JP2003258424A - Method of manufacturing multilayerd ceramic substrate - Google Patents

Method of manufacturing multilayerd ceramic substrate

Info

Publication number
JP2003258424A
JP2003258424A JP2002060034A JP2002060034A JP2003258424A JP 2003258424 A JP2003258424 A JP 2003258424A JP 2002060034 A JP2002060034 A JP 2002060034A JP 2002060034 A JP2002060034 A JP 2002060034A JP 2003258424 A JP2003258424 A JP 2003258424A
Authority
JP
Japan
Prior art keywords
substrate
green sheet
fired
ceramic
ceramic green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002060034A
Other languages
Japanese (ja)
Other versions
JP4029207B2 (en
Inventor
Satoshi Adachi
聡 足立
Junzo Fukuda
順三 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal SMI Electronics Device Inc
Original Assignee
Sumitomo Metal SMI Electronics Device Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal SMI Electronics Device Inc filed Critical Sumitomo Metal SMI Electronics Device Inc
Priority to JP2002060034A priority Critical patent/JP4029207B2/en
Publication of JP2003258424A publication Critical patent/JP2003258424A/en
Application granted granted Critical
Publication of JP4029207B2 publication Critical patent/JP4029207B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the cracking of a baked substrate caused by a pressurizing force applied at the time of press-fixing an unbaked ceramic green sheet to the baked substrate in a method of manufacturing a multilayered ceramic substrate by which the multilayered ceramic substrate can be manufactured by baking the laminate of the baked substrate and an unbaked ceramic green sheet in a constrained state. <P>SOLUTION: The unbaked ceramic green sheet 13 which is press-fixed to the baked substrate 12 is formed so that the thickness variation (the total thickness variation of a plurality of unbaked ceramic green sheets when the sheets are press-fixed to the substrate 12) of the sheet 13 at the time of press-fixing the sheet 13 to the substrate 12 becomes equal to or larger than a maximum thickness difference caused by recessed and projecting sections of the substrate 12. When the sheet 13 is formed in this way, the sheet 13 is flexibly deformed in accordance with the recessed and projecting sections of the surface 12 and the maximum thickness difference caused by the recessed and projecting sections of the substrate 12 can be absorbed by the thickness variation of the sheet 13 at the time of press-fixing the sheet 13 to the substrate 12. Consequently, a pressurizing force applied at the time of press-fixing the sheet 13 to the substrate 12 can be prevented from collectively acting on the protrusively warping part of the substrate 12. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、予め焼成したセラ
ミック基板に未焼成のセラミックグリーンシートを積層
してセラミック多層基板を製造するセラミック多層基板
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ceramic multi-layer substrate by laminating an unfired ceramic green sheet on a pre-fired ceramic substrate.

【0002】[0002]

【従来の技術】一般に、セラミック多層基板は、グリー
ンシート積層法で製造されることが多い。このグリーン
シート積層法は、複数枚のセラミックグリーンシートに
ビアホールを形成した後、各セラミックグリーンシート
のビアホールに導体ペーストを充填してビア導体を形成
すると共に、各セラミックグリーンシートに導体ペース
トで配線パターンを印刷する。その後、これら複数枚の
セラミックグリーンシートを積層・熱圧着して生基板を
作製した後、この生基板を焼成してセラミック多層基板
を製造する。
2. Description of the Related Art Generally, a ceramic multilayer substrate is often manufactured by a green sheet laminating method. In this green sheet lamination method, after forming via holes in a plurality of ceramic green sheets, a via conductor is formed by filling the via holes of each ceramic green sheet with a conductor paste, and a wiring pattern is formed on each ceramic green sheet with the conductor paste. To print. After that, a plurality of these ceramic green sheets are laminated and thermocompression bonded to produce a raw substrate, and then the raw substrate is fired to produce a ceramic multilayer substrate.

【0003】[0003]

【発明が解決しようとする課題】しかし、生基板を焼成
する過程で、15〜30%程度の焼成収縮が発生するた
め、基板の寸法精度を管理することが難しく、しかも、
キャビティ等の凹凸のある多層基板では、基板両面の収
縮応力が不均一になるため、焼成基板に反りが発生しや
すく、特にキャビティの底面部の反りが大きくなるとい
う欠点もあった。
However, since firing shrinkage of about 15 to 30% occurs in the process of firing the green substrate, it is difficult to control the dimensional accuracy of the substrate, and
In the case of a multi-layered substrate having irregularities such as cavities, shrinkage stress on both sides of the substrate becomes non-uniform, so that the fired substrate is likely to warp, and in particular, the warp of the bottom surface of the cavity becomes large.

【0004】また、絶縁性のセラミックグリーンシート
と、誘電体、磁性体等の異種材料のセラミックグリーン
シートとを積層して複合セラミック多層基板を焼成する
場合は、両者の焼結温度を一致させ、且つ、両者の焼成
収縮挙動の違いを少なくして層間剥離を防止する必要が
あるため、材料の選択の幅が非常に狭く、設計の自由度
が非常に狭いという欠点がある。
When a composite ceramic multilayer substrate is fired by laminating an insulating ceramic green sheet and a ceramic green sheet made of a different material such as a dielectric or a magnetic material, the sintering temperatures of the both should be the same. In addition, since it is necessary to reduce the difference in firing shrinkage behavior between them to prevent delamination, there is a drawback that the range of material selection is very narrow and the degree of freedom in design is very narrow.

【0005】近年、基板の焼成収縮を小さくして基板寸
法精度を向上させる焼成方法として、特開2001−2
67743号公報に示すように、焼成済みのアルミナ基
板上に、予め配線パターンを印刷した未焼成のセラミッ
クグリーンシートを積層して熱圧着し、これを焼成して
セラミック多層基板を製造することが提案されている。
この焼成方法は、セラミックグリーンシートの焼成収縮
を焼成済みのアルミナ基板で抑えることで、基板全体の
焼成収縮を小さくしようとするものである。
In recent years, as a firing method for reducing the firing shrinkage of the substrate to improve the dimensional accuracy of the substrate, Japanese Patent Laid-Open No. 2001-2
As disclosed in Japanese Patent No. 67743, it is proposed that an unfired ceramic green sheet with a printed wiring pattern is laminated on a fired alumina substrate, thermocompression-bonded, and fired to produce a ceramic multilayer substrate. Has been done.
This firing method is intended to reduce the firing shrinkage of the entire substrate by suppressing the firing shrinkage of the ceramic green sheet with the fired alumina substrate.

【0006】しかし、セラミックグリーンシートの焼成
収縮力は大きいため、セラミックグリーンシートの焼成
収縮をその片面から焼成済みアルミナ基板のみで抑えよ
うとしても十分に抑えることができない。その結果、セ
ラミックグリーンシートの焼成層と焼成済みのアルミナ
基板との間に剥がれが発生したり、セラミックグリーン
シートの焼成層にクラックが発生したり、基板の反りが
発生することがあり、製品の歩留まりが悪いという欠点
がある。
However, since the ceramic green sheet has a large firing shrinkage force, it is not possible to sufficiently suppress the firing shrinkage of the ceramic green sheet from one side thereof only by the fired alumina substrate. As a result, peeling may occur between the fired layer of the ceramic green sheet and the fired alumina substrate, cracks may occur in the fired layer of the ceramic green sheet, or warpage of the substrate may occur. It has the disadvantage of poor yield.

【0007】また、基板の焼成収縮を小さくして基板寸
法精度を向上させる効果の大きい焼成方法として、例え
ば特表平5−503498号公報や特開平9−9298
3号公報に示すように、加圧焼成法が開発されている。
この加圧焼成法は、焼成前の低温焼成セラミック基板
(以下「生基板」という)の両面に、低温焼成セラミッ
クの焼結温度(800〜1000℃)では焼結しない拘
束用アルミナグリーンシートを積層し、この状態で、該
生基板を加圧しながら、800〜1000℃で焼成した
後、焼成基板の両面から拘束用アルミナグリーンシート
の残存物をブラスト処理等で取り除いて低温焼成セラミ
ック基板を製造するものである。
Further, as a firing method which has a large effect of reducing the firing shrinkage of the substrate and improving the dimensional accuracy of the substrate, for example, JP-A-5-503498 or JP-A-9-9298.
As shown in Japanese Patent Publication No. 3, a pressure firing method has been developed.
In this pressure firing method, a restraining alumina green sheet that does not sinter at the sintering temperature (800 to 1000 ° C.) of the low temperature firing ceramic is laminated on both surfaces of the low temperature firing ceramic substrate (hereinafter referred to as “raw substrate”) before firing. Then, in this state, the raw substrate is pressed and fired at 800 to 1000 ° C., and the residual alumina green sheet for restraint is removed from both sides of the fired substrate by blasting or the like to manufacture a low temperature fired ceramic substrate. It is a thing.

【0008】しかし、キャビティ付きの低温焼成セラミ
ック基板を上述した加圧焼成法で焼成すると、拘束用ア
ルミナグリーンシートを介してキャビティの領域に加わ
る加圧力がキャビティ周縁に集中的に作用し、キャビテ
ィの底面には加圧力が全く作用しないため、キャビティ
の底面部が凸状に反ってしまい、キャビティの寸法精度
を確保できないという欠点がある。
However, when a low temperature fired ceramic substrate with a cavity is fired by the above-mentioned pressure firing method, the pressure applied to the cavity region via the constraining alumina green sheet acts intensively on the cavity periphery, and Since no pressing force acts on the bottom surface, the bottom surface of the cavity is warped in a convex shape, and the dimensional accuracy of the cavity cannot be ensured.

【0009】これら従来の欠点を解消するために、本出
願人は、特願2001−357692号(平成13年1
1月22日出願)の明細書に記載されているように、予
め焼成したセラミック基板(以下「焼成済み基板」とい
う)の片面又は両面に、該焼成済み基板の焼結温度とほ
ぼ同一温度又はそれよりも低い温度で焼結する1枚又は
複数枚の未焼成のセラミックグリーンシートを積層圧着
して積層体を作製し、この積層体の両面に、前記未焼成
のセラミックグリーンシートの焼結温度では焼結しない
拘束用グリーンシートを積層して、拘束焼成(加圧焼成
又は無加圧焼成)するという、新たな製造技術を開発中
である。
In order to overcome these drawbacks of the prior art, the present applicant has filed Japanese Patent Application No. 2001-357692 (2001
As described in the specification of (January 22nd application), one side or both sides of a pre-fired ceramic substrate (hereinafter referred to as “fired substrate”) has almost the same temperature as the firing temperature of the fired substrate or One or more unfired ceramic green sheets that are sintered at a temperature lower than that are laminated and pressure-bonded to produce a laminated body, and the sintering temperature of the unfired ceramic green sheets is provided on both surfaces of this laminated body. Then, a new manufacturing technique is under development, in which restraint green sheets that are not sintered are stacked and restrained firing (pressure firing or pressureless firing) is performed.

【0010】この製造技術の開発中に、焼成済み基板に
未焼成のセラミックグリーンシートを積層してその積層
体を2枚の加圧板間に挟み込んで圧着する工程で、圧着
時の加圧力により焼成済み基板が割れることがあり、こ
れが歩留りを低下させる原因となることが判明した。
During the development of this manufacturing technique, in the process of laminating an unfired ceramic green sheet on a fired substrate, sandwiching the laminate between two pressure plates and crimping, firing by pressure force at the time of crimping It was found that the used substrate may be cracked, which causes a decrease in yield.

【0011】そこで、本発明の目的は、焼成済み基板と
未焼成のセラミックグリーンシートとの積層体を拘束焼
成してセラミック多層基板を製造する方法において、焼
成済み基板に未焼成のセラミックグリーンシートを圧着
する工程で焼成済み基板が割れることを防止できて、歩
留りを向上させることができるセラミック多層基板の製
造方法を提供することである。
Therefore, an object of the present invention is to produce a ceramic multi-layer substrate by constraining and firing a laminated body of a fired substrate and an unfired ceramic green sheet, to obtain the unfired ceramic green sheet on the fired substrate. It is an object of the present invention to provide a method for manufacturing a ceramic multilayer substrate, which can prevent the fired substrate from cracking in the pressure bonding step and improve the yield.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1,2のセラミック多層基板の製造
方法は、焼成済み基板に未焼成のセラミックグリーンシ
ートを積層圧着して積層体を作製した後、この積層体の
両面に拘束用グリーンシートを積層圧着し、或は、未焼
成のセラミックグリーンシートの積層圧着と拘束用グリ
ーンシートの積層圧着とを同時に行い、拘束焼成(加圧
焼成又は無加圧焼成)するようにしたところに第1の特
徴があり、更に、積層体作製工程で焼成済み基板に圧着
する未焼成のセラミックグリーンシートを、その圧着時
の厚み変化量(複数枚の未焼成のセラミックグリーンシ
ートを同時に圧着する場合はそれらの合計厚み変化量、
また、未焼成のセラミックグリーンシートと拘束用グリ
ーンシートとを同時に圧着する場合はそれらの合計厚み
変化量)が焼成済み基板の凹凸による最大厚み差以上と
なるように形成するところに第2の特徴がある。
In order to achieve the above object, the method for producing a ceramic multilayer substrate according to claims 1 and 2 of the present invention is such that an unfired ceramic green sheet is laminated and pressure-bonded on a fired substrate. After the body is manufactured, constraining green sheets are laminated and pressure-bonded on both sides of the laminated body, or the unfired ceramic green sheets and the constraining green sheets are laminated and pressure-bonded at the same time, and then constrained firing (addition is performed). The first feature is that it is pressure-fired or pressureless-fired. Further, the unfired ceramic green sheet that is pressure-bonded to the fired substrate in the laminated body manufacturing step is subjected to a thickness change amount (the amount of change in the pressure-bonding). When pressing multiple unfired ceramic green sheets at the same time, their total thickness change,
Further, in the case where the unfired ceramic green sheet and the restraining green sheet are pressure-bonded at the same time, the total thickness change amount) is formed so as to be equal to or more than the maximum thickness difference due to the unevenness of the fired substrate. There is.

【0013】本発明の第1の特徴によれば、拘束焼成時
に未焼成のセラミックグリーンシートのX・Y方向の焼
成収縮、反り、変形がその両面側から拘束用グリーンシ
ートと焼成済み基板とによってほぼ均等に抑えられ、寸
法精度が良く且つ層間剥離や反り等のないセラミック多
層基板を製造することができる。しかも、焼成済み基板
と未焼成のセラミックグリーンシートとの間の焼結温度
の相違や焼成収縮特性の相違等は問題とならないため、
セラミック多層基板の各層を形成するセラミック材料の
焼結温度、焼成収縮特性等に対する材料選択の自由度を
大幅に拡大することができ、従来の製造方法では製造が
困難であった構成のセラミック多層基板を、層間剥離や
反り等がなく、寸法精度良く製造できる。
According to the first feature of the present invention, the firing shrinkage, warpage, and deformation of the unfired ceramic green sheet at the time of restrained firing are caused by the restraining green sheet and the fired substrate from both sides thereof. It is possible to manufacture a ceramic multi-layer substrate that is substantially evenly suppressed, has good dimensional accuracy, and has no delamination or warpage. Moreover, since the difference in the sintering temperature between the fired substrate and the unfired ceramic green sheet, the difference in the firing shrinkage characteristics, etc. does not pose a problem,
The degree of freedom in material selection with respect to the sintering temperature, firing shrinkage characteristics, etc. of the ceramic material forming each layer of the ceramic multi-layer substrate can be greatly expanded, and the ceramic multi-layer substrate having a configuration difficult to manufacture by the conventional manufacturing method. Can be manufactured with high dimensional accuracy without delamination or warpage.

【0014】前述したように、この製造技術の開発中
に、焼成済み基板に未焼成のセラミックグリーンシート
を積層してその積層体を2枚の加圧板間に挟み込んで圧
着する工程で、圧着時の加圧力により焼成済み基板が割
れることがあることが判明した。本発明者は、この原因
を調べるために、圧着時に割れた焼成済み基板を検査し
たところ、焼成済み基板の表面は完全な平坦面ではな
く、焼成時の収縮挙動等によって僅かながら基板面に凹
凸(うねり)が生じているのが確認された(図4参
照)。このような凹凸のある焼成済み基板は、圧着時に
焼成済み基板の凸反り部分が加圧板に密着せず、浮き上
がった状態になると共に、圧着時に未焼成のセラミック
グリーンシートを介して焼成済み基板に作用する加圧力
が基板面全体に一様に作用せず、焼成済み基板の凸反り
部分(加圧板から浮き上がった部分)に他の部分よりも
大きな加圧力が作用するため、焼成済み基板の凸反り部
分がその加圧力に耐えられずに割れてしまうものと考え
られる。
As described above, during the development of this manufacturing technique, in the process of laminating an unfired ceramic green sheet on a fired substrate and sandwiching the laminated body between two pressure plates for pressure bonding, It was found that the baked substrate may be cracked by the applied pressure. In order to investigate this cause, the inventor of the present invention has inspected a fired substrate that has been cracked at the time of pressure bonding, and the surface of the fired substrate is not a perfectly flat surface, and the substrate surface is slightly uneven due to shrinkage behavior during firing. It was confirmed that (undulation) had occurred (see FIG. 4). A baked substrate with such irregularities does not stick the convex warp part of the baked substrate to the pressure plate during pressure bonding, and is in a floating state, and is bonded to the baked substrate through an unfired ceramic green sheet during pressure bonding. Since the applied pressure does not act uniformly on the entire surface of the substrate and a larger amount of pressure is applied to the convex warped part of the baked substrate (the part lifted from the pressure plate) than other parts, the convex of the baked substrate It is considered that the warped portion is not able to withstand the applied pressure and cracks.

【0015】そこで、本発明の第2の特徴は、上述した
圧着時の焼成済み基板の割れを防止するために、焼成済
み基板に圧着する未焼成のセラミックグリーンシート
を、その圧着時の厚み変化量(複数枚の未焼成のセラミ
ックグリーンシートを同時に圧着する場合はそれらの合
計厚み変化量)が焼成済み基板の凹凸による最大厚み差
以上となるように形成するようにしたものである。この
ようにすれば、圧着時に焼成済み基板の凹凸に応じて未
焼成のセラミックグリーンシートが柔軟に変形して、焼
成済み基板の凹凸による最大厚み差を未焼成のセラミッ
クグリーンシートの厚み変化量で吸収することができる
ため、圧着時の加圧力が焼成済み基板の凸反り部分に集
中的に作用することを防止でき、焼成済み基板に作用す
る加圧力を基板面全体に分散させることができる。これ
により、圧着時の加圧力による焼成済み基板の割れを防
止できて、歩留りを向上させることができる。
Therefore, the second feature of the present invention is to change the thickness of the unfired ceramic green sheet to be pressure-bonded to the fired substrate in order to prevent the above-mentioned fired substrate from cracking during pressure bonding. The amount (the total amount of change in thickness when a plurality of unfired ceramic green sheets are pressure-bonded at the same time) is set to be equal to or more than the maximum thickness difference due to the unevenness of the fired substrate. In this way, the unfired ceramic green sheet is flexibly deformed according to the unevenness of the fired substrate during pressure bonding, and the maximum thickness difference due to the unevenness of the fired substrate is determined by the amount of change in the thickness of the unfired ceramic green sheet. Since the pressure can be absorbed, it is possible to prevent the pressure applied at the time of pressure bonding from intensively acting on the convex warpage portion of the baked substrate, and the pressure applied to the baked substrate can be dispersed over the entire substrate surface. As a result, it is possible to prevent the baked substrate from cracking due to the pressure applied during pressure bonding, and to improve the yield.

【0016】この場合、請求項3のように、未焼成のセ
ラミックグリーンシートの圧着時の厚み変化量の調整
は、セラミックグリーンシートの厚みの調整、セラミッ
クグリーンシートの成形材料の組成・配合比の調整、成
形材料中のセラミック粒子の粒径の調整、成形材料の空
隙率の調整のうちの少なくとも1つによって行うように
すれば良い。これらの調整法の中から、基板仕様等に応
じて適当な調整法を選択すれば良い。
In this case, as in claim 3, the adjustment of the thickness variation of the unfired ceramic green sheet at the time of pressure bonding is performed by adjusting the thickness of the ceramic green sheet and the composition / mixing ratio of the molding material of the ceramic green sheet. The adjustment may be performed by at least one of the adjustment, the particle size of the ceramic particles in the molding material, and the porosity of the molding material. From these adjustment methods, an appropriate adjustment method may be selected according to the substrate specifications and the like.

【0017】この場合、請求項4のように、焼成済み基
板と未焼成のセラミックグリーンシートとを同種のセラ
ミック材料で形成しても良く、或は、請求項4のよう
に、焼成済み基板と未焼成のセラミックグリーンシート
とを異種のセラミック材料で形成し、未焼成のセラミッ
クグリーンシートの焼結温度が焼成済み基板の焼結温度
以下となるようにセラミック材料を選択するようにして
も良い。請求項3のように、焼成済み基板と未焼成のセ
ラミックグリーンシートとを同種のセラミック材料で形
成すれば、全層の絶縁特性等の電気的特性を均等にした
単一のセラミック組成のセラミック多層基板を製造する
ことができる。また、請求項5のように、焼成済み基板
と未焼成のセラミックグリーンシートとを異種のセラミ
ック材料で形成すれば、従来の製造方法では製造が困難
であった様々な機能材料を内蔵する複合セラミック多層
基板を製造することができる。
In this case, as in claim 4, the fired substrate and the unfired ceramic green sheet may be formed of the same ceramic material, or the fired substrate and the fired substrate may be formed. The unfired ceramic green sheet may be formed of a different ceramic material, and the ceramic material may be selected so that the sintering temperature of the unfired ceramic green sheet is equal to or lower than the sintering temperature of the fired substrate. When the fired substrate and the non-fired ceramic green sheet are formed of the same type of ceramic material as in claim 3, a ceramic multilayer having a single ceramic composition in which the electrical characteristics such as the insulation characteristics of all layers are made uniform. The substrate can be manufactured. When the fired substrate and the unfired ceramic green sheet are made of different ceramic materials as in claim 5, a composite ceramic containing various functional materials, which has been difficult to manufacture by the conventional manufacturing method. Multilayer substrates can be manufactured.

【0018】この場合、請求項6のように、未焼成のセ
ラミックグリーンシートは、1000℃以下で焼成する
低温焼成セラミック材料により形成したものを用いると
良い。このようにすれば、拘束用グリーンシートとし
て、アルミナグリーンシート等の比較的安価で且つ機械
的強度に優れたセラミックを使用することができると共
に、未焼成のセラミックグリーンシートに印刷する配線
導体として、Ag系、Au系、Cu系等の電気抵抗値の
小さい電気的特性に優れた低融点金属を用いることがで
きる。
In this case, the unfired ceramic green sheet may be formed of a low temperature fired ceramic material fired at 1000 ° C. or lower. By doing so, a relatively inexpensive ceramic such as an alumina green sheet and having excellent mechanical strength can be used as the restraining green sheet, and a wiring conductor to be printed on the unfired ceramic green sheet, It is possible to use a low-melting metal such as Ag-based, Au-based, or Cu-based, which has a small electric resistance value and is excellent in electrical characteristics.

【0019】また、請求項7のように、キャビティ付き
のセラミック多層基板を製造する場合は、焼成済み基板
をキャビティとなる部分の底面部に位置させ、該焼成済
み基板に積層する未焼成のセラミックグリーンシートに
は、その積層前又は積層後にキャビティ形成用の開口部
を形成するようにすれば良い。ここで、積層前の未焼成
のセラミックグリーンシートにキャビティ形成用の開口
部を形成する場合は、パンチング加工等によってキャビ
ティ形成用の開口部をビアホールの加工と同時に形成す
れば良く、また、積層後の未焼成のセラミックグリーン
シートにキャビティ形成用の開口部を形成する場合は、
例えば感光性樹脂を含有させたセラミックグリーンシー
トを作製し、フォトリソグラフィ技術等を用いて、この
セラミックグリーンシートにキャビティ形成用の開口部
を形成すれば良い。請求項7のように、焼成済み基板を
キャビティの底面部に位置させて、キャビティ付きのセ
ラミック多層基板を拘束焼成すれば、キャビティの底面
部が凸状に反ることはなく、しかも、拘束焼成によって
キャビティの寸法精度を確保できる。
When manufacturing a ceramic multi-layer substrate with a cavity as in claim 7, an unfired ceramic which is placed on the bottom of a portion of the fired substrate to be the cavity and is laminated on the fired substrate. An opening for forming a cavity may be formed in the green sheet before or after the lamination. Here, when forming an opening for forming a cavity in an unfired ceramic green sheet before stacking, the opening for forming the cavity may be formed simultaneously with the processing of the via hole by punching or the like. When forming an opening for cavity formation in the unfired ceramic green sheet of
For example, a ceramic green sheet containing a photosensitive resin may be prepared, and an opening for forming a cavity may be formed in the ceramic green sheet by using a photolithography technique or the like. When the fired substrate is positioned on the bottom face of the cavity and the ceramic multilayer substrate with the cavity is constrained and fired as in claim 7, the bottom face of the cavity does not warp in a convex shape, and the restrained firing is performed. This ensures the dimensional accuracy of the cavity.

【0020】[0020]

【発明の実施の形態】[実施形態(1)]以下、本発明
を片面キャビティ付きのセラミック多層基板の製造方法
に適用した実施形態(1)を図1乃至図4に基づいて説
明する。
BEST MODE FOR CARRYING OUT THE INVENTION [Embodiment (1)] An embodiment (1) in which the present invention is applied to a method for manufacturing a ceramic multilayer substrate with a single-sided cavity will be described below with reference to FIGS.

【0021】本実施形態(1)で製造する片面キャビテ
ィ付きセラミック多層基板11は、図1(c)、図3に
示すように、予め焼成した焼成済み基板12上に、1枚
又は複数枚の未焼成の低温焼成セラミックグリーンシー
ト13を積層し、更に、その上に拘束焼成グリーンシー
ト15を積層して、800〜1000℃で拘束焼成(加
圧焼成又は無加圧焼成)したものである。この片面キャ
ビティ付きセラミック多層基板11は、キャビティ14
の底面部に焼成済み基板12が位置し、次のような工程
を経て製造される。
As shown in FIGS. 1 (c) and 3, the ceramic multi-layer substrate 11 with a single-sided cavity manufactured in the present embodiment (1) has one or a plurality of sheets on a pre-baked substrate 12 which has been baked. The unfired low-temperature fired ceramic green sheet 13 is laminated, the constrained fired green sheet 15 is further laminated thereon, and the fired by restraint (pressure firing or pressureless firing) at 800 to 1000 ° C. This ceramic multi-layer substrate 11 with a single-sided cavity has a cavity 14
The baked substrate 12 is located on the bottom surface of the substrate and is manufactured through the following steps.

【0022】まず、焼成済み基板12を準備する。この
焼成済み基板12は、セラミック基板を焼成したもので
あり、単層基板又は多層基板のいずれであっても良い。
また、この焼成済み基板12を形成するセラミック材料
は、絶縁性セラミック、誘電体セラミック、磁性体セラ
ミック、圧電性セラミック、抵抗体付きのセラミックの
いずれであっても良く、要は、低温焼成セラミックグリ
ーンシート13の焼結温度と同一温度又はそれよりも高
い温度で焼結するセラミック材料を用いれば良い。ま
た、焼成済み基板12が多層基板の場合は、各層を同種
のセラミックで形成しても良いし、同時焼成可能な異種
のセラミックで形成した層が混在する構成としても良
い。
First, the baked substrate 12 is prepared. The fired substrate 12 is a fired ceramic substrate, and may be either a single-layer substrate or a multi-layer substrate.
The ceramic material forming the fired substrate 12 may be any of insulating ceramics, dielectric ceramics, magnetic ceramics, piezoelectric ceramics, and ceramics with resistors. A ceramic material that sinters at a temperature equal to or higher than the sintering temperature of the sheet 13 may be used. Further, when the fired substrate 12 is a multi-layer substrate, each layer may be formed of the same type of ceramic, or a layer formed of different types of ceramics that can be fired simultaneously may be mixed.

【0023】この場合、絶縁性セラミックとは、基板の
絶縁層を形成するのに用いるセラミックであり、例え
ば、低温焼成セラミック、アルミナ等の高温焼結性セラ
ミックが挙げられる。焼成済み基板12を低温焼成セラ
ミックで形成する場合は、低温焼成セラミックグリーン
シート13と同種の低温焼成セラミックを用いても良
く、勿論、低温焼成セラミックグリーンシート13の焼
結温度と同一温度又はそれよりも高い温度で焼結する他
の種類の低温焼成セラミックを用いても良いことは言う
までもない。
In this case, the insulating ceramic is a ceramic used for forming the insulating layer of the substrate, and examples thereof include low temperature fired ceramics and high temperature sinterable ceramics such as alumina. When the fired substrate 12 is formed of a low temperature fired ceramic, a low temperature fired ceramic of the same type as the low temperature fired ceramic green sheet 13 may be used. Of course, the same temperature as or lower than the sintering temperature of the low temperature fired ceramic green sheet 13 may be used. It goes without saying that other types of low temperature fired ceramics that sinter at high temperatures may also be used.

【0024】また、焼成済み基板12の表面に同時焼成
又は後付けで厚膜導体やRuO2 系等の厚膜抵抗体を形
成しても良い。更に、焼成済み基板12の表面に厚膜抵
抗体を形成する場合は、焼成済み基板12に後述する低
温焼成セラミックグリーンシート13を積層する前に、
該厚膜抵抗体をトリミングして抵抗値を調整するように
すると良い。
Further, a thick-film conductor or a thick-film resistor such as a RuO 2 system may be formed on the surface of the baked substrate 12 by simultaneous baking or after-bonding. Furthermore, when forming a thick film resistor on the surface of the fired substrate 12, before laminating a low temperature fired ceramic green sheet 13 described later on the fired substrate 12,
It is advisable to trim the thick film resistor to adjust the resistance value.

【0025】更に、低温焼成セラミックグリーンシート
13を準備する。このグリーンシート13を形成する低
温焼成セラミック材料としては、例えば、CaO−Si
2−Al2 3 −B2 3 系ガラス:50〜65重量
%(好ましくは60重量%)とアルミナ:50〜35重
量%(好ましくは40重量%)との混合物を用いると良
い。この他、MgO−SiO2 −Al2 3 −B2 3
系ガラスとアルミナとの混合物、或は、SiO2 −B2
3 系ガラスとアルミナとの混合物、PbO−SiO2
−B2 3 系ガラスとアルミナとの混合物、コージェラ
イト系結晶化ガラス等の800〜1000℃で焼成でき
る低温焼成セラミック材料を用いても良い。
Further, a low temperature fired ceramic green sheet 13 is prepared. Examples of the low temperature fired ceramic material forming the green sheet 13 include CaO—Si.
O 2 -Al 2 O 3 -B 2 O 3 based glass: 50-65% by weight (preferably 60 wt%) alumina: 50 to 35 wt% (preferably 40% by weight) may be used a mixture of. In addition, MgO-SiO 2 -Al 2 O 3 -B 2 O 3
Mixture of glass and alumina, or SiO 2 -B 2
O 3 based mixture of glass and alumina, PbO-SiO 2
A low temperature fired ceramic material that can be fired at 800 to 1000 ° C., such as a mixture of —B 2 O 3 glass and alumina, cordierite crystallized glass, or the like may be used.

【0026】低温焼成セラミックグリーンシート13
は、上記組成の低温焼成セラミック材料にバインダー
(例えば、アクリル系樹脂、ブチラール樹脂、PVA
等)、溶剤(例えばトルエン、キシレン、ブタノール
等)及び可塑剤を配合して、十分に撹拌混合してスラリ
ーを作製し、このスラリーを用いてドクターブレード法
等でテープ成形したものである。
Low temperature firing ceramic green sheet 13
Is a binder (for example, acrylic resin, butyral resin, PVA) to the low temperature fired ceramic material of the above composition.
Etc.), a solvent (for example, toluene, xylene, butanol, etc.) and a plasticizer, and sufficiently stirred and mixed to prepare a slurry, and this slurry is tape-formed by a doctor blade method or the like.

【0027】後述する積層体作製工程で、焼成済み基板
12上に低温焼成セラミックグリーンシート13を圧着
する際に、焼成済み基板12の割れを防止するために、
図4に示すように、低温焼成セラミックグリーンシート
13の圧着時の厚み変化量が焼成済み基板12の凹凸に
よる最大厚み差以上となるように形成する。焼成済み基
板12上に複数枚の低温焼成セラミックグリーンシート
13を同時に圧着する場合は複数枚の低温焼成セラミッ
クグリーンシート13の合計厚み変化量が焼成済み基板
12の凹凸による最大厚み差以上となるように形成す
る。ここで、焼成済み基板12の凹凸による最大厚み差
は、焼成済み基板12を加圧板10上に置いたときの焼
成済み基板12の最大厚み(基板面の最高点)と最小厚
み(基板面の最低点)との差である。
In order to prevent cracking of the fired substrate 12 when the low temperature fired ceramic green sheet 13 is pressure-bonded onto the fired substrate 12 in the step of producing a laminate described later,
As shown in FIG. 4, the low-temperature fired ceramic green sheet 13 is formed so that the amount of change in thickness during pressure bonding is equal to or greater than the maximum thickness difference due to the unevenness of the fired substrate 12. When a plurality of low-temperature fired ceramic green sheets 13 are simultaneously pressed onto the fired substrate 12, the total thickness change amount of the plurality of low-temperature fired ceramic green sheets 13 is equal to or more than the maximum thickness difference due to the unevenness of the fired substrate 12. To form. Here, the maximum thickness difference due to the unevenness of the baked substrate 12 is the maximum thickness (maximum point of the substrate surface) and minimum thickness (of the substrate surface) of the baked substrate 12 when the baked substrate 12 is placed on the pressure plate 10. The lowest point).

【0028】低温焼成セラミックグリーンシート13の
圧着時の厚み変化量を調整する場合は、次の〜の調
整法の中から基板仕様等に応じていずれか1つ又は2つ
以上の調整法を選択すれば良い。
When adjusting the amount of change in thickness of the low temperature fired ceramic green sheet 13 at the time of pressure bonding, any one or two or more adjusting methods are selected from the following adjusting methods depending on the substrate specifications and the like. Just do it.

【0029】低温焼成セラミックグリーンシート13
の厚みを調整する。低温焼成セラミックグリーンシート
13が厚くなるほど、圧着時の厚み変化量が大きくな
る。 低温焼成セラミックグリーンシート13のセラミック
材料の組成又は配合比を調整する。例えば、セラミック
材料のバインダー樹脂の種類や配合量、可塑剤や溶剤の
種類や配合量、セラミック粉末の種類や配合量を調整す
る。一般に、可塑剤の配合量が多くなるほど、低温焼成
セラミックグリーンシート13が柔らかくなり、圧着時
の厚み変化量が大きくなる。
Low temperature firing ceramic green sheet 13
Adjust the thickness of. The thicker the low temperature fired ceramic green sheet 13, the greater the amount of change in thickness during pressure bonding. The composition or compounding ratio of the ceramic material of the low temperature fired ceramic green sheet 13 is adjusted. For example, the type and blending amount of the binder resin of the ceramic material, the type and blending amount of the plasticizer and the solvent, and the type and blending amount of the ceramic powder are adjusted. Generally, the larger the amount of the plasticizer compounded, the softer the low temperature fired ceramic green sheet 13, and the greater the amount of change in thickness during pressure bonding.

【0030】低温焼成セラミックグリーンシート13
のセラミック材料中のセラミック粒子の粒径や凝集粒の
砕け易さを調整する。 低温焼成セラミックグリーンシート13のセラミック
材料の空隙率(空孔率)を調整する。この空隙率の調整
は、セラミック材料(スラリー)中のボイド含有率を調
整すれば良い。空隙率が大きくなるほど、圧着時の厚み
変化量が大きくなる。
Low temperature firing ceramic green sheet 13
The particle size of the ceramic particles in the ceramic material and the friability of the agglomerated particles are adjusted. The porosity (porosity) of the ceramic material of the low temperature fired ceramic green sheet 13 is adjusted. The void content may be adjusted by adjusting the void content in the ceramic material (slurry). The greater the porosity, the greater the amount of change in thickness during pressure bonding.

【0031】テープ成形した低温焼成セラミックグリー
ンシート13を所定サイズに切断した後、該グリーンシ
ート13の所定位置に、キャビティ形成用の開口部14
aとビアホール(図示せず)等をパンチング加工等によ
り打ち抜き加工する。尚、焼成済み基板12上に低温焼
成セラミックグリーンシート13を積層圧着した後に、
フォトリソグラフィ技術を用いて低温焼成セラミックグ
リーンシート13にキャビティ形成用の開口部14aを
形成するようにしても良い。
After cutting the tape-molded low temperature fired ceramic green sheet 13 into a predetermined size, an opening 14 for forming a cavity is formed at a predetermined position of the green sheet 13.
A and a via hole (not shown) are punched by punching. In addition, after the low temperature firing ceramic green sheet 13 is laminated and pressure-bonded on the fired substrate 12,
The opening 14a for forming the cavity may be formed in the low temperature fired ceramic green sheet 13 using a photolithography technique.

【0032】この後、印刷工程に進み、低温焼成セラミ
ックグリーンシート13のビアホールに、Ag、Ag/
Pd、Au、Ag/Pt、Cu等の低融点金属の導体ペ
ーストを充填する。更に、図3に示すように、焼成済み
基板12上に複数枚の低温焼成セラミックグリーンシー
ト13を積層する場合は、内層に積層される低温焼成セ
ラミックグリーンシート13に、Ag、Ag/Pd、A
u、Ag/Pt、Cu等の低融点金属の導体ペーストを
使用して内層導体パターン(図示せず)をスクリーン印
刷し、表層(最上層)の低温焼成セラミックグリーンシ
ート13には、表層導体パターン(図示せず)を同種の
低融点金属の導体ペーストを使用してスクリーン印刷す
る。尚、表層導体パターンの印刷は、拘束焼成後に行っ
ても良い。また、ビアホールや内層導体パターンが無い
構造のセラミック多層基板を製造する場合は、上記印刷
工程を省略すれば良い。
After that, the printing process proceeds, and Ag, Ag / Ag /
A conductor paste of a low melting point metal such as Pd, Au, Ag / Pt, Cu is filled. Further, as shown in FIG. 3, when a plurality of low-temperature fired ceramic green sheets 13 are laminated on the fired substrate 12, Ag, Ag / Pd, A
An inner layer conductor pattern (not shown) is screen-printed using a conductor paste of a low melting point metal such as u, Ag / Pt, or Cu, and the surface layer conductor pattern is formed on the surface layer (uppermost layer) low-temperature firing ceramic green sheet 13. (Not shown) is screen printed using a conductive paste of the same low melting point metal. The surface layer conductor pattern may be printed after the constrained firing. Further, when manufacturing a ceramic multilayer substrate having a structure without via holes or inner layer conductor patterns, the above printing step may be omitted.

【0033】印刷工程後、積層体作製工程に進み、焼成
済み基板12上に1枚又は複数枚の低温焼成セラミック
グリーンシート13を積層し、更に、この積層体の両面
に拘束用グリーンシート15を積層して、この積層体を
図4(b)に示すように2枚の加圧板10間に挟み込ん
で圧着する。この圧着の条件は、加圧力が0.1〜数1
0MPa(好ましくは3〜10MPa)、加熱温度が6
0〜150℃(好ましくは80〜120℃)である。
After the printing process, the process proceeds to the laminated body producing step, where one or a plurality of low-temperature fired ceramic green sheets 13 are laminated on the fired substrate 12, and the constraining green sheets 15 are further provided on both sides of the laminated body. After laminating, this laminated body is sandwiched between two pressure plates 10 as shown in FIG. The pressure is 0.1 to 1
0 MPa (preferably 3 to 10 MPa), heating temperature is 6
It is 0 to 150 ° C (preferably 80 to 120 ° C).

【0034】このように、焼成済み基板12に対して低
温焼成セラミックグリーンシート13と拘束用グリーン
シート15とを同時に積層して圧着すれば、積層・圧着
工程が1回で済むという利点があるが、本発明は、焼成
済み基板12に低温焼成セラミックグリーンシート13
のみを積層して圧着した後に、その積層体の両面に拘束
用グリーンシート15を積層して圧着するようにしても
良い。
As described above, if the low-temperature fired ceramic green sheet 13 and the restraining green sheet 15 are simultaneously laminated and pressure-bonded to the fired substrate 12, there is an advantage that the lamination / pressure-bonding process can be performed only once. In the present invention, the low temperature fired ceramic green sheet 13 is applied to the fired substrate 12.
It is also possible to stack only the sheets and press-bond them, and then stack the constraining green sheets 15 on both sides of the stack and press-bond them.

【0035】この場合、拘束焼成グリーンシート15
は、低温焼成セラミックの焼結温度(800〜1000
℃)では焼結しない高温焼結性セラミック(例えばアル
ミナ、ジルコニア、マグネシア等)を用い、この高温焼
結性セラミックの粉末にバインダー(例えばPVB、ア
クリル系、ニトロセルロース系等の樹脂)、溶剤(例え
ばトルエン、キシレン、ブタノール等)及び可塑剤を配
合して、十分に撹拌混合してスラリーを作製し、このス
ラリーを用いてドクターブレード法等でテープ成形して
拘束焼成グリーンシート15を作製すれば良い。
In this case, the constrained firing green sheet 15
Is the sintering temperature (800 to 1000) of the low temperature fired ceramic.
A high temperature sinterable ceramic (for example, alumina, zirconia, magnesia, etc.) that does not sinter at (° C.) is used, and a binder (for example, PVB, acrylic resin, nitrocellulose resin, etc.), solvent ( (For example, toluene, xylene, butanol, etc.) and a plasticizer are mixed, and sufficiently stirred and mixed to prepare a slurry, which is then tape-formed by a doctor blade method or the like to prepare the constrained firing green sheet 15. good.

【0036】その後、拘束用グリーンシート15を積層
した積層体を、アルミナ、SiC等で形成した多孔質セ
ッター板(図示せず)間に挟み込んで、0.1〜数10
MPa(好ましくは3〜10MPa)の圧力で加圧しな
がら、低温焼成セラミックグリーンシート13の焼結温
度である800〜1000℃で焼成する。尚、無加圧で
焼成しても良く、この場合は、拘束用グリーンシート1
5の積層工程で、拘束用グリーンシート15を低温焼成
セラミックグリーンシート13に熱圧着する必要があ
る。
After that, the laminated body in which the restraining green sheets 15 are laminated is sandwiched between porous setter plates (not shown) made of alumina, SiC, etc.
The low temperature firing ceramic green sheet 13 is fired at a sintering temperature of 800 to 1000 ° C. while being pressurized with a pressure of MPa (preferably 3 to 10 MPa). It should be noted that the firing may be carried out without pressure. In this case, the restraining green sheet 1 is used.
In the laminating step of 5, it is necessary to thermocompression-bond the constraining green sheet 15 to the low-temperature fired ceramic green sheet 13.

【0037】この際、拘束用グリーンシート15(アル
ミナ等の高温焼結性セラミック)は、1300〜160
0℃程度に加熱しないと焼結しないので、800〜10
00℃で焼成すれば、拘束用グリーンシート15は未焼
結のまま残される。但し、焼成の過程で、拘束用グリー
ンシート15中のバインダー等の有機物が熱分解して飛
散してセラミック粉体として残る。
At this time, the restraining green sheet 15 (high temperature sinterable ceramic such as alumina) is 1300 to 160.
Since it does not sinter unless it is heated to about 0 ° C, 800-10
By firing at 00 ° C., the restraining green sheet 15 is left unsintered. However, in the process of firing, organic substances such as the binder in the restraining green sheet 15 are thermally decomposed and scattered to remain as ceramic powder.

【0038】焼成後、焼成基板11の両面に付着した拘
束用グリーンシート15の残存物(セラミック粉体)を
ブラスト処理、バフ研磨等により除去する。これによ
り、片面キャビティ付きのセラミック多層基板11の製
造が完了する。
After firing, the residue (ceramic powder) of the constraining green sheet 15 attached to both sides of the fired substrate 11 is removed by blasting, buffing, or the like. This completes the manufacture of the ceramic multilayer substrate 11 with a single-sided cavity.

【0039】ところで、図4に示すように、焼成済み基
板12の表面は完全な平坦面ではなく、焼成時の収縮挙
動等によって僅かながら基板面に凹凸(うねり)が生じ
ている。尚、図4に図示された焼成済み基板12の凹凸
は説明のために誇張して示されており、焼成済み基板1
2の最大厚み差は、一般的に、数μm〜数10μm程度
である。
By the way, as shown in FIG. 4, the surface of the baked substrate 12 is not a completely flat surface, and unevenness (waviness) is slightly generated on the substrate surface due to shrinkage behavior during baking and the like. It should be noted that the unevenness of the baked substrate 12 shown in FIG. 4 is exaggerated for the sake of explanation.
The maximum thickness difference of 2 is generally several μm to several tens of μm.

【0040】このような凹凸のある焼成済み基板12
は、圧着時に焼成済み基板12の凸反り部分が盛り上が
った状態になるため、焼成済み基板12の凸反り部分
(加圧板10から盛り上がった部分)に大きな加圧力が
作用すると、焼成済み基板12の凸反り部分がその加圧
力に耐えられずに割れてしまうことがある。
The baked substrate 12 having such irregularities
Since the convex warped portion of the baked substrate 12 is raised during the pressure bonding, when a large pressing force acts on the convex warped portion of the baked substrate 12 (the portion raised from the pressure plate 10), The convex warp part may not be able to withstand the applied pressure and may be cracked.

【0041】焼成済み基板12に低温焼成セラミックグ
リーンシート13と拘束用グリーンシート15を同時に
圧着する際に、両グリーンシート13,15の圧着時の
厚み変化量が少ないと、焼成済み基板12の凹凸による
最大厚み差を両グリーンシート13,15の厚み変化量
で吸収できないため、圧着時に低温焼成セラミックグリ
ーンシート13を介して焼成済み基板12に作用する加
圧力が基板面全体に一様に作用せず、焼成済み基板12
の凸反り部分(盛り上がった部分)に他の部分よりも大
きな加圧力が作用するようになる。その結果、焼成済み
基板12の凸反り部分がその加圧力に耐えられずに割れ
てしまう現象が発生する。
When the low-temperature fired ceramic green sheet 13 and the restraining green sheet 15 are simultaneously pressure-bonded to the fired substrate 12, if the amount of change in the thickness of the green sheets 13 and 15 during the pressure-bonding is small, the irregularity of the fired substrate 12 becomes uneven. Since the maximum thickness difference due to the above can not be absorbed by the thickness change amount of both green sheets 13 and 15, the pressing force acting on the fired substrate 12 via the low temperature firing ceramic green sheet 13 at the time of pressure bonding uniformly acts on the entire substrate surface. No, baked substrate 12
A larger pressing force is applied to the convex warped portion (raised portion) than other portions. As a result, a phenomenon occurs in which the convex warped portion of the baked substrate 12 cannot withstand the applied pressure and is cracked.

【0042】この対策として、本実施形態(1)では、
両グリーンシート13,15の圧着時の合計厚み変化量
(複数枚の低温焼成セラミックグリーンシート13と拘
束用グリーンシート15を同時に圧着する場合はそれら
の合計厚み変化量)が焼成済み基板12の凹凸による最
大厚み差以上となるように形成する。このようにすれ
ば、圧着時に焼成済み基板12の凹凸に応じて両グリー
ンシート13,15が柔軟に変形して、焼成済み基板1
2の凹凸による最大厚み差を両グリーンシート13,1
5の厚み変化量で吸収することができるため、圧着時の
加圧力が焼成済み基板12の凸反り部分に集中的に作用
することを防止でき、焼成済み基板12に作用する加圧
力を基板面全体に分散させることができる。これによ
り、圧着時の加圧力による焼成済み基板12の割れを防
止できて、歩留りを向上させることができる。
As a countermeasure against this, in the present embodiment (1),
The total thickness change amount when both green sheets 13 and 15 are pressure-bonded (the total thickness change amount when a plurality of low-temperature fired ceramic green sheets 13 and the constraining green sheet 15 are pressure-bonded simultaneously) is the unevenness of the fired substrate 12. It is formed so as to be equal to or more than the maximum thickness difference due to. In this way, both green sheets 13 and 15 are flexibly deformed in accordance with the unevenness of the baked substrate 12 during pressure bonding, and the baked substrate 1
Maximum thickness difference due to unevenness of 2
Since it can be absorbed by the thickness change amount of No. 5, it is possible to prevent the pressurizing force at the time of pressure bonding from intensively acting on the convex warpage portion of the baked substrate 12, and the pressurizing force acting on the baked substrate 12 can be applied to the substrate surface. It can be dispersed throughout. As a result, it is possible to prevent the baked substrate 12 from cracking due to the pressure applied during pressure bonding, and to improve the yield.

【0043】尚、前述したように、本発明は、焼成済み
基板12に低温焼成セラミックグリーンシート13のみ
を積層して圧着した後に、その積層体の両面に拘束用グ
リーンシート15を積層して圧着するようにしても良
く、この場合には、低温焼成セラミックグリーンシート
13の圧着時の厚み変化量(複数枚の低温焼成セラミッ
クグリーンシート13を同時に圧着する場合はそれらの
合計厚み変化量)が焼成済み基板12の凹凸による最大
厚み差以上となるように形成すれば、本実施形態(1)
と同様の効果を得ることができる。
As described above, according to the present invention, after only the low temperature fired ceramic green sheet 13 is laminated on the fired substrate 12 and pressure-bonded, the constraining green sheets 15 are laminated on both sides of the laminated body and pressure-bonded. In this case, the amount of change in thickness of the low-temperature fired ceramic green sheets 13 during pressure bonding (if a plurality of low-temperature fired ceramic green sheets 13 are pressure-bonded simultaneously, the total amount of change in thickness) is fired. If it is formed so as to be equal to or more than the maximum thickness difference due to the unevenness of the finished substrate 12, the present embodiment (1)
The same effect as can be obtained.

【0044】また、本実施形態(1)では、焼成済み基
板12と未焼成の低温焼成セラミックグリーンシート1
3との積層体に拘束用グリーンシート15を積層して拘
束焼成(加圧焼成又は無加圧焼成)するようにしたの
で、拘束焼成時に未焼成の低温焼成セラミックグリーン
シート13の焼成収縮、反り、変形がその両面側から拘
束用グリーンシート15と焼成済み基板12とによって
ほぼ均等に抑えられ、層間剥離や反り等のないセラミッ
ク多層基板11を製造することができる。
Further, in the present embodiment (1), the fired substrate 12 and the unfired low temperature fired ceramic green sheet 1 are used.
Since the constraining green sheet 15 is laminated on the laminated body of No. 3 and constrained firing (pressure firing or pressureless firing), firing shrinkage and warpage of the unfired low temperature firing ceramic green sheet 13 at the time of constraint firing. The deformation can be suppressed substantially evenly by the constraining green sheet 15 and the fired substrate 12 from both sides thereof, and the ceramic multilayer substrate 11 without delamination or warpage can be manufactured.

【0045】また、本実施形態(1)のように、キャビ
ティ14付きのセラミック多層基板11を製造する場合
は、焼成済み基板12をキャビティ14の底面部に位置
させて拘束焼成すれば、キャビティ14の底面部が凸状
に反ることはなく、しかも、拘束焼成によってキャビテ
ィ14の寸法精度を確保でき、品質の優れたキャビティ
14付きのセラミック多層基板11を製造することがで
きる。このため、キャビティ14の底面部に半導体のベ
アチップをフリップチップ実装する場合でも、キャビテ
ィ14の底面部に反りがないために、ベアチップとキャ
ビティ14の底面部の導通パッドとの接合を精度良く行
うことができ、フリップチップ実装の信頼性を向上する
ことができる。
In the case of manufacturing the ceramic multilayer substrate 11 with the cavity 14 as in the present embodiment (1), if the fired substrate 12 is positioned on the bottom surface of the cavity 14 and restrained and fired, the cavity 14 is formed. The bottom surface of the ceramic does not warp in a convex shape, and the dimensional accuracy of the cavity 14 can be ensured by constrained firing, so that the ceramic multilayer substrate 11 with the cavity 14 of excellent quality can be manufactured. Therefore, even when a semiconductor bare chip is flip-chip mounted on the bottom surface of the cavity 14, since the bottom surface of the cavity 14 does not warp, the bare chip and the conduction pad on the bottom surface of the cavity 14 can be bonded accurately. Therefore, the reliability of flip-chip mounting can be improved.

【0046】また、焼成済み基板12と未焼成の低温焼
成セラミックグリーンシート13との間の焼結温度の相
違や焼成収縮特性の相違等は問題とならないため、セラ
ミック多層基板11の各層を形成するセラミック材料の
焼結温度、焼成収縮特性等に対する材料選択の自由度を
大幅に拡大することができ、従来の製造方法では製造が
困難であった構成のセラミック多層基板11を、層間剥
離や反り等がなく、寸法精度良く製造できる。
Further, since the difference in the sintering temperature between the fired substrate 12 and the unfired low temperature fired ceramic green sheet 13 or the difference in the firing shrinkage characteristic does not cause any problem, each layer of the ceramic multilayer substrate 11 is formed. The degree of freedom in material selection with respect to the sintering temperature, firing shrinkage characteristics, etc. of the ceramic material can be greatly expanded, and delamination, warpage, etc. of the ceramic multilayer substrate 11 having a configuration that is difficult to manufacture by the conventional manufacturing method can be performed. And can be manufactured with high dimensional accuracy.

【0047】[0047]

【実施例】本発明者は、焼成済み基板12の凹凸による
最大厚み差と低温焼成セラミックグリーンシート13の
圧着時の厚み変化量を調整したサンプルNo.1〜9を
作製して、圧着時の焼成済み基板12の割れの有無を検
査する試験を行ったので、その試験結果を次の表1に示
す。
EXAMPLES The inventors of the present invention adjusted the maximum thickness difference due to the unevenness of the fired substrate 12 and the amount of change in the thickness of the low temperature firing ceramic green sheet 13 when pressure bonding the sample No. 1 to 9 were produced and a test for inspecting the fired substrate 12 for cracks at the time of pressure bonding was conducted. The test results are shown in Table 1 below.

【0048】[0048]

【表1】 [Table 1]

【0049】この試験に用いた焼成済み基板と未焼成の
低温焼成セラミックグリーンシートは、共に、CaO−
SiO2 −Al2 3 −B2 3 系ガラス:60重量%
と、アルミナ:40重量%との混合物からなる低温焼成
セラミックである。低温焼成セラミックグリーンシート
の圧着時の厚み変化量の調整は、可塑剤の配合量の調整
やシート厚みの調整等によって行った。
Both the fired substrate and the unfired low temperature fired ceramic green sheet used in this test were made of CaO--
SiO 2 -Al 2 O 3 -B 2 O 3 based glass: 60 wt%
And a mixture of alumina and 40% by weight, a low temperature fired ceramic. The amount of change in thickness of the low temperature fired ceramic green sheet during pressure bonding was adjusted by adjusting the compounding amount of the plasticizer, adjusting the sheet thickness, and the like.

【0050】この試験では、9個のサンプルNo.1〜
9について、圧着条件を加圧力:5MPa、加熱温度:
100℃に設定して、焼成済み基板上に1枚の低温焼成
セラミックグリーンシートと拘束用グリーンシート(ア
ルミナグリーンシート)とを同時に積層圧着して、焼成
済み基板の割れの有無を検査した。
In this test, 9 sample Nos. 1 to
Regarding No. 9, pressure-bonding conditions were: pressure: 5 MPa, heating temperature:
The temperature was set to 100 ° C., and one low-temperature fired ceramic green sheet and a restraining green sheet (alumina green sheet) were laminated and pressure-bonded simultaneously on the fired substrate, and the presence or absence of cracks in the fired substrate was inspected.

【0051】尚、焼成済み基板の最大厚み差の測定方法
は、焼成済み基板を平板上に置いて焼成済み基板の最大
厚み(基板面の最高点)と最小厚み(基板面の最低点)
を測定し、その最大厚みと最小厚みとの差を最大厚み差
として求めた。また、低温焼成セラミックグリーンシー
トと拘束用グリーンシートの圧着時の合計厚み変化量の
測定方法は、低温焼成セラミックグリーンシートと拘束
用グリーンシートとの積層体を加圧板間に挟み込んで、
試験時の圧着条件と同じ条件で加熱しながら加圧して両
グリーンシートの合計厚み変化量を測定した。
The method for measuring the maximum difference in the thickness of the baked substrate is as follows: the baked substrate is placed on a flat plate, and the maximum thickness (maximum point of the substrate surface) and minimum thickness (minimum point of the substrate surface) of the baked substrate are measured.
Was measured, and the difference between the maximum thickness and the minimum thickness was determined as the maximum thickness difference. In addition, the measuring method of the total thickness change amount at the time of pressure bonding of the low temperature firing ceramic green sheet and the constraining green sheet is performed by sandwiching a laminated body of the low temperature firing ceramic green sheet and the constraining green sheet between pressure plates,
The total thickness change amount of both green sheets was measured by applying pressure while heating under the same pressure bonding conditions as in the test.

【0052】表1の試験結果によれば、両グリーンシー
トの圧着時の合計厚み変化量が焼成済み基板の最大厚み
差よりも小さいサンプルNo.3、6、9は、圧着時の
加圧力で焼成済み基板の割れが発生した。
According to the test results shown in Table 1, the total thickness change amount of both green sheets at the time of pressure bonding is smaller than the maximum thickness difference of the fired substrate. In Nos. 3, 6 and 9, cracking of the fired substrate occurred due to the pressure applied at the time of pressure bonding.

【0053】これに対して、両グリーンシートの圧着時
の合計厚み変化量が焼成済み基板の最大厚み差よりも大
きいサンプルNo.1、2、4、5、7、8は、圧着後
の検査でも、焼成済み基板に割れが無かった。
On the other hand, in the sample No. 2 in which the total thickness change amount of both green sheets at the time of pressure bonding is larger than the maximum thickness difference of the fired substrate. With respect to Nos. 1, 2, 4, 5, 7, and 8, the baked substrates were not cracked even in the inspection after pressure bonding.

【0054】この試験結果から、両グリーンシートの圧
着時の合計厚み変化量が焼成済み基板の最大厚み差以上
であれば、圧着時の加圧力による焼成済み基板の割れを
防止できることが確認できた。
From this test result, it was confirmed that if the total thickness change amount of both green sheets during pressure bonding is equal to or larger than the maximum thickness difference of the baked substrate, cracking of the baked substrate due to the pressing force during the pressure bonding can be prevented. .

【0055】[実施形態(2)]前記実施形態(1)で
は、焼成済み基板12の片面のみに低温焼成セラミック
グリーンシート13を積層したが、図5に示す本発明の
実施形態(2)のように、焼成済み基板12の両面に、
それぞれ1枚又は複数枚の低温焼成セラミックグリーン
シート13を積層するようにしても良い。この場合は、
焼成済み基板12の両面に未焼成の低温焼成セラミック
グリーンシート13を積層し、更にその積層体に両面に
拘束焼成グリーンシート15を積層した上で、これらを
2枚の加圧板10間に挟み込んで同時に圧着すれば良
い。その他の事項は、前記実施形態(1)と同じで良
い。
[Embodiment (2)] In the embodiment (1), the low temperature fired ceramic green sheet 13 is laminated only on one surface of the fired substrate 12, but the embodiment (2) of the present invention shown in FIG. So that both sides of the baked substrate 12
You may make it laminate | stack one or several low temperature firing ceramic green sheets 13 respectively. in this case,
An unfired low-temperature fired ceramic green sheet 13 is laminated on both sides of the fired substrate 12, further constrained fired green sheets 15 are laminated on both sides of the laminated body, and these are sandwiched between two pressure plates 10. It is sufficient to crimp at the same time. Other matters may be the same as in the above-mentioned embodiment (1).

【0056】本実施形態(2)のように、焼成済み基板
12の両面に同時に低温焼成セラミックグリーンシート
13と拘束焼成グリーンシート15を圧着する場合は、
基板両面の両グリーンシート13,15の合計厚み変化
量が焼成済み基板12の凹凸による最大厚み差以上とな
るように形成すれば良い。このようにすれば、圧着時に
焼成済み基板12の凹凸に応じて基板両面の両グリーン
シート13,15が柔軟に変形して、焼成済み基板12
の凹凸による最大厚み差を基板両面の両グリーンシート
13,15の厚み変化量で吸収することができるため、
圧着時の加圧力が焼成済み基板12の凸反り部分に集中
的に作用することを防止でき、圧着時の加圧力による焼
成済み基板12の割れを防止できて、歩留りを向上させ
ることができる。
When the low temperature fired ceramic green sheet 13 and the constrained fired green sheet 15 are simultaneously pressure-bonded to both surfaces of the fired substrate 12 as in this embodiment (2),
It may be formed so that the total thickness change amount of both green sheets 13 and 15 on both sides of the substrate is equal to or more than the maximum thickness difference due to the unevenness of the baked substrate 12. In this way, both green sheets 13 and 15 on both sides of the substrate are flexibly deformed in accordance with the unevenness of the baked substrate 12 during pressure bonding, and the baked substrate 12
Since the maximum thickness difference due to the unevenness of can be absorbed by the thickness change amount of both green sheets 13 and 15 on both sides of the substrate,
It is possible to prevent the pressure applied during pressure bonding from intensively acting on the convex warped portion of the baked substrate 12, and it is possible to prevent cracks in the baked substrate 12 due to the pressure applied during pressure bonding, thus improving the yield.

【0057】しかも、本実施形態(2)のように、両面
キャビティ付きのセラミック多層基板11を製造する場
合でも、焼成済み基板12をキャビティ14の底面部に
位置させて拘束焼成することで、キャビティ14の底面
部が凸状に反ることはなく、寸法精度の良い両面キャビ
ティ付きのセラミック多層基板11を製造することがで
きる。
Moreover, even when the ceramic multilayer substrate 11 with the double-sided cavity is manufactured as in the present embodiment (2), the fired substrate 12 is positioned on the bottom surface of the cavity 14 and constrained and fired, so that the cavity The bottom surface of 14 does not warp in a convex shape, and it is possible to manufacture a ceramic multilayer substrate 11 with a double-sided cavity with good dimensional accuracy.

【0058】[0058]

【発明の効果】以上の説明から明らかなように、本発明
のセラミック多層基板の製造方法によれば、焼成済み基
板に圧着する未焼成のセラミックグリーンシートを、そ
の圧着時の厚み変化量(複数枚の未焼成のセラミックグ
リーンシートを同時に圧着する場合はそれらの合計厚み
変化量、また、未焼成のセラミックグリーンシートと拘
束用グリーンシートとを同時に圧着する場合はそれらの
合計厚み変化量)が焼成済み基板の凹凸による最大厚み
差以上となるように形成するようにしたので、焼成済み
基板の凹凸による最大厚み差を未焼成のセラミックグリ
ーンシートの厚み変化量で吸収することができて、圧着
時の加圧力による焼成済み基板の割れを防止できて、歩
留りを向上させることができる。
As is apparent from the above description, according to the method for manufacturing a ceramic multilayer substrate of the present invention, an unfired ceramic green sheet to be pressure-bonded to a fired substrate is provided with a thickness change amount (a plurality of thicknesses) during the pressure-bonding. If the unfired ceramic green sheets are pressed together at the same time, their total thickness change amount, and if the unfired ceramic green sheets and the constraining green sheet are pressed together at the same time, their total thickness change amount is baked. Since it is formed so as to be more than the maximum thickness difference due to the unevenness of the finished substrate, the maximum thickness difference due to the unevenness of the fired substrate can be absorbed by the thickness change amount of the unfired ceramic green sheet, and at the time of pressure bonding. It is possible to prevent the baked substrate from cracking due to the pressing force, and improve the yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態(1)の片面キャビティ付き
のセラミック多層基板の製造方法を説明する工程図
FIG. 1 is a process diagram illustrating a method for manufacturing a ceramic multilayer substrate with a single-sided cavity according to an embodiment (1) of the present invention.

【図2】本発明の実施形態(1)の製造工程の流れを説
明する工程フローチャート
FIG. 2 is a process flowchart illustrating a flow of manufacturing process according to the embodiment (1) of the present invention.

【図3】キャビティの深さが2層の場合の片面キャビテ
ィ付きのセラミック多層基板の製造方法を説明する図
FIG. 3 is a diagram illustrating a method for manufacturing a ceramic multi-layer substrate with a single-sided cavity when the depth of the cavity is two layers.

【図4】焼成済み基板上に未焼成の低温焼成セラミック
グリーンシートを圧着する工程を説明する工程図
FIG. 4 is a process diagram illustrating a process of pressure-bonding an unfired low-temperature fired ceramic green sheet onto a fired substrate.

【図5】本発明の実施形態(2)の両面キャビティ付き
のセラミック多層基板の製造方法を説明する図
FIG. 5 is a diagram illustrating a method for manufacturing a ceramic multilayer substrate with a double-sided cavity according to an embodiment (2) of the present invention.

【符号の説明】[Explanation of symbols]

10…加圧板、11…セラミック多層基板、12…焼成
済み基板、13…低温焼成セラミックグリーンシート
(未焼成のセラミックグリーンシート)、14…キャビ
ティ、14a…キャビティ用の開口部、15…拘束焼成
用グリーンシート
DESCRIPTION OF SYMBOLS 10 ... Pressure plate, 11 ... Ceramic multilayer substrate, 12 ... Baked substrate, 13 ... Low temperature firing ceramic green sheet (unfired ceramic green sheet), 14 ... Cavity, 14a ... Cavity opening, 15 ... Restraining firing Green sheet

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 予め焼成したセラミック基板(以下「焼
成済み基板」という)の片面又は両面に、該焼成済み基
板の焼結温度とほぼ同一温度又はそれよりも低い温度で
焼結する1枚又は複数枚の未焼成のセラミックグリーン
シートを積層圧着して積層体を作製する積層体作製工程
と、 前記未焼成のセラミックグリーンシートの焼結温度では
焼結しない拘束用グリーンシートを前記積層体の両面に
積層する工程と、 前記拘束用グリーンシートを介して前記積層体を加圧し
ながら又は加圧せずに前記未焼成のセラミックグリーン
シートの焼結温度で拘束焼成して前記積層体を一体化す
る拘束焼成工程と、 前記拘束焼成工程後に前記拘束用グリーンシートの残存
物を除去する工程とを有するセラミック多層基板の製造
方法であって、 前記積層体作製工程で前記焼成済み基板に圧着する前記
未焼成のセラミックグリーンシートは、圧着時の厚み変
化量(複数枚の未焼成のセラミックグリーンシートを同
時に圧着する場合はそれらの合計厚み変化量)が前記焼
成済み基板の凹凸による最大厚み差以上となるように形
成されていることを特徴とするセラミック多層基板の製
造方法。
1. A single or both surfaces of a pre-fired ceramic substrate (hereinafter referred to as "fired substrate") that is sintered at a temperature substantially equal to or lower than the sintering temperature of the fired substrate, or A laminated body manufacturing step of laminating and pressing a plurality of unfired ceramic green sheets to form a laminated body, and a constraining green sheet that does not sinter at the sintering temperature of the unfired ceramic green sheets on both sides of the laminated body. And a step of laminating the laminated body through the constraining green sheet, with or without pressing the constrained green sheet at a sintering temperature of the unfired ceramic green sheet to consolidate the laminated body. A method for manufacturing a ceramic multilayer substrate, comprising: a constraint firing step; and a step of removing the residue of the constraint green sheet after the constraint firing step. The thickness change amount of the unfired ceramic green sheet that is pressure-bonded to the fired substrate in the step (the total thickness change amount when a plurality of unfired ceramic green sheets are pressure-bonded simultaneously) is A method for manufacturing a ceramic multi-layer substrate, characterized in that it is formed so as to have a maximum thickness difference due to unevenness of the finished substrate.
【請求項2】 予め焼成したセラミック基板(以下「焼
成済み基板」という)の片面又は両面に、該焼成済み基
板の焼結温度とほぼ同一温度又はそれよりも低い温度で
焼結する1枚又は複数枚の未焼成のセラミックグリーン
シートを積層すると共に、その積層体の両面に、前記未
焼成のセラミックグリーンシートの焼結温度では焼結し
ない拘束用グリーンシートを積層した状態で、前記焼成
済み基板と前記未焼成のセラミックグリーンシートと前
記拘束用グリーンシートとを同時に圧着して積層体を作
製する積層体作製工程と、 前記拘束用グリーンシートを介して前記積層体を加圧し
ながら又は加圧せずに前記未焼成のセラミックグリーン
シートの焼結温度で拘束焼成して前記積層体を一体化す
る拘束焼成工程と、 前記拘束焼成工程後に前記拘束用グリーンシートの残存
物を除去する工程とを有するセラミック多層基板の製造
方法であって、 前記積層体作製工程で前記焼成済み基板に圧着する前記
未焼成のセラミックグリーンシートは、圧着時の厚み変
化量(前記未焼成のセラミックグリーンシートと前記拘
束用グリーンシートとを同時に圧着する場合はそれらの
合計厚み変化量)が前記焼成済み基板の凹凸による最大
厚み差以上となるように形成されていることを特徴とす
るセラミック多層基板の製造方法。
2. One or both surfaces of a pre-fired ceramic substrate (hereinafter referred to as “fired substrate”) that is sintered at a temperature substantially the same as or lower than the sintering temperature of the fired substrate, or The fired substrate is formed by laminating a plurality of unfired ceramic green sheets and laminating constraint green sheets that are not sintered at the sintering temperature of the unfired ceramic green sheets on both surfaces of the laminated body. And a step of producing a laminated body by simultaneously pressing the unfired ceramic green sheet and the constraining green sheet to produce a laminated body, and pressing or pressing the laminated body through the constraining green sheet. Without restraint firing at the sintering temperature of the unfired ceramic green sheet to integrate the laminate, and after the restraint firing step A method for manufacturing a ceramic multilayer substrate, comprising: a step of removing the residue of the green sheet for bundling, wherein the unfired ceramic green sheet to be pressure-bonded to the fired substrate in the laminate manufacturing step has a thickness at the time of pressure bonding. The amount of change (the total amount of change in the thickness of the unfired ceramic green sheet and the restraining green sheet when pressure-bonded simultaneously) is formed to be equal to or greater than the maximum thickness difference due to the unevenness of the fired substrate. A method for manufacturing a ceramic multilayer substrate, comprising:
【請求項3】 前記未焼成のセラミックグリーンシート
の圧着時の厚み変化量の調整は、該セラミックグリーン
シートの厚みの調整、該セラミックグリーンシートの成
形材料の組成・配合比の調整、該成形材料中のセラミッ
ク粒子の粒径の調整、該成形材料の空隙率の調整のうち
の少なくとも1つによって行うことを特徴とする請求項
1又は2に記載のセラミック多層基板の製造方法。
3. The thickness change amount of the unfired ceramic green sheet during pressure bonding is adjusted by adjusting the thickness of the ceramic green sheet, adjusting the composition / mixing ratio of the molding material of the ceramic green sheet, and the molding material. The method for producing a ceramic multilayer substrate according to claim 1 or 2, wherein at least one of adjusting a particle diameter of ceramic particles therein and adjusting a porosity of the molding material is performed.
【請求項4】 前記焼成済み基板と前記未焼成のセラミ
ックグリーンシートとは同種のセラミック材料で形成さ
れていることを特徴とする請求項1乃至3のいずれかに
記載のセラミック多層基板の製造方法。
4. The method for manufacturing a ceramic multilayer substrate according to claim 1, wherein the fired substrate and the unfired ceramic green sheet are formed of the same ceramic material. .
【請求項5】 前記焼成済み基板と前記未焼成のセラミ
ックグリーンシートとは異種のセラミック材料で形成さ
れ、前記未焼成のセラミックグリーンシートの焼結温度
が前記焼成済み基板の焼結温度以下であることを特徴と
する請求項1乃至3のいずれかに記載のセラミック多層
基板の製造方法。
5. The fired substrate and the unfired ceramic green sheet are formed of different ceramic materials, and the firing temperature of the unfired ceramic green sheet is equal to or lower than the firing temperature of the fired substrate. The method for manufacturing a ceramic multilayer substrate according to any one of claims 1 to 3, wherein.
【請求項6】 前記未焼成のセラミックグリーンシート
は、1000℃以下で焼成する低温焼成セラミック材料
により形成されていることを特徴とする請求項1乃至5
のいずれかに記載のセラミック多層基板の製造方法。
6. The unfired ceramic green sheet is formed of a low temperature fired ceramic material fired at 1000 ° C. or lower.
A method for manufacturing a ceramic multilayer substrate according to any one of 1.
【請求項7】 キャビティを有するセラミック多層基板
を製造する方法であって、 前記焼成済み基板を前記キャビティを形成する部分の底
面部に位置させ、該焼成済み基板に積層する前記未焼成
のセラミックグリーンシートには、その積層前又は積層
後に前記キャビティ形成用の開口部を形成することを特
徴とする請求項1乃至6のいずれかに記載のセラミック
多層基板の製造方法。
7. A method for manufacturing a ceramic multi-layer substrate having a cavity, wherein the fired substrate is located on a bottom surface of a portion forming the cavity, and the unfired ceramic green is laminated on the fired substrate. 7. The method for manufacturing a ceramic multilayer substrate according to claim 1, wherein the sheet is provided with an opening for forming the cavity before or after the lamination.
JP2002060034A 2002-03-06 2002-03-06 Manufacturing method of ceramic multilayer substrate Expired - Fee Related JP4029207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002060034A JP4029207B2 (en) 2002-03-06 2002-03-06 Manufacturing method of ceramic multilayer substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002060034A JP4029207B2 (en) 2002-03-06 2002-03-06 Manufacturing method of ceramic multilayer substrate

Publications (2)

Publication Number Publication Date
JP2003258424A true JP2003258424A (en) 2003-09-12
JP4029207B2 JP4029207B2 (en) 2008-01-09

Family

ID=28669508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002060034A Expired - Fee Related JP4029207B2 (en) 2002-03-06 2002-03-06 Manufacturing method of ceramic multilayer substrate

Country Status (1)

Country Link
JP (1) JP4029207B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105730A3 (en) * 2008-03-27 2011-11-30 NGK Insulators, Ltd. Laminated solid electrolyte gas sensor element
CN115003045A (en) * 2022-05-30 2022-09-02 青岛理工大学 Method for manufacturing micro-nano 3D printing high-precision ceramic-based circuit based on electric field driving jet deposition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238642A (en) * 1989-03-10 1990-09-20 Fujitsu Ltd Manufacture of ceramic circuit board
JPH04243978A (en) * 1990-10-04 1992-09-01 E I Du Pont De Nemours & Co Method for decrease in shrinkage during calcining of ceramic body
JPH0848570A (en) * 1994-08-05 1996-02-20 Hitachi Ltd Firing device for ceramic electronic circuit board and its firing method
JP2000188475A (en) * 1998-10-13 2000-07-04 Murata Mfg Co Ltd Manufacture of ceramic multilayer substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02238642A (en) * 1989-03-10 1990-09-20 Fujitsu Ltd Manufacture of ceramic circuit board
JPH04243978A (en) * 1990-10-04 1992-09-01 E I Du Pont De Nemours & Co Method for decrease in shrinkage during calcining of ceramic body
JPH0848570A (en) * 1994-08-05 1996-02-20 Hitachi Ltd Firing device for ceramic electronic circuit board and its firing method
JP2000188475A (en) * 1998-10-13 2000-07-04 Murata Mfg Co Ltd Manufacture of ceramic multilayer substrate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105730A3 (en) * 2008-03-27 2011-11-30 NGK Insulators, Ltd. Laminated solid electrolyte gas sensor element
EP2490015A1 (en) * 2008-03-27 2012-08-22 NGK Insulators, Ltd. Method of manufacturing a solid electrolyte gas sensor element
US8480870B2 (en) 2008-03-27 2013-07-09 Ngk Insulators, Ltd. Sensor element and gas sensor
CN115003045A (en) * 2022-05-30 2022-09-02 青岛理工大学 Method for manufacturing micro-nano 3D printing high-precision ceramic-based circuit based on electric field driving jet deposition
CN115003045B (en) * 2022-05-30 2023-09-08 青岛理工大学 Method for micro-nano 3D printing ceramic-based circuit based on electric field driven jet deposition

Also Published As

Publication number Publication date
JP4029207B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
US7618843B2 (en) Method of fabricating multilayer ceramic substrate
US8105453B2 (en) Method for producing multilayer ceramic substrate
US5601672A (en) Method for making ceramic substrates from thin and thick ceramic greensheets
JP6402829B2 (en) Multilayer ceramic substrate and method for manufacturing multilayer ceramic substrate
KR20020070483A (en) Method of manufacturing ceramic multi-layer substrate, and unbaked composite laminated body
JP5071559B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP3956148B2 (en) Method for manufacturing ceramic multilayer substrate and semiconductor device
JP2955442B2 (en) Manufacturing method of ceramic circuit board
JP4029207B2 (en) Manufacturing method of ceramic multilayer substrate
JP2002353623A (en) Method of manufacturing ceramic multilayer board
JP3630372B2 (en) Multilayer ceramic substrate and manufacturing method thereof
JP3912153B2 (en) Manufacturing method of ceramic multilayer substrate
US8241449B2 (en) Method for producing ceramic body
WO2001069991A1 (en) Method of manufacturing multilayer ceramic substrate, and conductor paste
JP4089356B2 (en) Manufacturing method of multilayer ceramic substrate
JP2003273515A (en) Method for reducing contraction between low temperature sintering layers of ceramic
JP2681328B2 (en) Circuit board manufacturing method
JP2003095755A (en) Method of manufacturing ceramic circuit board by firing ceramic at low temperature
JP3193626B2 (en) Manufacturing method of ceramic multilayer substrate
JP4552367B2 (en) Low temperature fired ceramic substrate manufacturing method
JP3229540B2 (en) Manufacturing method of ceramic multilayer substrate
JPH10259063A (en) Production of glass ceramic substrate
JP3722419B2 (en) Au conductor paste and glass ceramic circuit board manufacturing method
JP2000026167A (en) Production of thick film multilayered substrate
JP2010258175A (en) Method of manufacturing ceramic substrate

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

R150 Certificate of patent or registration of utility model

Ref document number: 4029207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees