JP2003268075A - Insulating polymer material composition for indoor and outdoor use - Google Patents

Insulating polymer material composition for indoor and outdoor use

Info

Publication number
JP2003268075A
JP2003268075A JP2002071215A JP2002071215A JP2003268075A JP 2003268075 A JP2003268075 A JP 2003268075A JP 2002071215 A JP2002071215 A JP 2002071215A JP 2002071215 A JP2002071215 A JP 2002071215A JP 2003268075 A JP2003268075 A JP 2003268075A
Authority
JP
Japan
Prior art keywords
resin
polymer material
equivalent
indoor
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002071215A
Other languages
Japanese (ja)
Inventor
Takehiro Hamamura
武広 浜村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2002071215A priority Critical patent/JP2003268075A/en
Publication of JP2003268075A publication Critical patent/JP2003268075A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a polymer insulating material product having heat resistance and crack resistance even in a severe temperature change environment of outdoors, etc., in high productivity. <P>SOLUTION: A resin slurry obtained by mixing a low-equivalent resin (about 250 epoxy equivalents by a one-stage method) and a high-equivalent resin (about 390 epoxy equivalents) composed of bisphenol A epoxy resins in the ratio of the low-equivalent resin/the high-equivalent resin of 50 wt.%/50 wt.% to 90 wt.%/10 wt.% is used and mixed with a curing agent (e.g. phthalic anhydride in the ratio of the resin slurry/the curing agent of 1/0.8-1/1.2), a curing promoter (e.g. 0.05 wt.%-0.37 wt.% of a tertiary amine salt), an inorganic filler (e.g. 35 vol.%-50 vol.% of fused silica) and a silane coupling agent (e.g. 0.1 wt.%-0.6 wt.% of γ-glycidoxypropyltrimethoxysilane, heated and cured. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高電圧機器で屋内
外に直接暴露される成形品においても使用できる屋内外
用絶縁高分子材料に関するものであり、例えば碍子,碍
管,スペーサ,ブッシング,ケーブルヘッド,VIケー
ス等の屋内外用絶縁高分子材料組成物に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an indoor / outdoor insulating polymer material that can be used in molded articles that are directly exposed indoors or outdoors by high-voltage equipment. For example, insulators, insulators, spacers, bushings, cable heads. , VI case and other insulating polymer material compositions for indoor and outdoor use.

【0002】[0002]

【従来の技術】高電圧機器等(例えば、開閉機器)の屋
内外に使用(特に、屋外に直接暴露)される絶縁材料お
よび構造材料として、例えばエポキシ樹脂を主成分とし
た絶縁高分子材料(以下、高分子材料と称する)を注型
して成る高分子絶縁材料製品(モールド注型品;以下、
高分子製品と称する)が従来から広く知られているが、
社会の高度化・集中化に伴って高電圧機器等の大容量化
や高い信頼性,耐久性等が強く要求されていた。一般的
な高分子材料に広く用いられてきたエポキシ樹脂のガラ
ス転移点(以下、Tgと称する)は約90〜100℃程
度である。
2. Description of the Related Art As an insulating material and a structural material used indoors and outdoors (especially, directly exposed to the outdoors) of high-voltage equipment (eg switchgear), for example, an insulating polymer material containing epoxy resin as a main component ( Hereinafter, a polymer insulating material product (mold cast product; hereinafter referred to as a polymer material)
The term “polymer products” is widely known, but
With the sophistication and concentration of society, there has been a strong demand for higher capacity, higher reliability, and durability of high-voltage equipment. The glass transition point (hereinafter referred to as Tg) of an epoxy resin which has been widely used for general polymer materials is about 90 to 100 ° C.

【0003】そこで、例えばTgが115℃以上の高耐
熱性のエポキシ樹脂(以下、耐高温樹脂と称する)を主
成分とした高分子材料を用いることにより、静止機器の
上限温度雰囲気下(105℃)においても物性的に安定
で、かつ屋外等の温度変化の激しい環境下でも耐クラッ
ク性を有する高分子製品の研究開発が行われていた。
Therefore, for example, by using a polymer material whose main component is a highly heat-resistant epoxy resin having a Tg of 115 ° C. or more (hereinafter referred to as a high temperature resistant resin), in an atmosphere of the maximum temperature of stationary equipment (105 ° C.). 2) has been researched and developed a polymer product that is physically stable and has crack resistance even in an environment where the temperature changes drastically such as outdoors.

【0004】[0004]

【発明が解決しようとする課題】しかし、前記のように
Tgが115℃以上の耐高温樹脂は比較的に高価である
と共に架橋度が高く、その耐高温樹脂を用いた高分子製
品は生産コストが高くなってしまうと共に、硬く脆弱で
あるため温度変化が激しい環境下で使用した場合にはク
ラックが発生し易い。
However, as described above, the high temperature resistant resin having Tg of 115 ° C. or higher is relatively expensive and has a high degree of cross-linking, and a polymer product using the high temperature resistant resin has a high production cost. In addition to being high in hardness, it is hard and fragile, so cracks are likely to occur when used in an environment where the temperature changes drastically.

【0005】一方、Tgが低い(例えば、Tgが90℃
以下)のエポキシ樹脂(以下、耐低温樹脂と称する)に
おいては、その耐低温樹脂が常温において固形であると
共に樹脂粘度(混合作業する際の初期粘度)が比較的大
きい。
On the other hand, Tg is low (for example, Tg is 90 ° C.
In the following epoxy resin (hereinafter referred to as low temperature resistant resin), the low temperature resistant resin is solid at room temperature and the resin viscosity (initial viscosity during the mixing operation) is relatively large.

【0006】このため、例えば高分子製品の膨張率(例
えば、線膨張率)を低減する目的で前記耐低温樹脂に無
機物から成る充填剤(以下、無機充填剤と称する)を添
加する場合には、その混合スラリーを高温に保ち前記無
機充填剤を均一に分散させてから注型作業を行う必要が
あり、前記の混合作業および注型作業において長時間が
費やされてしまう。また、前記高分子製品の膨張率を十
分低減するには多量の無機充填剤を必要とするが、その
無機充填剤の添加量が大きくなるに連れて混合スラリー
の粘度はさらに増加してしまう。さらに、注型における
加熱硬化を短縮し高分子製品の生産性を向上させる目的
で、前記耐低温樹脂に硬化促進剤等を添加する方法が一
般的に採られているが、前記のような高温の混合スラリ
ー中では硬化促進剤の反応時間が早くなり過ぎてしま
い、例えば注型作業等において十分なポットライフ(工
業的な作業に必要な最低限の時間;例えば、20分)を
確保できなくなる恐れがある。
Therefore, for example, when a filler made of an inorganic material (hereinafter referred to as an inorganic filler) is added to the low temperature resistant resin for the purpose of reducing the expansion coefficient (for example, linear expansion coefficient) of a polymer product. However, it is necessary to hold the mixed slurry at a high temperature to uniformly disperse the inorganic filler and then perform the casting operation, which requires a long time in the mixing operation and the casting operation. Further, a large amount of inorganic filler is required to sufficiently reduce the expansion coefficient of the polymer product, but the viscosity of the mixed slurry further increases as the amount of the inorganic filler added increases. Further, for the purpose of shortening the heat curing in casting and improving the productivity of polymer products, a method of adding a curing accelerator or the like to the low temperature resistant resin is generally adopted. In the mixed slurry of 3, the reaction time of the curing accelerator becomes too fast, and it becomes impossible to secure sufficient pot life (minimum time required for industrial work; for example, 20 minutes) in casting work, for example. There is a fear.

【0007】すなわち、前記の耐低温樹脂を用いた高分
子製品の膨張率を十分低減する場合、混合スラリーの混
合作業においては高温下で行うと共に長時間確保する必
要がるため、硬化促進剤等による生産性の向上が図れな
い(生産性と耐クラック性とを両立できない)。
That is, in the case of sufficiently reducing the expansion coefficient of the polymer product using the low temperature resistant resin, it is necessary to perform the mixing operation of the mixed slurry at a high temperature and for a long time. Productivity cannot be improved due to (it is not possible to achieve both productivity and crack resistance).

【0008】前記高分子材料の主成分として、比較的安
価で世界的に広く使用されているエポキシ当量390程
度のビスフェノールA型エポキシ樹脂(以下、ビスフェ
ノール樹脂と称する)においても、以下に示す問題があ
る。
As a main component of the polymer material, the bisphenol A type epoxy resin (hereinafter referred to as bisphenol resin) having an epoxy equivalent of about 390 which is relatively inexpensive and widely used worldwide has the following problems. is there.

【0009】(耐クラック性,作業性,Tgの問題)エ
ポキシ当量390程度のビスフェノール樹脂を用いた場
合、そのビスフェノール樹脂は常温にて固形および融点
が約52℃程度であり、樹脂粘度(および初期粘度)は
比較的大きいため、たとえ混合スラリーを融点以上の高
温に保っても混合作業において長時間が費やされてしま
う。従って、前記の耐低温樹脂と同様に高い生産性と十
分な耐クラック性とを両立することは極めて困難であ
る。
(Problems of crack resistance, workability and Tg) When a bisphenol resin having an epoxy equivalent of about 390 is used, the bisphenol resin has a solid and a melting point of about 52 ° C. at room temperature, and a resin viscosity (and an initial value). Since the viscosity) is relatively large, even if the mixed slurry is kept at a temperature higher than the melting point, a long time is spent in the mixing work. Therefore, it is extremely difficult to achieve both high productivity and sufficient crack resistance as with the low temperature resistant resin.

【0010】また、前記ビスフェノール樹脂のTgは低
いため、比較的に高価とされるノボラック型エポキシ樹
脂や環状脂肪族エポキシ樹脂を併用することにより耐熱
性を確保する方法が採られているが、これら樹脂のTg
は高すぎる(Tgが150〜180℃程度)ため高分子
製品が硬く脆弱なってしまい、耐クラック性が低減する
と共に生産コストが上昇してしまう。
Since the Tg of the bisphenol resin is low, a method of securing heat resistance by using a novolac type epoxy resin or a cycloaliphatic epoxy resin, which is relatively expensive, is used. Tg of resin
Is too high (Tg is about 150 to 180 ° C.), the polymer product becomes hard and brittle, crack resistance is reduced and production cost is increased.

【0011】なお、前記ビスフェノール樹脂にポリグリ
コール,ポリグリコール系エポキシ樹脂,ダイマー酸エ
ポキシ化合物,チオコール等を添加すると生産性が向上
(添加物が低粘度であるため生産性が向上)および耐ク
ラック性が向上することは周知であるが、その高分子材
料のTgが著しく低減するため実用的ではない。
When polyglycol, polyglycol type epoxy resin, dimer acid epoxy compound, thiochol, etc. are added to the bisphenol resin, productivity is improved (productivity is improved due to the low viscosity of the additive) and crack resistance. Is known to be improved, but it is not practical because the Tg of the polymer material is significantly reduced.

【0012】本発明は、前記課題に基づいて成されたも
のであり、高電圧機器等の高分子製品において、十分な
耐熱性,耐クラック性を持たせると共に、生産性を向上
させることが可能な屋内外用絶縁高分子材料組成物を提
供することにある。
The present invention has been made based on the above-mentioned problems, and it is possible to improve productivity in polymer products such as high-voltage equipment while having sufficient heat resistance and crack resistance. Another object of the present invention is to provide an indoor / outdoor insulating polymer material composition.

【0013】[0013]

【課題を解決するための手段】本発明は前記の課題の解
決を図るために、請求項1記載の発明は、ビスフェノー
ルA型エポキシ樹脂から成る低当量樹脂(例えば、エポ
キシ当量が250程度の樹脂)と高当量樹脂(例えば、
エポキシ当量が390程度の樹脂)とを低当量樹脂/高
当量樹脂=50wt%/50wt%〜90wt%/10
wt%の範囲内で混合した樹脂スラリーを用い、その樹
脂スラリーに硬化剤,硬化促進剤,無機充填剤,シラン
カップリング剤を添加(添加し加熱硬化)したことを特
徴とする。
In order to solve the above-mentioned problems, the present invention provides a low-equivalent resin comprising a bisphenol A type epoxy resin (for example, a resin having an epoxy equivalent of about 250). ) And a high equivalent weight resin (eg,
Epoxy equivalent is about 390) and low equivalent resin / high equivalent resin = 50 wt% / 50 wt% to 90 wt% / 10
A resin slurry mixed within a range of wt% is used, and a curing agent, a curing accelerator, an inorganic filler, and a silane coupling agent are added to the resin slurry (added and cured by heating).

【0014】請求項2記載の発明は、前記低当量樹脂に
おいて、一段法により作製したことを特徴とする。
The invention according to claim 2 is characterized in that the low equivalent resin is produced by a one-step method.

【0015】請求項3記載の発明において、前記硬化剤
として、メチルテトラヒドロ無水フタル酸またはヘキサ
ヒドロ無水フタル酸を樹脂スラリー/硬化剤=1/0.
8〜1/1.2の範囲内で添加したことを特徴とする。
In the invention of claim 3, as the curing agent, methyl tetrahydrophthalic anhydride or hexahydrophthalic anhydride is used as resin slurry / curing agent = 1/0.
It is characterized by being added within the range of 8 to 1 / 1.2.

【0016】請求項4記載の発明において、前記硬化促
進剤として、3級アミン塩を0.05wt%〜0.37
wt%の範囲内で添加したことを特徴とする。
In the invention according to claim 4, a tertiary amine salt is contained in an amount of 0.05 wt% to 0.37 as the curing accelerator.
It is characterized by being added within the range of wt%.

【0017】請求項5記載の発明において、前記無機充
填剤として、溶融シリカを35vol%〜50vol%
の範囲内で添加したことを特徴とする。
In the invention according to claim 5, 35 vol% to 50 vol% of fused silica is used as the inorganic filler.
Is added within the range of.

【0018】請求項6記載の発明において、前記シラン
カップリング剤として、γ−グリシドキシプロピルトリ
メトキシシランを0.1wt%〜0.6wt%の範囲内
で添加したことを特徴とする。
The invention according to claim 6 is characterized in that γ-glycidoxypropyltrimethoxysilane is added as the silane coupling agent within the range of 0.1 wt% to 0.6 wt%.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態におけ
る屋内外用絶縁高分子材料組成物を図面等に基づいて詳
細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an indoor / outdoor insulating polymer material composition according to an embodiment of the present invention will be described in detail with reference to the drawings.

【0020】本実施の形態では、高分子材料の主成分と
してエポキシ当量が互いに異なる2種類のビスフェノー
ル樹脂を混合、すなわちエポキシ当量が小さいビスフェ
ノール樹脂(例えば、エポキシ当量が250程度;以
下、低当量樹脂と称する)とエポキシ当量が大きいビス
フェノール樹脂(例えば、エポキシ当量が390程度;
以下、高当量樹脂と称する)とを加熱(本実施例では1
00℃)しながら混合し、均一に分散させてスラリー
(以下、樹脂スラリーと称する)を得る。
In this embodiment, two kinds of bisphenol resins having different epoxy equivalents are mixed as a main component of the polymer material, that is, a bisphenol resin having a small epoxy equivalent (for example, an epoxy equivalent of about 250; hereinafter, a low equivalent resin). And a bisphenol resin having a large epoxy equivalent (for example, an epoxy equivalent of about 390;
Hereinafter, it is referred to as a high equivalent resin) by heating (in the present embodiment, 1).
(00 ° C.) while mixing and uniformly dispersing to obtain a slurry (hereinafter referred to as resin slurry).

【0021】また、前記の樹脂スラリーには硬化剤およ
び硬化促進剤を添加し、所定の温度(本実施例では60
℃)に保ちながら混合して均一に分散させてから、さら
に無機充填剤,シランカップリング剤を添加し、所定温
度(本実施例では100℃)にて真空混合し均一に分散
させることにより高分子材料を得る。そして、前記の高
分子材料を所定温度にて注型(加熱硬化)することによ
り、開閉機器等の屋内外用絶縁高分子材料組成物を作製
する。
Further, a curing agent and a curing accelerator are added to the above-mentioned resin slurry, and a predetermined temperature (60 in this embodiment) is added.
(° C) while mixing and uniformly dispersing, then an inorganic filler and a silane coupling agent are further added, and vacuum mixing is performed at a predetermined temperature (100 ° C in this embodiment) to uniformly disperse the mixture. Obtain molecular material. Then, the above-mentioned polymer material is cast (heat-cured) at a predetermined temperature to produce an indoor / outdoor insulating polymer material composition for switchgear and the like.

【0022】なお、前記の樹脂スラリーにおける低当量
樹脂と高当量樹脂との混合比率(以下、低当量樹脂/高
当量樹脂と称する)は、低当量樹脂/高当量樹脂=50
wt%/50wt%〜90wt%/10wt%の範囲内
(好ましくは、80wt%/20wt%)とする。ま
た、前記の樹脂スラリーと硬化剤との当量比(以下、樹
脂スラリー/硬化剤と称する)は樹脂スラリー/硬化剤
=1/0.8〜1/1.2の範囲内とする。さらに、前
記硬化促進剤の添加量は0.05wt%〜0.37wt
%の範囲内(好ましくは、0.17wt%)、無機充填
剤の添加量は35vol%〜50vol%の範囲内(好
ましくは、45vol%)、前記シランカップリング剤
の添加量は0.1wt%〜0.6wt%の範囲内(好ま
しくは、0.4wt%)にて、それぞれ使用する。
The mixing ratio of the low equivalent resin and the high equivalent resin in the resin slurry (hereinafter referred to as low equivalent resin / high equivalent resin) is low equivalent resin / high equivalent resin = 50.
Within the range of wt% / 50 wt% to 90 wt% / 10 wt% (preferably 80 wt% / 20 wt%). The equivalent ratio of the resin slurry to the curing agent (hereinafter referred to as resin slurry / curing agent) is within the range of resin slurry / curing agent = 1 / 0.8 to 1 / 1.2. Further, the amount of the curing accelerator added is 0.05 wt% to 0.37 wt.
% (Preferably 0.17 wt%), the addition amount of the inorganic filler is in the range of 35 vol% to 50 vol% (preferably 45 vol%), and the addition amount of the silane coupling agent is 0.1 wt%. Each of them is used within a range of preferably 0.6 wt% (preferably 0.4 wt%).

【0023】(実施例)次に、本実施の形態により、種
々の高分子材料を用いて高分子製品の試料を作製し、そ
れら試料について種々の観測を行った。
(Examples) Next, according to the present embodiment, samples of polymer products were prepared using various polymer materials, and various observations were performed on these samples.

【0024】まず、種々の混合比率(下記表2)にて、
一般的な特性を有する平均エポキシ当量が250程度の
低当量樹脂(本実施例では、油化シェル製のエピコート
834)に対し、平均エポキシ当量が390程度の高当
量樹脂(本実施例では、油化シェル製のエピコート17
00)を加え、温度100℃で加熱しながら混合して均
一に分散させることにより、複数個の樹脂スラリーを得
た。
First, at various mixing ratios (Table 2 below),
A low-equivalent resin having an average epoxy equivalent of about 250 (Epicoat 834 manufactured by Yuka Shell Co., Ltd.) having a general characteristic and a high-equivalent resin having an average epoxy equivalent of about 390 (an oil equivalent in this example) Epicoat 17 made of synthetic shell
00) was added and mixed while heating at a temperature of 100 ° C. and uniformly dispersed to obtain a plurality of resin slurries.

【0025】その後、前記の各樹脂スラリーに対し、硬
化剤として酸無水物(本実施例では、日立化成製のメチ
ルテトラヒドロ無水フタル酸(HN2200R,酸無水
物当量166))を樹脂スラリー/硬化剤=1/0.9
の当量比で添加すると共に、硬化促進剤として3級アミ
ン塩(本実施例では、エイ・シー・アイ・ジャパン製の
K61B)を0.7phr添加し、温度60℃に加熱し
ながら混合して均一に分散させることにより混合スラリ
ーをそれぞれ得た。
Thereafter, an acid anhydride (methyltetrahydrophthalic anhydride (HN2200R, acid anhydride equivalent 166) manufactured by Hitachi Chemical Co., Ltd. in the present embodiment) was added as a curing agent to each of the resin slurries described above. = 1 / 0.9
Of the tertiary amine salt (K61B manufactured by ACI Japan in this example) as a curing accelerator, and mixed while heating to a temperature of 60 ° C. By uniformly dispersing, mixed slurries were obtained.

【0026】また、前記の各混合スラリーに対し、無機
充填剤として平均粒径11μmの溶融シリカ(本実施例
では、龍森製のMCF−4)を40vol%添加すると
共に、シランカップリング剤としてγ−グリシドキシプ
ロピルトリメトキシシラン(本実施例では、信越シリコ
ーン製のKBM−403(分子量236))を1.5p
hr添加し、温度100℃で真空混合して速やかに均一
に分散させることにより高分子材料A〜Hをそれぞれ得
た。
To each of the above-mentioned mixed slurries, 40 vol% of fused silica having an average particle size of 11 μm (MCF-4 manufactured by Tatsumori in this example) was added as an inorganic filler, and a silane coupling agent was added. 1.5 p of γ-glycidoxypropyltrimethoxysilane (KBM-403 (molecular weight 236) manufactured by Shin-Etsu Silicone in this example) was used.
Polymer materials A to H were respectively obtained by adding hr and vacuum mixing at a temperature of 100 ° C. and rapidly and uniformly dispersing.

【0027】そして、前記の各高分子材料A〜Hをそれ
ぞれ約10kg使用し、所望の型に注入し温度120℃
で2時間加熱してから、さらに温度150℃で15時間
加熱して硬化させることにより、複数個の高分子製品
(全長が約500mmのVIケース;詳細を図1に基づ
いて後述する)の試料を作製した。なお、高分子材料A
を用いた試料においては、下記表2に示すようにポット
ライフが短すぎるため、硬化促進剤を添加せずに作製し
たものとする。また、各高分子材料B〜Hに用いた低当
量樹脂は、一段法により作製したものとする。
Then, about 10 kg of each of the above-mentioned polymer materials A to H was used and poured into a desired mold at a temperature of 120.degree.
Samples of a plurality of polymer products (VI case with a total length of about 500 mm; details will be described later based on FIG. 1) by heating for 2 hours at 150 ° C. for 15 hours. Was produced. The polymer material A
In the sample using, the pot life was too short as shown in Table 2 below, and therefore the sample was prepared without adding the curing accelerator. The low-equivalent resin used for each of the polymeric materials B to H is prepared by the one-step method.

【0028】図1A(部分断面図),B(右側面図)
は、本実施例における高分子製品の試料の概略構成図を
示すものであり、真空インタラプタ1と導体2,3とを
結合した後にこれらの表面処理(例えば、シリコーンゴ
ムを用いた表面処理)を行い、その後に高分子材料4に
よりモールドしたものである。前記真空インタラプタ1
の絶縁容器はセラミック容器1aにより構成し、前記導
体2,3には銅(またはアルミニウム)を用いた。
1A (partial cross-sectional view), B (right side view)
Shows a schematic configuration diagram of a sample of a polymer product in this example, and after the vacuum interrupter 1 and the conductors 2 and 3 are bonded to each other, surface treatment thereof (for example, surface treatment using silicone rubber) is performed. It was performed and then molded with the polymer material 4. The vacuum interrupter 1
The insulating container was composed of a ceramic container 1a, and copper (or aluminum) was used for the conductors 2 and 3.

【0029】前記のように作製した各高分子製品におい
て、下記表1に示す条件および装置により、前記高分子
材料A〜Hのポットライフ,粘度,Tgを測定すると共
に、それら各高分子材料A〜Hを注型して成る高分子製
品の試料において線膨張率,耐クラック性,注型性,成
形性,ゲルタイムを測定し、それら測定結果を下記表2
に示した。なお、Tg,線膨張率は、下記表1に示すよ
うに「N」個の試料の測定結果における平均値を示し
た。
In each of the polymer products produced as described above, the pot life, viscosity, and Tg of the polymer materials A to H were measured under the conditions and the equipment shown in Table 1 below, and at the same time, each polymer material A was measured. The linear expansion coefficient, the crack resistance, the castability, the moldability, and the gel time of a polymer product sample obtained by casting ~ H are measured.
It was shown to. The Tg and the coefficient of linear expansion are average values in the measurement results of “N” samples as shown in Table 1 below.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】前記の表2に示すように、低当量樹脂/高
当量樹脂=50wt%/50wt%〜90wt%/10
wt%の範囲内で作製した高分子材料C〜Gは、高分子
材料A,B,Hとは異なり、低粘度で十分なポットライ
フ(20分以上)および高いTgを確保できると共に、
それら各高分子材料C〜Gを注型した各試料において、
比較的に低い線膨張率でゲルタイムが短じかく、耐クラ
ック性,注型性,成形性の全てにおいて良好であること
を確認できた。特に、低当量樹脂/高当量樹脂=80w
t%/20wt%の高分子材料Fを用いた場合において
は、総合的に最も良好な結果が得られた。
As shown in Table 2 above, low equivalent resin / high equivalent resin = 50 wt% / 50 wt% to 90 wt% / 10
Unlike the polymeric materials A, B, and H, the polymeric materials C to G produced within the range of wt% have a low viscosity and can secure a sufficient pot life (20 minutes or more) and a high Tg, and
In each sample in which the respective polymeric materials C to G are cast,
It was confirmed that the gel time was relatively short with a relatively low coefficient of linear expansion, and that the crack resistance, castability, and moldability were all good. Especially low equivalent resin / high equivalent resin = 80w
In the case where the polymer material F of t% / 20 wt% was used, the best overall result was obtained.

【0033】ここで、二段法により作製した低当量樹脂
を用い前記高分子材料Fと同様の組成から成る高分子材
料Fsを得、それら高分子材料F,Fsにおける分子量
分布を気液クロマトグラフ法によりそれぞれ測定すると
共に、前記表2と同様にポットライフ,粘度,Tg,線
膨張率,耐クラック性,注型性,成形性を測定し、それ
ら測定結果を図2,3および表3に示した。
Here, a polymer material Fs having the same composition as the polymer material F was obtained by using a low-equivalent resin prepared by the two-step method, and the molecular weight distributions of the polymer materials F and Fs were analyzed by gas-liquid chromatography. The pot life, the viscosity, the Tg, the linear expansion coefficient, the crack resistance, the castability, and the moldability were measured in the same manner as in Table 2 above, and the measurement results are shown in FIGS. Indicated.

【0034】[0034]

【表3】 [Table 3]

【0035】前記の表3に示すように、高分子材料F,
Fsはそれぞれ良好な注型性,成形性が得られたが、そ
の高分子材料Fは高分子材料Fsよりも良好なポットラ
イフ,粘度,Tg,線膨張率,耐クラック性が得られた
ことを読み取れる。この理由として、二段法による高分
子材料Fsの場合は図3に示すようにn=0における末
端変性が生じ、各特性に影響を及ぼしていることが考え
られる。このような末端変性は、図2の一段法による高
分子材料Fの場合には観られなかった。
As shown in Table 3 above, the polymer material F,
Fs had good castability and moldability, respectively, but the polymer material F had better pot life, viscosity, Tg, coefficient of linear expansion, and crack resistance than the polymer material Fs. Can be read. The reason for this is considered that, in the case of the polymer material Fs by the two-step method, terminal modification occurs at n = 0 as shown in FIG. 3, which affects each characteristic. Such terminal modification was not observed in the case of the polymer material F by the one-step method of FIG.

【0036】次に、前記高分子材料Fと同様の組成で、
無機充填剤の添加量を下記表4に示すように変化させて
高分子材料F11〜F15を作製し、前記表2と同様に
ポットライフ,粘度,Tg,線膨張率,耐クラック性,
注型性,成形性を測定し、それら測定結果を表4に示し
た。
Next, with the same composition as the polymer material F,
Polymer materials F11 to F15 were prepared by changing the addition amount of the inorganic filler as shown in Table 4 below, and pot life, viscosity, Tg, linear expansion coefficient, crack resistance,
The castability and moldability were measured, and the measurement results are shown in Table 4.

【0037】[0037]

【表4】 [Table 4]

【0038】前記表4に示す結果から、高分子材料Fお
よびF11〜F15はそれぞれ同じTgで良好な注型性
および成形性が得られたが、そのうち高分子材料Fおよ
びF12〜F14は、高分子材料F11,F15と異な
り、ポットライフ,粘度,線膨張率,耐クラック性の全
てにおいて良好であることを確認できた。特に、無機充
填剤の添加量が45vol%の高分子材料F13の場合
においては、総合的に最も良好な結果が得られた。
From the results shown in Table 4 above, the polymeric materials F and F11 to F15 each had the same Tg and good castability and moldability, but among them, the polymeric materials F and F12 to F14 had high It was confirmed that, unlike the molecular materials F11 and F15, the pot life, viscosity, linear expansion coefficient, and crack resistance were all good. In particular, in the case of the polymer material F13 in which the amount of the inorganic filler added was 45 vol%, the best overall results were obtained.

【0039】次に、前記高分子材料F13と同様の組成
で、硬化剤として下記表5に示すようにテトラヒドロ無
水フタル酸,3−メチルテトラヒドロ無水フタル酸,4
−メチルテトラヒドロ無水フタル酸,ヘキサヒドロ無水
フタル酸を用いて高分子材料F21〜F24を作製し、
前記表2と同様にポットライフ,粘度,Tg,線膨張
率,耐クラック性,注型性,成形性を測定し、それら測
定結果を表5に示した。
Next, as shown in Table 5 below, tetrahydrophthalic anhydride, 3-methyltetrahydrophthalic anhydride, 4 having the same composition as the polymer material F13 as a curing agent was used.
-Methyltetrahydrophthalic anhydride and hexahydrophthalic anhydride were used to prepare polymer materials F21 to F24,
The pot life, viscosity, Tg, coefficient of linear expansion, crack resistance, castability, and moldability were measured in the same manner as in Table 2, and the measurement results are shown in Table 5.

【0040】[0040]

【表5】 [Table 5]

【0041】前記表5に示すように、前記の各高分子材
料F21〜F24はそれぞれ良好なTg,線膨張率,成
形性が得られたが、そのうちメチルテトラヒドロ無水フ
タル酸またはヘキサヒドロ無水フタル酸を用いた高分子
材料F22〜F24はポットライフ,粘度,耐クラック
性,注型性の全てにおいて良好であることを確認でき
た。特に、4−メチルテトラヒドロ無水フタル酸を用い
た高分子材料F23の場合においては、総合的に最も良
好な結果が得られた。
As shown in Table 5, each of the polymer materials F21 to F24 had good Tg, linear expansion coefficient and moldability. Among them, methyltetrahydrophthalic anhydride or hexahydrophthalic anhydride was selected. It was confirmed that the used polymeric materials F22 to F24 were good in all of pot life, viscosity, crack resistance, and castability. Especially, in the case of the polymer material F23 using 4-methyltetrahydrophthalic anhydride, the best overall results were obtained.

【0042】次に、前記高分子材料F13と同様の組成
で、樹脂スラリー/硬化剤を下記表6に示すように変化
させて高分子材料F31〜F35を作製し、前記表2と
同様にポットライフ,粘度,Tg,線膨張率,耐クラッ
ク性,注型性,成形性を測定し、それら測定結果を表6
に示した。
Next, with the same composition as the polymer material F13, the resin slurry / hardener was changed as shown in Table 6 below to prepare polymer materials F31 to F35, and pots were prepared in the same manner as in Table 2 above. Life, viscosity, Tg, linear expansion coefficient, crack resistance, castability, and moldability were measured, and the measurement results are shown in Table 6.
It was shown to.

【0043】[0043]

【表6】 [Table 6]

【0044】前記表6に示すように、高分子材料F13
およびF31〜F35はそれぞれ良好な粘度,線膨張
率,注型性,成形性が得られたが、そのうち樹脂スラリ
ー/硬化剤=1/0.8〜1/1.2の高分子材料F1
3およびF31〜F34はポットライフ,Tg,耐クラ
ック性の全てにおいて良好であることを確認できた。特
に、樹脂スラリー/硬化剤=1/0.9の高分子材料F
13の場合においては、総合的に最も良好な結果が得ら
れた。
As shown in Table 6 above, the polymeric material F13
And F31 to F35 have good viscosities, linear expansion coefficients, castability and moldability, respectively, of which resin slurry / hardener = 1 / 0.8 to 1 / 1.2 polymeric material F1
3 and F31 to F34 were confirmed to have good pot life, Tg, and crack resistance. In particular, polymer slurry F with resin slurry / hardener = 1 / 0.9
In the case of 13, the best overall results were obtained.

【0045】次に、前記高分子材料Fと同様の組成で、
硬化促進剤の添加量を下記表7に示すように変化させて
高分子材料41〜48を作製し、前記表2と同様にポッ
トライフ,粘度,Tg,線膨張率,耐クラック性,注型
性,成形性を測定し、それら測定結果を表6に示した。
Next, with the same composition as the polymer material F,
Polymer materials 41 to 48 were prepared by changing the addition amount of the curing accelerator as shown in Table 7 below, and pot life, viscosity, Tg, linear expansion coefficient, crack resistance, casting were performed in the same manner as in Table 2 above. The moldability and moldability were measured, and the measurement results are shown in Table 6.

【0046】[0046]

【表7】 [Table 7]

【0047】前記表7に示すように、高分子材料F41
〜F48はそれぞれ良好な線膨張率,成形性が得られた
が、そのうち硬化促進剤の添加量が0.05〜0.37
wt%の高分子材料F42〜F47はポットライフ,粘
度,Tg,耐クラック性,注型性の全てにおいて良好で
あることを確認できた。特に、硬化促進剤の添加量が
0.17wt%の高分子材料F45の場合においては、
総合的に最も良好な結果が得られた。
As shown in Table 7, polymer material F41
.About.F48, good linear expansion coefficient and moldability were obtained, but the addition amount of the curing accelerator was 0.05 to 0.37.
It was confirmed that the wt% polymer materials F42 to F47 were good in all of pot life, viscosity, Tg, crack resistance, and castability. Particularly, in the case of the polymer material F45 in which the addition amount of the curing accelerator is 0.17 wt%,
Overall, the best results were obtained.

【0048】次に、前記高分子材料F13と同様の組成
で、シランカップリング剤の添加量を下記表8に示すよ
うに変化させて高分子材料F51〜F56を作製し、そ
れら各高分子材料F51〜F56の初期曲げ強度,煮沸
16時間後における初期曲げ強度および強度保持率を測
定し、それら測定結果を下記表8に示した。
Next, polymer materials F51 to F56 having the same composition as that of the polymer material F13 were prepared by changing the addition amount of the silane coupling agent as shown in Table 8 below. The initial bending strength of F51 to F56, the initial bending strength after 16 hours of boiling and the strength retention were measured, and the measurement results are shown in Table 8 below.

【0049】[0049]

【表8】 [Table 8]

【0050】前記表8に示す結果から、シランカップリ
ング剤の添加量が0.1〜0.6wt%の高分子材料F
52〜F56は、高分子材料F51よりも高い強度を有
し耐湿性が良好であることを確認できた。特に、シラン
カップリング剤の添加量が0.4wt%の高分子材料F
54の場合においては、最も良好な結果が得られた。
From the results shown in Table 8 above, the polymer material F containing 0.1 to 0.6 wt% of the silane coupling agent was added.
It was confirmed that 52 to F56 had higher strength and better moisture resistance than the polymeric material F51. Particularly, the polymer material F containing 0.4 wt% of the silane coupling agent
In the case of 54, the best result was obtained.

【0051】以上示した本実施の形態のように、一段法
による低当量樹脂と高当量樹脂とを低当量樹脂/高当量
樹脂=50wt%/50wt%〜90wt%/10wt
%の範囲内で混合した樹脂スラリーを用い、硬化剤とし
てメチルテトラヒドロ無水フタル酸またはヘキサヒドロ
無水フタル酸を樹脂スラリー/硬化剤=1/0.8〜1
/1.2の範囲内で使用し、硬化促進剤として3級アミ
ン塩を0.05wt%〜0.37wt%の範囲内で使用
し、無機充填剤として溶融シリカを35vol%〜50
vol%の範囲内で使用し、シランカップリング剤とし
てγ−グリシドキシプロピルトリメトキシシランを0.
1wt%〜0.6wt%の範囲内で使用して高分子材料
を作製することにより、その高分子材料において低粘度
で十分なポットライフ(20分以上)およびTgを確保
できる。また、前記のような高分子材料を注型した高分
子絶縁材料製品等においても、比較的に低い線膨張率で
ゲルタイムが短かくなり、耐クラック性(および耐湿
性),注型性,成形性も良好にできる。
As in the present embodiment shown above, low-equivalent resin and high-equivalent resin obtained by the one-step method are low-equivalent resin / high-equivalent resin = 50 wt% / 50 wt% to 90 wt% / 10 wt.
% Resin tetramethyl phthalic anhydride or hexahydrophthalic anhydride as a curing agent resin slurry / curing agent = 1 / 0.8 to 1
/1.2, the tertiary amine salt as a curing accelerator in the range of 0.05 wt% to 0.37 wt%, and the fused silica as the inorganic filler in the range of 35 vol% to 50%.
It is used within the range of vol% and γ-glycidoxypropyltrimethoxysilane is used as a silane coupling agent.
By using the polymer material in the range of 1 wt% to 0.6 wt%, it is possible to secure a sufficient pot life (20 minutes or more) and Tg with low viscosity in the polymer material. In addition, even in polymer insulating material products, etc. in which the above polymer material is cast, the gel time becomes short with a relatively low linear expansion coefficient, and crack resistance (and moisture resistance), castability, molding The property can be improved.

【0052】以上、本発明において、記載された具体例
に対してのみ詳細に説明したが、本発明の技術思想の範
囲で多彩な変形および修正が可能であることは、当業者
にとって明白なことであり、このような変形および修正
が特許請求の範囲に属することは当然のことである。
In the above, the present invention has been described in detail only with respect to the specific examples described, but it is obvious to those skilled in the art that various variations and modifications are possible within the scope of the technical idea of the present invention. Of course, such variations and modifications are within the scope of the claims.

【0053】[0053]

【発明の効果】以上示したように本発明によれば、例え
ばノボラック型エポキシ樹脂や環状脂肪族エポキシ樹脂
等の比較的高価な材料を用いなくとも、高分子材料にお
いて低粘度で十分なポットライフ(20分以上)および
良好なTg(115℃以上)を確保でき、その高分子材
料を注型した高分子絶縁材料製品等においても比較的に
低い線膨張率でゲルタイムを短かくできるため、近年の
高電圧機器における大容量化,小型化等に応じて、屋外
等の温度変化の激しい環境下でも耐熱性,耐クラック性
を有する高分子絶縁材料製品を高い生産性で提供するこ
とが可能となる。
As described above, according to the present invention, a low viscosity and sufficient pot life of a polymer material can be obtained without using a relatively expensive material such as a novolac type epoxy resin or a cycloaliphatic epoxy resin. (20 minutes or more) and a good Tg (115 ° C. or more) can be secured, and the gel time can be shortened with a relatively low linear expansion coefficient even in a polymer insulating material product or the like in which the polymer material is cast. It is possible to provide high-productivity polymer insulating material products with heat resistance and crack resistance even in environments with severe temperature changes, such as outdoors, in response to the increasing capacity and miniaturization of high-voltage equipment. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例における高分子製品の試料の概略構成
図。
FIG. 1 is a schematic configuration diagram of a sample of a polymer product in this example.

【図2】一段法による低当量樹脂を用いた高分子材料の
分子量分布図。
FIG. 2 is a molecular weight distribution diagram of a polymer material using a low equivalent weight resin by a one-step method.

【図3】二段法による低当量樹脂を用いた高分子材料の
分子量分布図。
FIG. 3 is a molecular weight distribution diagram of a polymer material using a low-equivalent resin by a two-step method.

【符号の説明】[Explanation of symbols]

1…真空インタラプタ 1a…セラミック容器 2,3…導体 4…樹脂 1 ... Vacuum interrupter 1a ... Ceramic container 2, 3 ... conductor 4 ... Resin

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成14年4月11日(2002.4.1
1)
[Submission date] April 11, 2002 (2002.4.1)
1)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の名称[Name of item to be amended] Title of invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の名称】 屋内外用絶縁高分子材料組成物Title: Insulating polymer material composition for indoor and outdoor use

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 63/02 H01B 3/40 C H01B 3/40 F H J C08K 5/54 Fターム(参考) 4J002 CD051 CD052 DJ018 EF126 EL136 EN027 EX069 FD018 FD146 FD157 GQ01 4J036 AA05 AD08 DB21 DC05 FA01 FA05 FA13 JA05 5G305 AA14 AB24 AB27 AB36 AB40 BA09 CA16 CB13 CB16 CB26 CC02 CD01 CD06 CD08 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C08L 63/02 H01B 3/40 C H01B 3/40 F H J C08K 5/54 F term (reference) 4J002 CD051 CD052 DJ018 EF126 EL136 EN027 EX069 FD018 FD146 FD157 GQ01 4J036 AA05 AD08 DB21 DC05 FA01 FA05 FA13 JA05 5G305 AA14 AB24 AB27 AB36 AB40 BA09 CA16 CB13 CB16 CB26 CC02 CD01 CD06 CD08

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ビスフェノールA型エポキシ樹脂から成
る低当量樹脂と高当量樹脂とを低当量樹脂/高当量樹脂
=50wt%/50wt%〜90wt%/10wt%の
範囲内で混合した樹脂スラリーを用い、その樹脂スラリ
ーに硬化剤,硬化促進剤,無機充填剤,シランカップリ
ング剤を添加したことを特徴とする屋内外用高分子材料
組成物。
1. A resin slurry prepared by mixing a low-equivalent resin composed of a bisphenol A type epoxy resin and a high-equivalent resin within a range of low-equivalent resin / high-equivalent resin = 50 wt% / 50 wt% to 90 wt% / 10 wt%. A polymeric material composition for indoor and outdoor use, wherein a curing agent, a curing accelerator, an inorganic filler, and a silane coupling agent are added to the resin slurry.
【請求項2】 前記低当量樹脂は、一段法により作製し
たことを特徴とする請求項1記載の屋内外用絶縁高分子
材料組成物。
2. The indoor / outdoor insulating polymer material composition according to claim 1, wherein the low-equivalent resin is produced by a one-step method.
【請求項3】 前記硬化剤として、メチルテトラヒドロ
無水フタル酸またはヘキサヒドロ無水フタル酸を樹脂ス
ラリー/硬化剤=1/0.8〜1/1.2の範囲内で添
加したことを特徴とする請求項1または2記載の屋内外
用絶縁高分子材料組成物。
3. The curing agent according to claim 1, wherein methyltetrahydrophthalic anhydride or hexahydrophthalic anhydride is added within the range of resin slurry / curing agent = 1 / 0.8 to 1 / 1.2. Item 3. The indoor / outdoor insulating polymer material composition according to Item 1 or 2.
【請求項4】 前記硬化促進剤として、3級アミン塩を
0.05wt%〜0.37wt%の範囲内で添加したこ
とを特徴とする請求項1乃至3記載の屋内外用絶縁高分
子材料組成物。
4. The indoor / outdoor insulating polymer material composition according to claim 1, wherein a tertiary amine salt is added in the range of 0.05 wt% to 0.37 wt% as the curing accelerator. object.
【請求項5】 前記無機充填剤として、溶融シリカを3
5vol%〜50vol%の範囲内で添加したことを特
徴とする請求項1乃至4記載の屋内外用絶縁高分子材料
組成物。
5. A fused silica is used as the inorganic filler in an amount of 3
The indoor / outdoor insulating polymer material composition according to any one of claims 1 to 4, which is added within a range of 5 vol% to 50 vol%.
【請求項6】 前記シランカップリング剤として、γ−
グリシドキシプロピルトリメトキシシランを0.1wt
%〜0.6wt%の範囲内で添加したことを特徴とする
請求項1乃至5記載の屋内外用絶縁高分子材料組成物。
6. The silane coupling agent is γ-
0.1 wt of glycidoxypropyltrimethoxysilane
% -0.6 wt% added in the range of 1 to 5, the indoor / outdoor insulating polymer material composition according to claim 1.
JP2002071215A 2002-03-15 2002-03-15 Insulating polymer material composition for indoor and outdoor use Pending JP2003268075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002071215A JP2003268075A (en) 2002-03-15 2002-03-15 Insulating polymer material composition for indoor and outdoor use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002071215A JP2003268075A (en) 2002-03-15 2002-03-15 Insulating polymer material composition for indoor and outdoor use

Publications (1)

Publication Number Publication Date
JP2003268075A true JP2003268075A (en) 2003-09-25

Family

ID=29201557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002071215A Pending JP2003268075A (en) 2002-03-15 2002-03-15 Insulating polymer material composition for indoor and outdoor use

Country Status (1)

Country Link
JP (1) JP2003268075A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185176A (en) * 2008-02-06 2009-08-20 Air Water Inc Curing agent for epoxy resin, composition containing the same, and use thereof
KR101116181B1 (en) 2010-09-29 2012-03-06 주식회사 두산 Epoxy resin laminate having excellent formability and method for preparing the same
KR101125845B1 (en) * 2011-08-24 2012-03-28 주식회사 코켐스 SILICONE BASED TWO LIQUID TYPE ORGANIC&middot;INORGANIC HYBRID COATINGS AND MANUFACTURAL METHODS
WO2013019092A2 (en) * 2011-08-04 2013-02-07 주식회사 두산 Epoxy resin composition with excellent moldability and metal copper clad laminate for printed circuit board including same
KR20130015710A (en) * 2011-08-04 2013-02-14 주식회사 두산 Epoxy resin composition having excellent formability and metal copper clad laminate having the same
CN103410003A (en) * 2013-08-13 2013-11-27 厦门大学 Fluorine-containing self-lubricating fabric coating material and preparation method thereof
WO2013180328A1 (en) * 2012-06-01 2013-12-05 주식회사 영테크 Dielectric nanocomposite material and method for manufacturing same
JP2016166350A (en) * 2015-03-04 2016-09-15 株式会社東光高岳 Epoxy resin composition and insulative molding
CN114316672A (en) * 2021-12-10 2022-04-12 洋紫荆油墨(中山)有限公司 Thermosetting insulating oil and preparation method and application thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185176A (en) * 2008-02-06 2009-08-20 Air Water Inc Curing agent for epoxy resin, composition containing the same, and use thereof
KR101116181B1 (en) 2010-09-29 2012-03-06 주식회사 두산 Epoxy resin laminate having excellent formability and method for preparing the same
CN103228437A (en) * 2010-09-29 2013-07-31 株式会社斗山 Laminate comprising epoxy resin having superior formability, and method for producing same
WO2012044029A2 (en) * 2010-09-29 2012-04-05 주식회사 두산 Laminate comprising an epoxy resin and having superior formability, and method for producing same
WO2012044029A3 (en) * 2010-09-29 2012-06-07 주식회사 두산 Laminate comprising an epoxy resin and having superior formability, and method for producing same
KR20130015710A (en) * 2011-08-04 2013-02-14 주식회사 두산 Epoxy resin composition having excellent formability and metal copper clad laminate having the same
WO2013019092A2 (en) * 2011-08-04 2013-02-07 주식회사 두산 Epoxy resin composition with excellent moldability and metal copper clad laminate for printed circuit board including same
WO2013019092A3 (en) * 2011-08-04 2013-06-13 주식회사 두산 Epoxy resin composition with excellent moldability and metal copper clad laminate for printed circuit board including same
KR101866562B1 (en) * 2011-08-04 2018-06-11 주식회사 두산 Epoxy resin composition having excellent formability and metal copper clad laminate having the same
KR101125845B1 (en) * 2011-08-24 2012-03-28 주식회사 코켐스 SILICONE BASED TWO LIQUID TYPE ORGANIC&middot;INORGANIC HYBRID COATINGS AND MANUFACTURAL METHODS
WO2013180328A1 (en) * 2012-06-01 2013-12-05 주식회사 영테크 Dielectric nanocomposite material and method for manufacturing same
CN103410003A (en) * 2013-08-13 2013-11-27 厦门大学 Fluorine-containing self-lubricating fabric coating material and preparation method thereof
CN103410003B (en) * 2013-08-13 2016-03-23 厦门大学 A kind of fluorine-containing self-lubricating type fabric coating material and preparation method thereof
JP2016166350A (en) * 2015-03-04 2016-09-15 株式会社東光高岳 Epoxy resin composition and insulative molding
CN114316672A (en) * 2021-12-10 2022-04-12 洋紫荆油墨(中山)有限公司 Thermosetting insulating oil and preparation method and application thereof

Similar Documents

Publication Publication Date Title
KR910008560B1 (en) Epoxy resin composition for encapsulating semicomductor
JP2003268075A (en) Insulating polymer material composition for indoor and outdoor use
US4638021A (en) Epoxy resin composition
JP2009114222A (en) Epoxy resin composition for casting and electric/electronic component device
JP2003171531A (en) Resin composition for sealing and resin-sealed semiconductor device
JPS6136854B2 (en)
JPH0513185B2 (en)
JP3450260B2 (en) Epoxy resin composition and coil casting
JP2007051189A (en) Cured cast resin and method for producing the same
JPH0733429B2 (en) Epoxy resin composition
JP2001114994A (en) Epoxy resin composition and semiconductor device
JPH06239967A (en) Epoxy resin composition for semiconductor sealing
JPS629248B2 (en)
KR20030056495A (en) Epoxy resin compositions for mold transformer and method for manufacturing the same
JP2000086869A (en) Epoxy resin composition and coil
JP2002097258A (en) Epoxy resin composition
JP3528925B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2001214039A (en) Epoxy resin composition and sealed semiconductor device
JP2501140B2 (en) Epoxy resin composition for semiconductor encapsulation
JP3451710B2 (en) Epoxy resin composition for semiconductor encapsulation and resin-encapsulated semiconductor device
JPH0621152B2 (en) Sealing resin composition
KR880001519B1 (en) Composition of epoxy resin
JPS60161423A (en) Resin composition for sealing
JPH01144441A (en) Sealing resin composition
JPS63273624A (en) Epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A02 Decision of refusal

Effective date: 20070410

Free format text: JAPANESE INTERMEDIATE CODE: A02