JP2003257991A - Method for manufacturing semiconductor - Google Patents

Method for manufacturing semiconductor

Info

Publication number
JP2003257991A
JP2003257991A JP2002059824A JP2002059824A JP2003257991A JP 2003257991 A JP2003257991 A JP 2003257991A JP 2002059824 A JP2002059824 A JP 2002059824A JP 2002059824 A JP2002059824 A JP 2002059824A JP 2003257991 A JP2003257991 A JP 2003257991A
Authority
JP
Japan
Prior art keywords
film
insulating film
silicon nitride
gate electrode
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002059824A
Other languages
Japanese (ja)
Inventor
Hirosuke Baba
浩佐 馬場
Hiroyoshi Takezawa
浩義 竹澤
Yoshihiro Konishi
芳広 小西
Motokuni Aoki
基晋 青木
Tetsuya Kojima
徹也 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002059824A priority Critical patent/JP2003257991A/en
Publication of JP2003257991A publication Critical patent/JP2003257991A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the stress increase of an insulating film at a metallic film edge, and to reduce the deterioration of insulation breakdown resistivity at the time of manufacturing a semiconductor by forming an insulating film so that a metallic film formed on a substrate can be covered. <P>SOLUTION: A gate insulating film thickness is formed so that the stress increase of the edge of the gate electrode 2 can be suppressed, and that the deterioration of insulation breakdown resistivity can be suppressed, when the film thickness of a gate insulating film 3 grown on a gate electrode 2 and a gate insulating film 3 grown on a glass substrate 1 other than the gate electrode are made equivalent or more. When the gate insulating film 3 is a silicon nitride film, the film thickness is set so as to be not less than 380 nm. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に係り、特に、液晶表示装置の表示パネルを構成す
るアクティブ素子等の半導体素子に用いる絶縁薄膜の形
成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming an insulating thin film used for a semiconductor element such as an active element that constitutes a display panel of a liquid crystal display device.

【0002】[0002]

【従来の技術】半導体製造プロセスにおける成膜処理に
おいて、ガラス基板などの表面に半導体膜を成膜する
際、従来からプラズマを利用するプラズマ化学気相堆積
(以後P−CVDと表記する)装置が使用されている。
その中でもとりわけ処理室内の上下に電極を対向配置し
たいわゆる平行平板型のP−CVD装置は、比較的大型
基板の処理に適していることから多く使用されている。
2. Description of the Related Art In a film forming process in a semiconductor manufacturing process, a plasma chemical vapor deposition (hereinafter referred to as P-CVD) apparatus which utilizes plasma has been conventionally used for forming a semiconductor film on a surface of a glass substrate or the like. It is used.
Above all, a so-called parallel plate type P-CVD apparatus in which electrodes are arranged opposite to each other in the upper and lower sides of the processing chamber is widely used because it is suitable for processing a relatively large substrate.

【0003】このような、P−CVD装置を用いて形成
されたシリコン窒化膜が、ゲート絶縁膜として用いら
れ、トランジスタの活性層にアモルファスSi(以後、
a−Siと記す)を使用した薄膜電界効果トランジスタ
(以後、a−SiTFTと記す)は優れたオン抵抗,オ
フ抵抗を有することから、液晶表示装置のスイッチング
素子として実用化されている。
A silicon nitride film formed by using such a P-CVD apparatus is used as a gate insulating film, and amorphous Si (hereinafter, referred to as an amorphous silicon) is formed in an active layer of a transistor.
A thin film field effect transistor (hereinafter referred to as a-SiTFT) using a-Si) has excellent on-resistance and off-resistance, and thus has been put to practical use as a switching element of a liquid crystal display device.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ゲート
絶縁膜を堆積する初期過程において、ゲート電極である
金属膜上とゲート電極以外のガラス基板上とでは、絶縁
膜が成長する成長速度及び所望の領域に膜成長するまで
の時間(以下、デッドタイムという)に差が生じるとい
うことがある。
However, in the initial process of depositing the gate insulating film, the growth rate of the insulating film and the desired region are increased on the metal film which is the gate electrode and on the glass substrate other than the gate electrode. In some cases, there is a difference in the time until the film grows (hereinafter referred to as the dead time).

【0005】ゲート絶縁膜の薄膜領域における被成膜領
域の下地の差による成膜速度及びデッドタイムの差は、
ゲート電極端におけるゲート絶縁膜のカバレッジの不均
一性が生じることを意味している。
The difference in film forming speed and dead time due to the difference in the base of the film forming region in the thin film region of the gate insulating film is
This means that non-uniformity of the coverage of the gate insulating film at the edge of the gate electrode occurs.

【0006】したがって、ゲート電極端部においては、
基板より成長するゲート絶縁膜とゲート電極側壁より成
長するゲート絶縁膜が組み合わさる領域(ゲート電極端
の基板側エッジ部)においてくびれが生じ、このカバレ
ッジの不均一性がゲート電極端部のストレスを増大させ
るとともに、絶縁破壊耐性の劣化を生じさせるという問
題があった。
Therefore, at the end of the gate electrode,
A constriction occurs in the region where the gate insulating film growing from the substrate and the gate insulating film growing from the side wall of the gate electrode are combined (the substrate side edge part of the gate electrode end), and this non-uniformity of coverage causes stress at the gate electrode end part. There has been a problem that the dielectric breakdown resistance is deteriorated while increasing the number.

【0007】本発明は、上記従来技術の問題点を解決す
るもので、ゲート電極端部のストレス増大を抑制すると
ともに、絶縁破壊耐性の劣化を抑制するようにした半導
体装置の製造方法を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art, and provides a method of manufacturing a semiconductor device which suppresses an increase in stress at the end of a gate electrode and suppresses deterioration of dielectric breakdown resistance. The purpose is to

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、ゲート電極上に成長するゲート絶縁膜と
前記ゲート電極以外のガラス基板上に成長するゲート絶
縁膜の膜厚が同等以上になる前記ゲート絶縁膜厚で形成
することにより、ゲート電極端部のストレス増大を抑制
するとともに、絶縁破壊耐性の劣化を抑制することが可
能となる。
In order to achieve the above object, according to the present invention, a gate insulating film grown on a gate electrode and a gate insulating film grown on a glass substrate other than the gate electrode have the same film thickness. By forming the gate insulating film having the thickness as described above, it is possible to suppress an increase in stress at the end of the gate electrode and suppress deterioration of dielectric breakdown resistance.

【0009】ゲート電極上に成長するゲート絶縁膜とゲ
ート電極以外のガラス基板上に成長するゲート絶縁膜の
膜厚が同等になるのは、発明の実施の形態で詳述する
が、ある条件下でのシリコン窒化膜を用いた時は、38
0nmの膜厚であった。
The thickness of the gate insulating film grown on the gate electrode and the thickness of the gate insulating film grown on the glass substrate other than the gate electrode are the same, which will be described in detail in the embodiments of the invention. When using the silicon nitride film in
The film thickness was 0 nm.

【0010】[0010]

【発明の実施の形態】以下、本発明の一実施の形態につ
いて、図面を参照して説明する。図1はa−SiTFT
の要部断面構造を示したもので、ガラス基板1上にC
r,MoSi2等の導電体をゲート電極2として選択的
に形成する。13.56MHzのグロー放電を用いた平
行平板型のプラズマCVD法でゲート絶縁膜3として3
80nmの膜厚のシリコン窒化膜と、半導体膜としてシ
リコン窒化膜と同じプラズマCVD法で200nm程度
のa−Si膜4と膜厚20nm程度のリンを不純物とし
て含むn+型a−Si膜5を連続的に堆積し、エッチン
グ等でa−Si膜を選択的に除去し、島状のa−Si膜
4のパターンを形成する。a−Si膜4のパターン上に
Al,MoSi2等の導電体からなるソース電極6とド
レイン電極7を形成し、n+型のa−Si膜5の一部を
取り除くことによりa−SiTFTが形成される。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. Figure 1 shows a-Si TFT
This shows the cross-sectional structure of the main part of C.
A conductor such as r or MoSi 2 is selectively formed as the gate electrode 2. 3 as a gate insulating film 3 by a parallel plate type plasma CVD method using glow discharge of 13.56 MHz
A silicon nitride film having a thickness of 80 nm, an a-Si film 4 having a thickness of about 200 nm and an n + type a-Si film 5 containing phosphorus as an impurity having a thickness of about 20 nm are continuously formed as a semiconductor film by the same plasma CVD method as the silicon nitride film. A-Si film is selectively removed by etching or the like to form a pattern of island-shaped a-Si film 4. A source electrode 6 and a drain electrode 7 made of a conductor such as Al or MoSi 2 are formed on the pattern of the a-Si film 4, and a part of the n + type a-Si film 5 is removed to form an a-Si TFT. To be done.

【0011】次に、図2を用いて、a−SiTFTにお
ける、ガラス上に形成するシリコン窒化膜と、ガラス上
に形成されたゲート電極などの金属膜上に形成するシリ
コン窒化膜の成膜膜厚の違いによる不具合点について説
明する。
Next, referring to FIG. 2, in a-SiTFT, a film formation film of a silicon nitride film formed on glass and a silicon nitride film formed on a metal film such as a gate electrode formed on glass. The problems due to the difference in thickness will be described.

【0012】まず、図2(a)は、ガラス基板8上に形
成されたシリコン窒化膜10とゲート電極などの金属膜
配線9上のシリコン窒化膜10の膜厚が違う場合を示し
ている。a−SiTFTなどに用いられるゲート絶縁膜
のシリコン窒化膜は、a−SiTFTの製造工程でゲー
ト配線などの金属膜配線上とそれ以外のガラス基板上に
またがって、同時にP−CVD装置を用いて成膜が行わ
れる。このことにより、金属膜配線9上とガラス基板8
上とではシリコン窒化膜10の成膜速度が違う場合、金
属膜配線9の側壁に成膜されるシリコン窒化膜の膜厚
は、金属膜配線上の膜厚と同一になるため、金属膜配線
とガラスの境界部でシリコン窒化膜のくびれが生じるこ
とになる。このような場合、シリコン窒化膜10を覆う
ように上部金属膜配線11を形成すると、くびれ部で静
電破壊が起こりやすくなり、a−SiTFT製造工程中
に発生する静電気などによるゲート−ソース間のショー
トを引き起こし、歩留まりを低下させることになる。さ
らに、上部金属膜配線11の代わりに、a−Siを形成
し、a−SiTFTの半導体層として用いると、くびれ
部においてゲート絶縁膜のストレスにより欠陥準位が増
加し、TFT特性の信頼性の低下に繋がる。
First, FIG. 2A shows a case where the silicon nitride film 10 formed on the glass substrate 8 and the silicon nitride film 10 on the metal film wiring 9 such as a gate electrode have different film thicknesses. The silicon nitride film of the gate insulating film used for the a-SiTFT is formed on the metal film wiring such as the gate wiring and the other glass substrate in the manufacturing process of the a-SiTFT by using the P-CVD apparatus at the same time. The film is formed. As a result, on the metal film wiring 9 and the glass substrate 8
When the deposition rate of the silicon nitride film 10 is different from that of the above, the film thickness of the silicon nitride film formed on the side wall of the metal film wiring 9 is the same as the film thickness on the metal film wiring. The silicon nitride film is constricted at the boundary between the glass and the glass. In such a case, if the upper metal film wiring 11 is formed so as to cover the silicon nitride film 10, electrostatic breakdown is likely to occur in the constricted portion, and the gate-source between the gate and the source due to static electricity generated during the a-SiTFT manufacturing process. This will cause a short circuit and reduce the yield. Furthermore, when a-Si is formed instead of the upper metal film wiring 11 and used as a semiconductor layer of an a-Si TFT, the defect level increases due to the stress of the gate insulating film in the constricted portion, and the reliability of the TFT characteristics is improved. Leads to a decline.

【0013】一方、図2(b)は、ガラス基板8上と金
属膜配線9上のシリコン窒化膜10の膜厚が同一の場合
を示している。成膜初期に形成された、金属膜配線9と
ガラス基板8の境界部で生じたくびれが、シリコン窒化
膜10で埋められることにより、絶縁破壊不良の発生率
が低減される。さらに、くびれ部のゲート絶縁膜のスト
レスが生じないため、TFT特性の信頼性も向上する。
On the other hand, FIG. 2B shows the case where the silicon nitride film 10 on the glass substrate 8 and the metal film wiring 9 have the same film thickness. The constriction formed at the boundary between the metal film wiring 9 and the glass substrate 8 formed at the initial stage of film formation is filled with the silicon nitride film 10, so that the occurrence rate of dielectric breakdown defects is reduced. Furthermore, since stress does not occur in the gate insulating film in the constricted portion, reliability of TFT characteristics is also improved.

【0014】次に、ガラス基板上に金属膜配線を形成
し、その上にP−CVD装置を用いてシリコン窒化膜を
形成した際の、成膜時間に対する金属膜上およびガラス
基板上に成長するシリコン窒化膜の膜厚の関係を図3に
示し、シリコン窒化膜厚の最適点を示す。図3は、ガラ
ス基板上に形成された金属膜をパターニングしたサンプ
ル上に、ガス比 SiH4:NH3:N2=1:3:30、
成膜速度が120nm〜160nm/minであるよう
なシリコン窒化膜の成膜条件で、成膜時間を変えたとき
の、ガラス基板上のシリコン窒化膜の膜厚と、金属膜上
のシリコン窒化膜の膜厚とを測定したものである。図3
より、成膜膜厚が380nmになった時、ガラス基板上
と金属膜上のシリコン窒化膜の成膜膜厚が一致する。こ
れは、基板表面状態の違いによる成膜速度の違いが、3
80nmで緩和されることを示している。従って、前記
成膜条件のシリコン窒化膜において、380nmで変曲
点を持つことが解かり、380nm以上であれば、ガラ
ス基板上と金属膜上のシリコン窒化膜の膜厚は一致し、
前記課題が発生しにくいと考えられる。
Next, when a metal film wiring is formed on the glass substrate and a silicon nitride film is formed thereon using a P-CVD apparatus, the metal film wiring is grown on the metal film and the glass substrate with respect to the film formation time. FIG. 3 shows the relationship of the film thickness of the silicon nitride film, and shows the optimum point of the silicon nitride film thickness. FIG. 3 shows that a gas ratio SiH 4 : NH 3 : N 2 = 1: 3: 30, on a sample obtained by patterning a metal film formed on a glass substrate.
The film thickness of the silicon nitride film on the glass substrate and the silicon nitride film on the metal film when the film formation time is changed under the film formation conditions of the silicon nitride film such that the film formation rate is 120 nm to 160 nm / min. Is measured. Figure 3
Therefore, when the film thickness becomes 380 nm, the film thicknesses of the silicon nitride film on the glass substrate and the metal film are the same. This is because the difference in film formation rate due to the difference in the substrate surface condition is 3
It shows that it is relaxed at 80 nm. Therefore, it was found that the silicon nitride film under the above film forming conditions has an inflection point at 380 nm, and if it is 380 nm or more, the film thicknesses of the silicon nitride film on the glass substrate and the metal film are the same,
It is considered that the above problems are unlikely to occur.

【0015】次に、絶縁破壊不良の発生率のシリコン窒
化膜厚依存性について、図4を用いて説明する。図4
は、a−SiTFTのソース電極及びドレイン電極を接
地し、ゲート電極にある一定の電圧をかけた時に発生す
るゲート−ソース間の絶縁破壊の発生率をグラフにした
ものである。膜厚の増加とともに、絶縁破壊不良が低減
し、380nm以上にすることにより、ほぼ発生の無い
ことが解かった。前記図3で説明した内容の確認が行わ
れたと考えられる。
Next, the dependency of the occurrence rate of dielectric breakdown defects on the silicon nitride film thickness will be described with reference to FIG. Figure 4
FIG. 4 is a graph showing the rate of occurrence of dielectric breakdown between the gate and the source, which occurs when the source electrode and the drain electrode of the a-Si TFT are grounded and a certain voltage is applied to the gate electrode. It was found that as the film thickness increased, the dielectric breakdown defect decreased, and when the film thickness was 380 nm or more, almost no occurrence occurred. It is considered that the contents described in FIG. 3 were confirmed.

【0016】[0016]

【発明の効果】以上説明したように、本発明によれば、
基板の一主面上に存する金属膜を覆うように絶縁膜を形
成して、これを一部の構成体とする半導体装置を作製す
る際、前記絶縁膜の膜厚を380nm以上形成して構成
した半導体装置は、絶縁破壊不良の発生が少なく抑えら
れる。
As described above, according to the present invention,
When an insulating film is formed so as to cover a metal film existing on one main surface of a substrate and a semiconductor device having this as a part of a structure is manufactured, the insulating film is formed to have a film thickness of 380 nm or more. In such a semiconductor device, the occurrence of dielectric breakdown defects can be suppressed to a low level.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施の形態におけるa−SiTFT
の要部構造図
FIG. 1 is an a-Si TFT according to an embodiment of the present invention.
Main part structure diagram

【図2】ガラス基板上と金属膜上とで成膜膜厚が異なる
場合の不具合点を示す図
FIG. 2 is a diagram showing problems when the film thickness is different on the glass substrate and the metal film.

【図3】P−CVD装置を用いてガラス基板上と金属膜
上にシリコン窒化膜を形成した際の成膜時間とシリコン
窒化膜膜厚の関係を示す図
FIG. 3 is a diagram showing a relationship between a film formation time and a silicon nitride film thickness when a silicon nitride film is formed on a glass substrate and a metal film by using a P-CVD apparatus.

【図4】シリコン窒化膜膜厚に対する絶縁破壊不良の発
生率を示す図
FIG. 4 is a diagram showing a rate of occurrence of dielectric breakdown defects with respect to a silicon nitride film thickness.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 ゲート電極 3 ゲート絶縁膜 4 a−Si膜 5 n+型a−Si膜 6 ソース電極 7 ドレイン電極 8 ガラス基板 9 金属膜配線 10 シリコン窒化膜 11 上部金属膜配線 1 glass substrate 2 Gate electrode 3 Gate insulation film 4 a-Si film 5 n + type a-Si film 6 Source electrode 7 Drain electrode 8 glass substrates 9 Metal film wiring 10 Silicon nitride film 11 Upper metal film wiring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小西 芳広 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 青木 基晋 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小島 徹也 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2H092 HA28 JB56 KA05 KA12 KB24 MA08 NA14 NA21 5F110 AA12 BB01 CC07 DD02 EE04 EE05 FF03 FF12 FF30 GG02 GG15 GG24 GG45 HK03 HK05 HK09 HK16 HK21 HK35    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yoshihiro Konishi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Motoaki Aoki             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Tetsuya Kojima             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 2H092 HA28 JB56 KA05 KA12 KB24                       MA08 NA14 NA21                 5F110 AA12 BB01 CC07 DD02 EE04                       EE05 FF03 FF12 FF30 GG02                       GG15 GG24 GG45 HK03 HK05                       HK09 HK16 HK21 HK35

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板の一主面上に存する金属膜を覆うよ
うに絶縁膜を形成して、これを一部の構成体とする半導
体装置を作製する際、前記絶縁膜の膜厚を380nm以
上形成することを特徴とする半導体装置の製造方法。
1. An insulating film is formed so as to cover a metal film existing on one main surface of a substrate, and when a semiconductor device having this as a part of a structure is manufactured, the film thickness of the insulating film is 380 nm. A method for manufacturing a semiconductor device, which is formed as described above.
【請求項2】 絶縁膜は、プラズマ化学気相堆積法によ
って形成されることを特徴とする請求項1記載の半導体
装置の製造方法。
2. The method for manufacturing a semiconductor device according to claim 1, wherein the insulating film is formed by a plasma chemical vapor deposition method.
【請求項3】 絶縁膜は、電界効果型トランジスタのゲ
ート絶縁膜であることを特徴とする請求項1又は請求項
2記載の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, wherein the insulating film is a gate insulating film of a field effect transistor.
【請求項4】 絶縁膜は、シリコン窒化膜であることを
特徴とする請求項1から請求項3のいずれか1項に記載
の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 1, wherein the insulating film is a silicon nitride film.
【請求項5】 シリコン窒化膜は、成膜速度160〜1
20nm/minで形成されることを特徴とする請求項
4記載の半導体装置の製造方法。
5. The film formation rate of the silicon nitride film is 160 to 1
The method of manufacturing a semiconductor device according to claim 4, wherein the film is formed at 20 nm / min.
JP2002059824A 2002-03-06 2002-03-06 Method for manufacturing semiconductor Pending JP2003257991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002059824A JP2003257991A (en) 2002-03-06 2002-03-06 Method for manufacturing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002059824A JP2003257991A (en) 2002-03-06 2002-03-06 Method for manufacturing semiconductor

Publications (1)

Publication Number Publication Date
JP2003257991A true JP2003257991A (en) 2003-09-12

Family

ID=28669368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002059824A Pending JP2003257991A (en) 2002-03-06 2002-03-06 Method for manufacturing semiconductor

Country Status (1)

Country Link
JP (1) JP2003257991A (en)

Similar Documents

Publication Publication Date Title
US7754294B2 (en) Method of improving the uniformity of PECVD-deposited thin films
US5589233A (en) Single chamber CVD process for thin film transistors
KR100741435B1 (en) Controlling the properties and uniformity of a silicon nitride film by controlling the film forming precursors and tft device with the silicon nitride
KR101199007B1 (en) Low temperature process for tft fabrication
JP4018625B2 (en) Multi-stage CVD method for thin film transistors
US6395652B2 (en) Method of manufacturing thin film transistor
TW201246551A (en) Thin film transistor
JP3054862B2 (en) Gate insulating film including diamond-like carbon film, thin film transistor using the same, method of forming gate insulating film, and manufacturing method thereof
JPH0348671B2 (en)
US20040198046A1 (en) Method for decreasing contact resistance of source/drain electrodes
US20090200553A1 (en) High temperature thin film transistor on soda lime glass
JPH05335335A (en) Manufacture of amorphous hydride silicon thin-film transistor
JP2003257991A (en) Method for manufacturing semiconductor
JP3055782B2 (en) How to manufacture thin film transistors
US20200083052A1 (en) High-k gate insulator for a thin-film transistor
JP2003197636A (en) Thin film semiconductor element and its manufacturing method
JP4469465B2 (en) Manufacturing method of semiconductor device
US12021152B2 (en) Process to reduce plasma induced damage
JPS63140580A (en) Thin film transistor
KR950006349B1 (en) Anealing method of amolphous silicon tft
JP2000349292A (en) Thin film transistor
JPH01106470A (en) Thin film transistor
KR100272579B1 (en) Method for fabricating thin film transistor
JP2002329869A (en) Manufacturing method of semiconductor device
KR100533880B1 (en) High Density Plasma Chemical Vapor Deposition Method