burn) was inserted into the bottom of the container, and then a urea-containing suspension was added so as to cover about two thirds of the liquid surface.
After standing at 25 ° C. for 30 minutes, the gas phase gas was sampled, and the concentration of nitrous acid gas in the gas was measured using a gas detector tube. In this test, a floating body manufactured by a tempura method described below was used, but there was no significant difference in performance even when a thing manufactured by a tunnel furnace method was used. [Manufacturing method of urea-containing suspension] Tempura method: A porous material such as a nonwoven fabric such as polypropylene or a foamed glass is immersed in a urea solution melted at a temperature lower than the decomposition temperature of urea, impregnated with urea, and pulled up. Then, it is cooled and solidified. Tunnel furnace method: Solid urea (usually granular) is placed in an appropriately sized container, and then covered with a non-woven fabric such as polypropylene or covered with a porous material, and then passed through a heated tunnel furnace, during which the molten urea is converted into a plastic material. A non-woven fabric or a porous material is impregnated and cooled to form a urea-impregnated solid. Since it is not possible to float on the liquid surface of the nitric hydrofluoric acid solution as it is, foamable styrene or foamed cushioning material (commonly known as
The above or the above is directly or indirectly bound to a floating object such as an air cap) or a hollow floating bag. As a method of binding, or together with a floating object, put it in a breathable sheet or a bag made of a plastic sheet such as polyethylene with non-permeable air and add it so that it floats in a nitric hydrofluoric acid solution etc. I do. [Table 2] Table 3 shows the measurement results of the concentration of nitrous acid gas in the gas phase. From these results, it was confirmed that the nitrite decomposition effect by adding urea and the shielding effect by adding floating bodies were observed. [Table 3] Example 2 A commercially available nitric hydrofluoric acid (manufactured by Rasnon Well Co., Ltd.) to which urea was added, and further a urea-containing suspension, in order to confirm the nitrite decomposition action and the vapor shielding effect of the urea-containing suspension A test was conducted on the material to which was added. Table 4
Shows the composition of commercially available nitric hydrofluoric acid used for the test. The method for measuring the concentration of nitrous acid gas in the gas phase was the same as that in Example 1. 2 liters of a commercially available nitric hydrofluoric acid solution and a stainless steel test plate (with a scale by welding burn) were placed in a closed container for measuring the gas phase gas concentration. 25
After standing at 30 ° C. for 30 minutes, the concentration of nitrous acid gas in the gas phase was measured with a gas detector tube. [Table 4] Table 5 shows the measurement results of the concentration of nitrous acid gas in the gas phase. From these results, it was confirmed that the nitrite decomposition effect due to the addition of urea and the shielding effect due to the addition of the suspended solid were extremely effective in preventing the nitrite gas from being scattered. [Table 5] Example 3 In order to confirm the pickling effect by the addition of urea and the addition of a floating body, a stainless steel SUS304 test plate (with a scale by welding burn) was used for 15 minutes using the prepared nitric hydrofluoric acid shown in Table 2 of Example 1 as a test solution. It was immersed and the loss on dissolution was measured. Table 5 shows the test results. The pickling rate of the nitric acid solution to which the urea-containing suspension is added is slightly lower than that of the nitric acid solution in which urea is dissolved in advance, but has a remarkable effect as compared to the case where no urea is added. It is clear. [Table 5] Example 4 In order to confirm the pickling effect of the same commercially available nitric hydrofluoric acid as in Example 2 by the addition of urea and the addition of a suspension, Table 4 of Example 2 was used.
The stainless steel SUS304 plate (with scale by welding burn) was immersed in the test solution shown in (1) for 15 minutes, and the dissolution loss was measured. Table 6 shows the test results. The pickling rate of the nitric acid solution to which the urea-containing suspension is added is slightly lower than that of the nitric acid solution in which urea is completely dissolved, but has a remarkable effect as compared to the case where no urea is added. It is clear. [Table 6] Example 5 FIG. 1 shows a mother of acid-washed SUS304 material before and after the addition of a urea-containing suspension using a prepared nitric acid hydrofluoric acid solution of 13.5% by weight of nitric acid and 3.6% by weight of hydrofluoric acid at room temperature. It shows the relationship between the amount of material dissolved and the pickling rate. According to this, the pickling speed is improved at the time of the new solution by the addition of the floating body, and the pickling speed is improved by about 20% even in the case of the deteriorated solution which is reduced to about 1/10 of the initial pickling speed, and is recovered. did. Further, the concentration of nitrous acid gas in the gas phase was measured by a detector tube method after the addition of the floating body, and all the measurement results were 0.06 ppm or less. From these results, it was confirmed that the addition of the urea-containing suspension improved the pickling ability of the nitric hydrofluoric acid having deteriorated performance, regenerated the nitric hydrofluoric acid, and suppressed the emission of nitrous acid gas into the gas phase. Example 6 A SUS304 test plate (with a scale by welding burn) was immersed for 15 minutes in a commercially available nitric hydrofluoric acid solution whose performance had deteriorated after being used for about 10 years, and the stainless steel was immersed for 15 minutes. The nitrite gas concentration in the sample was measured. Table 7 shows the test results. This indicates that the addition of the urea-containing suspension enhances the pickling ability of the degraded nitric hydrofluoric acid, thereby enabling reuse and regenerating, and also suppressing the emission of nitrous acid gas into the gas phase. [Table 7] According to the present invention, the following excellent effects can be expected by adding an appropriate amount of urea suspended on a liquid surface. 1. Harmful nitrous acid is decomposed into harmless nitrogen and carbon dioxide gas, and effective safe work can be performed. 2. Gas and mist are effectively prevented from being scattered due to the shielding effect of the floating object, which is beneficial for safety and environmental protection. 3. If an appropriate amount is added regularly, the regenerating effect of the aging liquid is large, which contributes to cost reduction and furthermore, prevention of pollution and environmental destruction. 4. The pickling speed is also effectively increased.

【図面の簡単な説明】 【図1】本図は尿素含有浮遊体添加の効果を示すもの
で、浮遊体添加前後のステンレス溶解量と酸洗速度の関
係を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the effect of the addition of a urea-containing suspension, and shows the relationship between the amount of dissolution of stainless steel before and after the addition of the suspension and the pickling rate.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3B201 AA46 AB01 BB02 BB96 CB12 4K053 PA03 PA13 QA01 QA04 RA16 RA17 RA25 RA51 TA16 YA27 YA28 YA30 ZA10    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 3B201 AA46 AB01 BB02 BB96 CB12                 4K053 PA03 PA13 QA01 QA04 RA16                       RA17 RA25 RA51 TA16 YA27                       YA28 YA30 ZA10

Claims (1)

【特許請求の範囲】 【請求項1】 硝酸と弗酸若しくは硝酸と酸性弗化アン
モニウムとを主成分とする混酸を用いるステンレス鋼の
酸洗方法において、尿素の適量を発泡スチロールか気泡
性緩衝材若しくは中空状の浮袋などの浮遊性物体に結束
したうえで、硝酸と弗酸若しくは硝酸と酸性弗化アンモ
ニウムとを主剤とする混酸表面に浮遊する如く該混酸槽
中に添加し、該尿素を該混酸の液面付近において徐々に
溶解させることによって酸洗反応中に生成する有害な亜
硝酸を安全無害な窒素と炭酸ガスとに分解させ、さらに
該浮遊性物体が該表面を覆うことによる混酸と気相との
遮断効果により、該混酸表面から発生するガスやミスト
を効果的に遮蔽して無臭化と安全な作業環境を提供する
と共に酸洗性能の向上を可能にしたことを特徴とするス
テンレス鋼の酸洗方法。
Claims: 1. A method for pickling stainless steel using a mixed acid containing nitric acid and hydrofluoric acid or nitric acid and ammonium acid fluoride as main components. After binding to a floating body such as a hollow floating bag, the urea is added to the mixed acid tank so as to float on a mixed acid surface mainly containing nitric acid and hydrofluoric acid or nitric acid and ammonium acid fluoride, and the urea is mixed with the mixed acid. The harmful nitrous acid generated during the pickling reaction is decomposed into safe and harmless nitrogen and carbon dioxide by gradually dissolving the liquid near the liquid surface. Gas and mist generated from the mixed acid surface are effectively shielded by the intercepting effect with the phase to provide odorless and safe working environment and improve pickling performance. Pickling method of stainless steel.
JP2002115509A 2002-03-12 2002-03-12 Method of pickling stainless steel Pending JP2003268580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002115509A JP2003268580A (en) 2002-03-12 2002-03-12 Method of pickling stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002115509A JP2003268580A (en) 2002-03-12 2002-03-12 Method of pickling stainless steel

Publications (1)

Publication Number Publication Date
JP2003268580A true JP2003268580A (en) 2003-09-25

Family

ID=29207709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002115509A Pending JP2003268580A (en) 2002-03-12 2002-03-12 Method of pickling stainless steel

Country Status (1)

Country Link
JP (1) JP2003268580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107470189A (en) * 2017-08-22 2017-12-15 苏州双金实业有限公司 A kind of clean method of stainless steel surfaces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107470189A (en) * 2017-08-22 2017-12-15 苏州双金实业有限公司 A kind of clean method of stainless steel surfaces

Similar Documents

Publication Publication Date Title
EP2059327B1 (en) Removal of carbon dioxide from combustion exhaust gases
DE69503937T2 (en) Process for removing carbon dioxide from combustion gases
CN101502741B (en) Method for removing SOx from gas using polyethylene glycol
JP5047481B2 (en) Gas purification method
CN107261767B (en) Flue gas decarbonizing agent and flue gas decarbonizing method
CA2876219A1 (en) In situ generation of polysulfide ions using elemental sulfur for improved corrosion control, cyanide management, mercury management, arsine management and performance and reliability of acid gas removal equipment
JP6614774B2 (en) Method for removing CO2 and NOx from waste gas using catalyst
CN103623689A (en) Method for removing SOx in gases with polyol complex solution
KR20160055207A (en) Method for removing sox from gas using modified polyethylene glycol
EP2520351B1 (en) Absorbing solution and recovery method for carbon dioxide
US6036888A (en) Corrosion inhibitor for alkanolamine units
US4892718A (en) Decontamination of gases by scrubbing
US4344863A (en) Process for defoaming acid gas scrubbing solutions and defoaming solutions
JP2009213974A (en) Aqueous solution and method of absorbing and desorption-recovering effectively carbon dioxides in gas
JP2003268580A (en) Method of pickling stainless steel
JP2010172871A (en) Adsorbent of lower aldehydes and method for manufacturing the same
JP2015054279A (en) Carbon dioxide absorbent and separation and recovery method of carbon dioxide using the same
JP5277895B2 (en) Acid deposit removal agent and method for removing acid deposit
JP2007000702A (en) Liquid absorbent, and device and method for removing co2 or h2s, or both
JP5891084B2 (en) Scale removing agent, scale removing method and scale removing apparatus
KR20010023111A (en) Corrosion Inhibitor for Alkanolamine Units
KR20010023110A (en) Corrosion Inhibitor for Alkanolamine Units
CN111672540A (en) Desulfurization catalyst and preparation method thereof
JP3216868B2 (en) Decomposition method of halide gas
JPH0720530B2 (en) Corrosion control method for steel in carbon dioxide absorption process