JP5891084B2 - Scale removing agent, scale removing method and scale removing apparatus - Google Patents

Scale removing agent, scale removing method and scale removing apparatus Download PDF

Info

Publication number
JP5891084B2
JP5891084B2 JP2012070710A JP2012070710A JP5891084B2 JP 5891084 B2 JP5891084 B2 JP 5891084B2 JP 2012070710 A JP2012070710 A JP 2012070710A JP 2012070710 A JP2012070710 A JP 2012070710A JP 5891084 B2 JP5891084 B2 JP 5891084B2
Authority
JP
Japan
Prior art keywords
scale
silica
solution
tropolone
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012070710A
Other languages
Japanese (ja)
Other versions
JP2013202424A (en
Inventor
拓史 横山
拓史 横山
賢治 宗宮
賢治 宗宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
JFE Engineering Corp
Original Assignee
Kyushu University NUC
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, JFE Engineering Corp filed Critical Kyushu University NUC
Priority to JP2012070710A priority Critical patent/JP5891084B2/en
Publication of JP2013202424A publication Critical patent/JP2013202424A/en
Application granted granted Critical
Publication of JP5891084B2 publication Critical patent/JP5891084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

本発明は、トロポロン類を有するスケール除去剤、および該除去剤を用いた地熱発電設備において発生するシリカ系スケールを除去するための除去方法に関する。   The present invention relates to a scale removing agent having tropolones and a removing method for removing silica-based scale generated in a geothermal power generation facility using the removing agent.

地熱発電設備では熱水中に溶解している炭酸カルシウム、硫酸カルシウム、硫化カルシウム、燐酸カルシウム、水酸化マグネシウム、珪酸カルシウムなどが析出したスケールが生じる。特にシリカを含んだスケールは全般的に熱伝導度が悪く、硬いため、熱交換設備などにおいて大きな問題となる。   In a geothermal power generation facility, a scale in which calcium carbonate, calcium sulfate, calcium sulfide, calcium phosphate, magnesium hydroxide, calcium silicate, etc., dissolved in hot water is deposited. In particular, the scale containing silica has a poor thermal conductivity and is generally hard, which is a big problem in heat exchange facilities.

また、地熱発電設備の還元井周辺の貯留層においてもシリカ系スケールの発生が確認されている。このスケールが発生すると貯留層における透水性が著しく悪くなり、還元した熱水の拡散を妨げるようになり、還元井の性能を経年的に劣化させる。還元井の性能が悪くなると、還元が十分に出来ない状況になる。最終的に性能が落ちた還元井は廃坑となり、設備ユーザーは新しく熱水を還元する井戸を掘りなおす必要がある。   In addition, generation of silica scale has been confirmed in the reservoir around the reduction well of the geothermal power generation facility. When this scale is generated, the water permeability in the reservoir layer is remarkably deteriorated and the diffusion of the reduced hot water is prevented, and the performance of the reducing well is deteriorated with time. If the performance of the reduction well deteriorates, it will be in a situation where it cannot be fully reduced. The reduction well that eventually fell in performance became an abandoned mine, and equipment users would need to re-dig a new well to reduce hot water.

地熱発電設備に発生するシリカ系スケールは熱水中のシリカが単独で無定形シリカとして析出する一般的なシリカスケールと、熱水中の金属カチオンと複合化した珪酸塩状のスケールの両者をさしている。スケールは結晶質ないし非晶質のいずれかの形態で存在し、具体的には珪酸アルミニウム、珪酸鉄、珪酸マグネシウムなどがある。   Silica-based scales generated in geothermal power generation facilities include both general silica scales where silica in hot water precipitates as amorphous silica alone and silicate scales complexed with metal cations in hot water. Yes. The scale exists in a crystalline or amorphous form, and specifically includes aluminum silicate, iron silicate, magnesium silicate, and the like.

シリカ系スケールの除去技術としてはフッ化水素酸やフッ化物を利用する技術が知られている(例えば、特許文献1、特許文献2)。このシリカ系スケール除去技術においては、フッ化水素酸やフッ化物に含まれるフッ化物イオンがシリカと反応し、シリカとフッ素の錯体を形成する形でスケールを溶解除去する。   As a technique for removing the silica-based scale, techniques using hydrofluoric acid or fluoride are known (for example, Patent Document 1 and Patent Document 2). In this silica-based scale removal technology, fluoride ions contained in hydrofluoric acid or fluoride react with silica to dissolve and remove scale in a form that forms a complex of silica and fluorine.

しかし、フッ化水素酸は劇物指定薬剤であり、スケール除去を行う作業環境としては極めて危険な環境となる。フッ化物についても、溶解力を高くしようと温度を上げるなどのことをすると毒性の高いフッ酸が揮発し、同様の危険な作業環境になる。さらにフッ化水素酸やフッ化物は対環境に対して非常に負荷の高い薬剤であり、大量に薬剤を使用するスケール除去作業ではその廃棄や排出に細心の注意が必要となる。   However, hydrofluoric acid is a deleterious substance-designated drug, and it is an extremely dangerous environment for removing scale. As for fluoride, when the temperature is raised to increase the dissolving power, highly toxic hydrofluoric acid is volatilized and a similar dangerous working environment is created. Furthermore, hydrofluoric acid and fluoride are chemicals that have a very high impact on the environment. In scale removal work that uses a large amount of chemicals, it is necessary to pay close attention to its disposal and discharge.

フッ化水素酸やフッ化物系以外の薬剤によるシリカ系スケール除去としては硝酸を用いたものもあるが、フッ素のような錯体溶解を示さないため、シリカ系スケールの除去能力が小さく、実用的ではない。   Nitric acid is used for removal of silica scale by chemicals other than hydrofluoric acid and fluoride. However, since it does not show complex dissolution like fluorine, the removal ability of silica scale is small and practical. Absent.

また、アルカリ溶液を用いたスケール除去方法もあるが、こちらもシリカ系スケールに対する溶解力はあるものの、珪酸塩スケールの溶解力が乏しく、実用的ではない。   There is also a scale removal method using an alkaline solution, which also has a dissolving power for silica-based scales, but has a poor silicate scale dissolving power and is not practical.

スケールの除去技術ではないものの、地熱発電設備の熱水配管などのスケール発生防止として硫酸などの酸を微量添加し、熱水のpHを調整する方法が採らえているケースもある(例えば、特許文献3、特許文献4)。   Although it is not a scale removal technology, there is a case where a method of adjusting the pH of hot water by adding a small amount of acid such as sulfuric acid to prevent the generation of scale in a hot water pipe of a geothermal power generation facility (for example, patent document) 3, Patent Document 4).

この方法はランニング費用も安く、多く用いられている。スケールの発生防止については、熱水におけるシリカ系スケールの溶解度はpHが小さいほど大きいため、可能なかぎりpHを小さく保つことが良いが、配管構成材料の腐食の問題でこの方法でもpHを6程度にまでしか下げることが出来ない。この程度のpH調整ではある程度の発生防止は認められるものの、地下の貯留層など地層の状況によっては地層に晒された瞬間に熱水のpHが高くなってしまい、その抑制効果を失う可能性が危惧されており、十分な効果が得られるか判らない。   This method has a low running cost and is widely used. In order to prevent the generation of scale, since the solubility of silica-based scale in hot water is larger as the pH is smaller, it is better to keep the pH as small as possible. Can only be lowered to Although this level of pH adjustment prevents a certain degree of occurrence, depending on the conditions of the formation such as the underground reservoir, the pH of hot water becomes high at the moment of exposure to the formation and there is a possibility of losing its suppression effect. I'm worried and I don't know if it will be effective enough.

また、実際にその処理を施している発電設備でも貯留層の閉塞が経年的に起こっている事例もある。   In addition, there are cases where the reservoir clogging has occurred over time even in the power generation facilities that are actually performing the treatment.

以上のように現時点では安全で十分な溶解力がある実用的な薬剤によるシリカ系スケールの除去方法がない。   As described above, at present, there is no method for removing silica-based scale with a practical chemical that is safe and has sufficient dissolving power.

特開昭63−179086号公報Japanese Patent Laid-Open No. 63-179086 特開昭63−179087号公報JP 63-179087 A 特開昭61−257220号公報JP 61-257220 A 特開平4−371214号公報JP-A-4-371214

本発明の課題は、地熱発電設備に発生するスケールの除去において、環境にやさしい薬剤を用いて安全にスケールを効率よく溶解し、除去する技術を提供することである。   An object of the present invention is to provide a technique for efficiently dissolving and removing scales safely using an environmentally friendly chemical in removing scales generated in geothermal power generation facilities.

本発明者らは、シリカ系スケールの化学除去について鋭意研究を重ねた結果、トロポロン類を利用することによりシリカ系スケールを安全にかつ効率よく除去できることを見出した。   As a result of intensive studies on chemical removal of silica-based scales, the present inventors have found that silica-based scales can be removed safely and efficiently by using tropolones.

本発明のスケール除去剤は、トロポロン類を含有することを特徴とするものである。   The scale remover of the present invention is characterized by containing tropolones.

本発明の好ましい態様は、上記スケール除去剤において、塩酸、硫酸および硝酸の少なくとも1種を含有し、pHが1〜2に調整されることを特徴とするものである。   A preferred embodiment of the present invention is characterized in that the scale remover contains at least one of hydrochloric acid, sulfuric acid and nitric acid, and the pH is adjusted to 1-2.

本発明のスケール除去方法は、上記スケール除去剤を用いて、地熱発電設備において発生するシリカ系スケールを除去することを特徴とするものである。   The scale removal method of the present invention is characterized by removing silica-based scale generated in a geothermal power generation facility using the scale remover.

本発明のスケール除去装置は、上記スケール除去剤を貯蔵するタンクと、前記タンクと地熱発電設備との間で上記スケール除去剤を循環させるポンプと、を備えることを特徴とするものである。   The scale removing device of the present invention includes a tank that stores the scale removing agent, and a pump that circulates the scale removing agent between the tank and a geothermal power generation facility.

本発明によれば、スケールを効率よく除去するだけでなく、フッ化水素酸やフッ化物といった危険物を用いないため、作業が安全に実施できる。また、地熱発電設備の還元井貯留層に適用する場合では、その土壌環境に関係なく、除去能力を発揮し、スケールを効率よく除去することができる。   According to the present invention, not only the scale is efficiently removed, but also hazardous materials such as hydrofluoric acid and fluoride are not used, so that the operation can be performed safely. Moreover, when applied to the reduction well reservoir of the geothermal power generation facility, the removal capability is exhibited and the scale can be efficiently removed regardless of the soil environment.

溶解試験における除去溶液濃度別のシリカ濃度の経時変化(シリカ溶解の濃度依存性)Change in silica concentration over time according to removal solution concentration in dissolution test (concentration dependence of silica dissolution) 溶解試験における除去溶液温度別のシリカ濃度の経時変化(シリカ溶解の温度依存性)Change with time of silica concentration according to removal solution temperature in dissolution test (temperature dependence of silica dissolution) 溶解試験における除去溶液pH別のシリカ濃度の経時変化(シリカ溶解のpH依存性)Change with time of silica concentration according to removal solution pH in dissolution test (pH dependence of silica dissolution) トロポロンの形態の構造を示す図Diagram showing the structure of the tropolone form 実証試験装置の概略図Schematic diagram of demonstration test equipment 実証試験装置における除去溶液中のシリカ濃度の経時変化Change with time of silica concentration in removal solution in demonstration test equipment 模擬貯留層試験体を示す図Diagram showing a simulated reservoir specimen 模擬貯留層試験体内における水頭高さの経時変化Temporal change of head height in simulated reservoir test body

以下に発明の実施形態のスケール除去剤としてのスケール除去溶液を詳細に説明する。本実施形態のスケール除去溶液は、地熱発電設備において発生するシリカ系スケールを除去するために使用される。地熱発電設備は、再生可能な熱エネルギの一種である地熱を用いて行う発電設備であり、地下に掘削した抗井から噴出する天然蒸気を用いてタービンを回して発電を行い、発電に使用した後の蒸気および熱水を還元井を通じて地下に戻す。   The scale removal solution as the scale remover of the embodiment of the invention will be described in detail below. The scale removal solution of the present embodiment is used for removing silica-based scale generated in geothermal power generation facilities. A geothermal power generation facility is a power generation facility that uses geothermal heat, which is a type of renewable thermal energy. It uses a natural steam erupted from a well drilled underground to generate electricity and use it for power generation. The later steam and hot water are returned to the basement through the reduction well.

本実施形態のスケール除去溶液は、トロポロン類を含む溶液である。溶媒は水や有機系溶媒である。   The scale removal solution of this embodiment is a solution containing tropolones. The solvent is water or an organic solvent.

トロポロン類は7員環のトロポロン(シクロプタトリエノン)骨格に水酸基を導入した芳香族化合物の一つである。一般的にはα-トロポロンのみを指すことが多い。天然のヒバやヒノキなど針葉樹の精油からも単離することが可能である。   Tropolones are one of aromatic compounds in which a hydroxyl group is introduced into a seven-membered tropolone (cycloputatrienone) skeleton. In general, it often refers only to α-tropolone. It can also be isolated from the essential oils of conifers such as natural hiba and cypress.

スケール除去溶液のトロポロン類の濃度は、通常、0.01質量%〜3.5質量%の範囲である。トロポロン類の濃度が0.01質量%未満であるとスケールの溶解速度が遅くなり、実用的ではない。一方、トロポロン類の濃度が3.5質量%を超えると、トロポロン類は有機溶媒にはよく溶けるものの、水に対しては溶解度があまり大きくないので、対象となる設備の環境変動などで飽和状態となり、設備内に析出し、異なる弊害の要素となる可能性が出来てくるため、あまり好ましくない。   The concentration of tropolones in the descaling solution is usually in the range of 0.01% to 3.5% by weight. When the concentration of tropolones is less than 0.01% by mass, the dissolution rate of the scale is slow, which is not practical. On the other hand, when the concentration of tropolones exceeds 3.5% by mass, tropolones dissolve well in organic solvents, but their solubility in water is not so high, so they are saturated due to changes in the environment of the target equipment. Therefore, it may be deposited in the facility and become a different harmful element, which is not preferable.

トロポロンのスケール除去能力は温度が高いほど、強くなるため、スケール除去溶液の温度は、高温の方が好ましい。しかしながら、110℃を超えて高くすると地熱発電設備の地上設備へ適用することが困難となるため、スケール除去溶液の温度は、スケールの状態に応じて適宜選択されることが好ましい。一方、地熱発電設備の還元井貯留層の透水層への適用であれば、おのずと80℃を超える温度域になり、溶解速度も高くなる。   Since the descaling ability of tropolone becomes stronger as the temperature is higher, the temperature of the descaling solution is preferably higher. However, if the temperature exceeds 110 ° C., it becomes difficult to apply it to the ground facility of the geothermal power generation facility. Therefore, it is preferable that the temperature of the scale removal solution is appropriately selected according to the state of the scale. On the other hand, if it is applied to the permeable layer of the reduction well reservoir of the geothermal power generation facility, the temperature range naturally exceeds 80 ° C., and the dissolution rate is also increased.

スケール除去溶液のpHについては、通常、pH3.5以下である。トロポロン類の多くは弱酸性の特性を示すが、場合によってはpHの低い溶液、例えば、塩酸、硫酸、硝酸などの酸を加え、スケールの状態に応じた適切なpHに調整することが好ましい。   The pH of the descaling solution is usually 3.5 or less. Most tropolones exhibit weakly acidic properties, but in some cases, it is preferable to add a solution having a low pH, for example, an acid such as hydrochloric acid, sulfuric acid, or nitric acid, to adjust the pH to an appropriate value according to the state of the scale.

スケール除去溶液に含まれるトロポロン類とシリカの錯体反応はpHが小さくなり、トロポロン類の構造が変化するほど、溶解速度が高くなる。該スケールとの溶解は錯体反応が中心となり、進行するため、除去溶液のpHを小さくするほどシリカ系スケールの溶解を速くすることが可能である。ただし、pHを低くすると地熱発電設備や除去溶液を搬送する装置の腐食リスクが高くなるため、pHとしては1〜2程度にすることが好ましい。   In the complex reaction between tropolones and silica contained in the descaling solution, the pH decreases, and the dissolution rate increases as the structure of the tropolones changes. Since dissolution with the scale proceeds mainly by a complex reaction, the dissolution of the silica-based scale can be accelerated as the pH of the removal solution is decreased. However, if the pH is lowered, the corrosion risk of the geothermal power generation equipment and the apparatus for transporting the removal solution is increased, so the pH is preferably about 1-2.

本実施形態のスケールの除去方法は、シリカ系スケールに対してスケール除去溶液を連続的あるいは間欠的に接触させて除去する方法である。例えば、地熱発電設備における地上の熱水配管又は熱交換器のシリカ系スケールに対してはスケール除去溶液をポンプで循環し、接触させて除去する方法などがある。また、スプレーなどでスケール除去溶液を直接該シリカ系スケールに吹付ける方法なども考えられる。   The scale removal method of the present embodiment is a method of removing the scale removal solution by continuously or intermittently contacting the silica-based scale. For example, there is a method in which a scale removing solution is circulated with a pump and brought into contact with a silica-based scale of a ground hot water pipe or a heat exchanger in a geothermal power generation facility. Moreover, the method etc. which spray a scale removal solution directly to this silica type scale by spray etc. are also considered.

本実施形態のスケール除去装置は、スケール除去溶液を貯蔵するタンクと、タンクと地熱発電設備との間でスケール除去溶液を循環させるポンプと、を備える。ポンプがスケール除去溶液を循環させると、スケール除去溶液が地熱発電設備における地上の熱水配管又は熱交換器のシリカ系スケールに接触して除去する。   The scale removal apparatus of the present embodiment includes a tank that stores the scale removal solution, and a pump that circulates the scale removal solution between the tank and the geothermal power generation facility. When the pump circulates the descaling solution, the descaling solution contacts the ground hot water piping in the geothermal power generation facility or the silica-based scale of the heat exchanger to remove it.

以下に本発明の実施例を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Examples of the present invention will be specifically described below, but the present invention is not limited to these examples.

実施例のトロポルン水溶液(スケール除去溶液)を用いてシリカ系スケールの溶解試験を実施した。   A silica-based scale dissolution test was carried out using the troponan aqueous solution (scale removal solution) of the example.

トロポロン類であるα-トロポロンを超純水に溶かし、塩酸水溶液でpH1〜5に調整したトロポロン水溶液を作成した。トロポロン水溶液をビーカに入れ、地熱発電設備の地上配管に付着したシリカ系スケールをすり鉢で粉末状にしたもの5gをビーカに添加した。   Α-tropolone, which is a tropolone, was dissolved in ultrapure water to prepare an aqueous tropolone solution adjusted to pH 1 to 5 with an aqueous hydrochloric acid solution. An aqueous tropolone solution was placed in a beaker, and 5 g of silica-based scale adhering to the ground piping of the geothermal power generation facility in a mortar was added to the beaker.

粉末にしたシリカ系スケールを添加したトロポロン水溶液を振とう器で攪拌し、一定時間毎に懸濁液を適量採取し、メンブレンフィルターで濾した後、濾液中のSi濃度をICP発光分析装置で測定した。その結果を図1〜図3に示す。   Stir the tropolone aqueous solution to which the silica-based scale added to powder is stirred with a shaker, collect an appropriate amount of the suspension at regular intervals, filter through a membrane filter, and then measure the Si concentration in the filtrate with an ICP emission spectrometer did. The results are shown in FIGS.

図1に、トロポロン水溶液のpHを1、温度を30℃とした場合の各溶液濃度における溶液中のSi濃度の経時変化を示す。溶液濃度が高いほど溶液中のSi濃度も高くなっており、シリカ系スケールへの溶解能力が高くなることが判る。   FIG. 1 shows the change over time of the Si concentration in the solution at each solution concentration when the pH of the tropolone aqueous solution is 1 and the temperature is 30 ° C. It can be seen that the higher the solution concentration, the higher the Si concentration in the solution, and the higher the solubility in silica-based scale.

図2に、トロポロン水溶液濃度を1.0質量%とした場合の溶液の各pHおよび温度における溶液中のSi濃度の経時変化を示す。pHが小さいほど溶液中のSi濃度が高くなっており、溶液温度が高いほど溶液中のSi濃度も高くなっており、シリカ系スケールの溶解能力が高くなることが判る。   FIG. 2 shows changes with time of the Si concentration in the solution at each pH and temperature of the solution when the tropolone aqueous solution concentration is 1.0 mass%. It can be seen that the lower the pH, the higher the Si concentration in the solution, and the higher the solution temperature, the higher the Si concentration in the solution, which increases the dissolving ability of the silica-based scale.

図3に、トロポロン水溶液の温度を30℃、濃度を1.0質量%とした場合の各pHにおける溶液中のSi濃度の経時変化を示す。pHが小さいほど溶液中のSi濃度が高くなっており、特にpHが1〜2の範囲において、急激に溶解速度が高くなることが判る。   FIG. 3 shows changes with time of the Si concentration in the solution at each pH when the temperature of the tropolone aqueous solution is 30 ° C. and the concentration is 1.0 mass%. It can be seen that the lower the pH, the higher the Si concentration in the solution, and in particular, the dissolution rate increases rapidly in the pH range of 1-2.

図4に、トロポロンにおける3種類の形態の構造を示す。   FIG. 4 shows three types of structures in tropolone.

図4(a)はプロトン化した形態で[H]、図4(b)は通常のα-トロポロンの形態で[HL]、図4(c)はトロポネートの形態で[L]と表わす。ここで、Lは配位子を意味し、それぞれの形態の表現は、プロトンを金属イオンと同様に見なし、広義の意味でプロトン錯体として表したものである。例えば、Lはトロポロンからプロトンを2つ解離させた下記の構造式を意味する。 4 (a) is a protonated form [H 2 L + ], FIG. 4 (b) is a normal α-tropolone form [HL], and FIG. 4 (c) is a troponate form [L ]. It expresses. Here, L means a ligand, and the expression of each form expresses a proton in the same manner as a metal ion, and expresses it as a proton complex in a broad sense. For example, L means the following structural formula in which two protons are dissociated from tropolone.

Figure 0005891084
Figure 0005891084

これらの形態の分布について、次の(1)および(2)式の平衡式により決定される。

Figure 0005891084
The distribution of these forms is determined by the following balanced equations (1) and (2).
Figure 0005891084

環境が酸性になるにつれて、(1)式の反応が右側に進行し、(2)式の反応は左側に進行する。そのため、pHが1のような強酸性下において、トロポロンは[H]のプロトン化した形態にほとんど変態しているものと考えられる。このプロトン化した形態において、トロポロンはシリカとの強い錯体反応を示し、シリカ系スケールの溶解速度が高くなるものと考えられる。 As the environment becomes acidic, the reaction of formula (1) proceeds to the right and the reaction of formula (2) proceeds to the left. Therefore, it is considered that tropolone is almost transformed into a protonated form of [H 2 L + ] under strong acidity such as pH of 1. In this protonated form, tropolone is considered to exhibit a strong complex reaction with silica and increase the dissolution rate of the silica-based scale.

実施例のトロポロン水溶液を用いて、地熱発電設備において地熱水と蒸気の温度を熱交換する熱交換器に生成したシリカ系スケールを除去する試験を実施した。   The test which removes the silica-type scale produced | generated in the heat exchanger which heat-exchanges the temperature of geothermal water and a vapor | steam in a geothermal power generation equipment using the tropolone aqueous solution of an Example was implemented.

図5のように、地熱発電設備でシリカ系スケールが生成した熱交換器6の内部の地熱水を循環させる装置にトロポロン水溶液タンク1を設置した。地熱水を一時的に停止した後、pH1に調整した1.0質量%のトロポロン水溶液を72時間循環させた。このときの溶液中のSi濃度をICP発光分析装置で測定した。   As shown in FIG. 5, the tropolone aqueous solution tank 1 was installed in a device that circulates geothermal water inside the heat exchanger 6 generated by the silica-based scale in the geothermal power generation facility. After the geothermal water was temporarily stopped, a 1.0 mass% tropolone aqueous solution adjusted to pH 1 was circulated for 72 hours. The Si concentration in the solution at this time was measured with an ICP emission spectrometer.

図6に、熱交換器に循環している溶液中のSi濃度の経時変化を示す。時間が経過するとともにSi濃度が高くなり、熱交換器中のシリカ系スケールが除去される状況が確認された。   FIG. 6 shows the change over time in the Si concentration in the solution circulating in the heat exchanger. As time passed, the Si concentration increased, and it was confirmed that the silica-based scale in the heat exchanger was removed.

地熱発電設備の経年的にスケール閉塞が認められる還元井における除去溶液の効果を確認するため、還元井の貯留層部を模擬した試験体におけるスケール除去試験を実施した。   In order to confirm the effect of the removal solution in the reduction well where the scale blockage was observed over time in the geothermal power generation facility, a scale removal test was conducted on a test body that simulated the reservoir part of the reduction well.

図7に模擬試験体を示す。真砂/赤土を半々でブレンドし、中性(pH5)および弱アルカリ性(pH8)にそれぞれ調整した模擬地層とシリカゲルを7:3の割合で混合し、直径100mm、長さ4000mmのステンレス鋼管(SUS304製)を立て、下面より深さ1000mmになるように充填し、還元井の貯留層部のスケール閉塞を模擬した試験体を作製した。   FIG. 7 shows a simulated specimen. A half-sand blend of red sand and red sand, mixed with a simulated base layer adjusted to neutral (pH 5) and weakly alkaline (pH 8) and silica gel at a ratio of 7: 3, and a stainless steel pipe (made of SUS304) with a diameter of 100 mm and a length of 4000 mm. ) And filled up to a depth of 1000 mm from the lower surface to prepare a test body simulating the scale blockage of the reservoir portion of the reduction well.

ステンレス鋼管の下面に同材で作られた地層の重さに耐えるメッシュ状の金網を設置し、その上にろ紙を敷きつめ、還元井における地層中の除去溶液の一定時間の保持状態を模擬した。   A mesh-like wire net that can withstand the weight of the formation made of the same material was installed on the lower surface of the stainless steel pipe, and filter paper was laid on the mesh to simulate the state of the removal solution in the formation in the reduction well for a certain period of time.

試験体の側面より加熱用のリボンヒーターで鋼管内地層の温度を80℃に保ちながら、鋼管上部よりpH1に調整した1質量%トロポロン水溶液を30L試験体に注ぎ込み、72時間、スケールを除去した。72時間経過後、ステンレス鋼管の上部より水頭が鋼管下端より4000mmの高さになるように水道水を注入し、その時点からの水頭高さの経時変化を測定した。ここで、測定開始時点での水頭高さは0mmであり、溶液が全量流出すれば水頭高さは4000mmとなる。   While maintaining the temperature of the steel pipe inner layer at 80 ° C. with a heating ribbon heater from the side of the test body, a 1 mass% tropolone aqueous solution adjusted to pH 1 was poured into the 30 L test body from the upper part of the steel pipe, and the scale was removed for 72 hours. After 72 hours, tap water was poured from the upper part of the stainless steel pipe so that the water head was 4000 mm from the lower end of the steel pipe, and the temporal change of the water head height from that point was measured. Here, the head height at the start of measurement is 0 mm, and the head height is 4000 mm if the entire solution flows out.

トロポロン水溶液の代わりに除去溶液として、未調整の水道水およびpH1に調整した硫酸水溶液も同様の試験を実施した。   A similar test was performed on unadjusted tap water and a sulfuric acid aqueous solution adjusted to pH 1 as a removal solution instead of the tropolone aqueous solution.

図8に、それぞれの条件における水頭高さの経時変化を示す。トロポロン水溶液を用いた場合、地層が中性でも弱アルカリ性でも水道水を用いた場合と比較すると水の浸透の改善が顕著に認められる。シリカ系スケールの模擬物質として混入したシリカゲルがトロポロンにより溶解し、浸透が改善したものと考えられる。地層の中性と弱アルカリ性を比較すると地層が中性である環境の方が浸透の早期改善が望めることがわかる。   FIG. 8 shows the temporal change of the head height under each condition. When the tropolone aqueous solution is used, the improvement of water penetration is noticeable as compared with the case where tap water is used regardless of whether the formation is neutral or weakly alkaline. It is thought that the silica gel mixed as a silica-based scale simulant dissolved by tropolone and the penetration was improved. Comparing the neutrality and weak alkalinity of the strata, it can be seen that the environment where the stratum is neutral can be expected to improve the infiltration early.

一方、硫酸水溶液については、地層が中性環境では水の浸透の改善が認められる。ただし、トロポロン水溶液を用いた場合よりもその効果は小さい。地層が弱アルカリ性になった場合、浸透の改善が小さくなっている。また、トロポロン水溶液を用いた場合よりも地層の性状に対する感受性が高く、アルカリ環境に近い地層ではシリカ系スケールを除去することが困難である可能性があることが示唆される。   On the other hand, with respect to the sulfuric acid aqueous solution, improvement of water penetration is recognized when the formation is in a neutral environment. However, the effect is smaller than when the tropolone aqueous solution is used. When the formation becomes weakly alkaline, the improvement in infiltration is small. Moreover, it is suggested that it may be difficult to remove the silica-based scale in the formation close to the alkaline environment, because it is more sensitive to the properties of the formation than when the tropolone aqueous solution is used.

1:トロポロン水溶液タンク
2:循環ポンプ
3:除去溶液循環バルブ(往)
4:地熱水循環遮断バルブ
5:地熱水バイパスバルブ
6:熱交換器
7:除去溶液循環バルブ(復)
8:除去溶液遮断バルブ
11:ステンレス鋼管
12:除去溶液
13:模擬地層
14:ろ紙
15:メッシュ金網
16:試験体支持台
17:除去溶液受け
18:リボンヒーター
1: Tropolone aqueous solution tank 2: Circulation pump 3: Removal solution circulation valve (outward)
4: Geothermal water circulation shut-off valve 5: Geothermal water bypass valve 6: Heat exchanger 7: Removal solution circulation valve (return)
8: Removal solution blocking valve 11: Stainless steel pipe 12: Removal solution 13: Simulated formation 14: Filter paper 15: Mesh wire mesh 16: Specimen support base 17: Removal solution receiver 18: Ribbon heater

Claims (4)

トロポロン類を含有することを特徴とするスケール除去剤。   A scale remover comprising tropolones. 塩酸、硫酸および硝酸の少なくとも1種を含有し、pHが1〜2に調整されることを特徴とする請求項1に記載のスケール除去剤。   The scale remover according to claim 1, comprising at least one of hydrochloric acid, sulfuric acid, and nitric acid, and having a pH adjusted to 1 to 2. 請求項1又は2に記載のスケール除去剤を用いて、地熱発電設備において発生するシリカ系スケールを除去することを特徴とするスケール除去方法。   A scale removal method comprising removing a silica-based scale generated in a geothermal power generation facility using the scale remover according to claim 1. 請求項1又は2に記載のスケール除去剤を貯蔵するタンクと、
前記タンクと地熱発電設備との間で前記スケール除去剤を循環させるポンプと、を備えることを特徴とするスケール除去装置。
A tank for storing the descaling agent according to claim 1 or 2,
And a pump that circulates the scale remover between the tank and a geothermal power generation facility.
JP2012070710A 2012-03-27 2012-03-27 Scale removing agent, scale removing method and scale removing apparatus Expired - Fee Related JP5891084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070710A JP5891084B2 (en) 2012-03-27 2012-03-27 Scale removing agent, scale removing method and scale removing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070710A JP5891084B2 (en) 2012-03-27 2012-03-27 Scale removing agent, scale removing method and scale removing apparatus

Publications (2)

Publication Number Publication Date
JP2013202424A JP2013202424A (en) 2013-10-07
JP5891084B2 true JP5891084B2 (en) 2016-03-22

Family

ID=49522133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070710A Expired - Fee Related JP5891084B2 (en) 2012-03-27 2012-03-27 Scale removing agent, scale removing method and scale removing apparatus

Country Status (1)

Country Link
JP (1) JP5891084B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656334C1 (en) * 2017-06-13 2018-06-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет" Method of mechanochemical removal of scale deposits

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180010035A1 (en) * 2016-01-05 2018-01-11 Halliburton Energy Services, Inc. Secondary hydrocarbon-fluid recovery enhancement

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533972B2 (en) * 1973-09-27 1978-02-13
US5342787A (en) * 1993-03-24 1994-08-30 Rohm And Haas Company Method for solubilizing silica
US5665242A (en) * 1995-08-25 1997-09-09 Union Oil Company Of California Inhibition of silica precipitation
JP2002336838A (en) * 2001-05-16 2002-11-26 Shimizu Corp Treatment method for water produced in mine
JP5372838B2 (en) * 2010-05-31 2013-12-18 富士電機株式会社 Scale suppression device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656334C1 (en) * 2017-06-13 2018-06-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тверской государственный университет" Method of mechanochemical removal of scale deposits

Also Published As

Publication number Publication date
JP2013202424A (en) 2013-10-07

Similar Documents

Publication Publication Date Title
Lv et al. Physicochemical factors controlling the retention and transport of perfluorooctanoic acid (PFOA) in saturated sand and limestone porous media
DK3027562T3 (en) COLLOIDAL AGENTS FOR GROUNDWATER STORAGE CLEANING
EP2596502B1 (en) Reactor decontamination system and process
KR20070032637A (en) Improved Scale Conditioning Agents and Processing Methods
Chen et al. Formulation of corrosion inhibitors
JP5891084B2 (en) Scale removing agent, scale removing method and scale removing apparatus
JP7483576B2 (en) Fluoro-inorganics for inhibiting or removing silica or metal silicate deposits
CN104513991A (en) Imidazoline corrosion inhibitor, synthesis method and application thereof
Challouf et al. Origanum majorana extracts as mild steel corrosion green inhibitors in aqueous chloride medium
JP6125824B2 (en) Cleaning liquid composition for heavy metal contaminated soil and method for cleaning heavy metal contaminated soil
JP2013228324A (en) Method for removing radioactive cesium
JP4927210B2 (en) Methods for chemical dissolution of corrosion products
Kim et al. Development of electrokinetic-flushing technology for the remediation of contaminated soil around nuclear facilities
JP2008194544A (en) Groundwater neutralization method of heavy metal- containing acidic soil
JP5691134B2 (en) How to treat boilers that are not operating
Kim et al. Decontamination of gravels contaminated with uranium
Putra et al. Removal of caesium by soil electrokinetic remediation on the effect of acetic acid and carbonate salt as electrolyte
JP2019042730A (en) Processing method of contaminated soil
JP6390896B2 (en) Method for inhibiting corrosion of ferrous materials in freshwater environments
JP7267112B2 (en) Method for remediation of contaminated soil
Xu et al. Scaling and clogging treatment of aging tunnel drainage pipes in karst areas using eco-friendly acid agent
JP2010207675A (en) Method of cleaning heavy metal-contaminated soil
CN114517661B (en) Determination method for descaling measure of water injection block
Ellis et al. Enhanced hydrolysis and dehydrohalogenation of 1, 1, 1-trichloroethane in groundwater using hot water injection/recirculation
Park et al. Experimental investigation of material chemical effects on emergency core cooling pump suction filter performance after loss of coolant accident

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5891084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees