JP4469465B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4469465B2
JP4469465B2 JP2000165491A JP2000165491A JP4469465B2 JP 4469465 B2 JP4469465 B2 JP 4469465B2 JP 2000165491 A JP2000165491 A JP 2000165491A JP 2000165491 A JP2000165491 A JP 2000165491A JP 4469465 B2 JP4469465 B2 JP 4469465B2
Authority
JP
Japan
Prior art keywords
gas
glow discharge
sih
cleaning
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000165491A
Other languages
Japanese (ja)
Other versions
JP2001345278A (en
Inventor
晋次 徳永
浩義 竹澤
正孝 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Display Central Inc
Original Assignee
Toshiba Mobile Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mobile Display Co Ltd filed Critical Toshiba Mobile Display Co Ltd
Priority to JP2000165491A priority Critical patent/JP4469465B2/en
Publication of JP2001345278A publication Critical patent/JP2001345278A/en
Application granted granted Critical
Publication of JP4469465B2 publication Critical patent/JP4469465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法に関し、液晶表示装置などと組み合わせて画像表示応用機器を構成するための薄膜トランジスタ(以後TFTと呼ぶ)の半導体層,絶縁膜層となる薄膜の製造方法に関する。
【0002】
【従来の技術】
以下に従来の薄膜の製造方法について説明する。
【0003】
図9にTFTの要部構成断面図を示す。ガラス基板1上にゲート電極2が形成され、非晶質シリコン半導体層4がゲート絶縁膜3を介して形成され、ソース、ドレイン電極6a、6bがn+非晶質シリコン半導体層5a、5bを介して形成されている。
【0004】
従来は上述のゲート絶縁膜3(3000Å)、非晶質シリコン半導体層4(500Å)、チャンネルストッパ絶縁膜7(2000Å)n+非晶質シリコン半導体層5a、5bは図10に示すような材料ガスSiH4、NH3、PH3のグロー放電を用いたプラズマ化学気相堆積装置より作製されている。図10に示すプラズマ化学気相堆積装置は、放電電極14と対向放電電極12が平行に設置される容量結合型であり、基板は対向放電電極12に設置される。
【0005】
このプラズマ化学気相堆積装置では、薄膜の堆積を行った後には、基盤以外の対向電極14や堆積室11などに付着した膜の剥がれによるダストの発生を防止するために、NF3、SF6、CF4等のガスを導入し、グロー放電により膜を除去するというガスクリーニングを定期的に行う。さらに、作製する膜質を安定させるために、定期的なクリーニング直後に基板を設置せずに膜の堆積作業を行い、その後にTFTを作製するための基板に薄膜の堆積を行う。
【0006】
【発明が解決しようとする課題】
しかしながら従来の方法では、図5に示すようにクリーニング直後からの堆積回数に沿った膜質の変化によると思われるTFTの特性の経時的な変化に沿った膜質の変化が見られた。これは、ガスクリーニング時に用いるガス成分であるフッ素が、堆積室内に残留し、TFT形成膜中に不純物として混入することによる影響である。また、これらの課題を対策するために3枚相当の膜厚(12000Å)まで、クリーニング直後の基板を設置しない状態で堆積膜厚を増加させると図5に示すTFT特性の経時変化は良化するも図6のようにダストの発生が増加してしまうという課題があった。
【0007】
【課題を解決するための手段】
本発明の半導体装置の製造方法は、フッ素系ガスをクリーニングガスとして用いるプラズマ化学気相堆積装置において、ガスクリーニング直後に、前記プラズマ化学気相堆積装置内に基板を設置しない状態で、100%の水素ガス雰囲気でのグロー放電と水素ガスで希釈したSiHガス雰囲気でのグロー放電とをグロー放電を止めることなくガスの切り替えのみで連続的に処理し、前記水素ガスで希釈したSiH ガス雰囲気における水素ガス/SiH ガス比は、4以上であることを特徴とする。
【0010】
また、本発明の半導体装置の製造方法は、フッ素系ガスをクリーニングガスとして用いるプラズマ化学気相堆積装置において、ガスクリーニング直後に、前記プラズマ化学気相堆積装置内に基板を設置しない状態で、100%の水素ガス雰囲気でのグロー放電と水素ガスで希釈したSiH ガス雰囲気でのグロー放電とをグロー放電を止めることなくガスの切り替えのみで連続的に処理し、前記100%の水素ガス雰囲気でのグロー放電と、前記水素ガスで希釈したSiHガス雰囲気でのグロー放電との連続処理は、少なくとも複数回繰り返すことを特徴とする。
【0012】
発明の半導体装置の製造方法は、定期的な堆積室内のクリーニング後に露出した装置を構成する材料に付着したクリーニングガスの残留成分を100%の水素ガス雰囲気でのグロー放電により膜を堆積させることなく気化及び励起し、水素ガスで80%以上に希釈したSiHガス雰囲気でのグロー放電により堆積膜中に取りこむ。すなわち、低速度の非晶質シリコンの少ない堆積膜厚で効果的に膜中にクリーニングガスの残留成分を固着させるものである。
【0013】
つまり、堆積室内のクリーニングを行った後、水素ガス100%雰囲気でのグロー放電と、H2/SiH4ガス比を4以上とした水素ガスで希釈したSiH4雰囲気でのグロー放電とを連続的に行うことで効率良く、クリーニングガスの残留物の影響を押さえることができる。したがって、作製するゲート絶縁膜、非晶質シリコン半導体層などの薄膜に不必要な不純物の混入を防止でき、その結果膜質を安定化してTFT特性の向上ができる。
【0016】
【発明の実施の形態】
以下、本発明の実施例について説明する。
【0017】
図10に示す様な13.56MHzのグロー放電を用いた化学気相堆積装置を使用してSiH4、NH3、H2ガスを導入することでゲート絶縁膜、非晶質シリコン半導体層を製膜し図9のTFTを作製した。NF3ガスクリーニングからH2グロー放電とH2で希釈したSiH4グロー放電の連続放電までの装置状態を図1に示す。
【0018】
クリーニング直後、堆積装置内に基板を設置しない状態で100%H2ガス雰囲気のグロー放電に続き、放電を止めることなくSiH4ガスを添加したH2希釈によるSiH4ガス雰囲気のグロー放電に移行する連続処理を行う。このH2希釈によるSiH4ガスのグロー放電において、H2/SiH4ガス比を変化させ、この連続処理を複数回繰り返すという図1に示すような処理を行う。
【0019】
グロー放電中のH2/SiH4ガス比の変化に対する、クリーニング直後の堆積膜中への不純物の含有量を比較したところ図2に示す結果が得られる。
2/SiH4ガス比を4以上においてTFT形成膜中に取りこまれる不純物の含有量が線形的増加する。
【0020】
TFT形成膜中への不純物含有量の基板処理数依存を図3に示すが、前述したH2ガス100%雰囲気のグロー放電とH2ガスで希釈したSiH4ガス雰囲気でのグロー放電とによる連続処理を複数回繰り返すことでTFT形成膜中への不純物の含有量は減少する。さらにTFT形成膜の内、非晶質シリコン形成中にクリーニングのガス成分が多く取り込まれることを図4に示す。
【0021】
さらに図5にそのH2グロー放電とH2希釈のSiH4グロー放電との連続処理回数をかえて処理した時のTFTの移動度を示す。図7は、H2グロー放電とH2希釈によるSiH4グロー放電との組み合わせを連続的に行うことで、TFT特性をクリーニング後において薄い堆積膜厚で改善できることを示す。さらに、図5、6にH2グロー放電・H2希釈SiH4グロー放電の連続処理を、放電を止めることなく3回行ったあとのTFTの移動度とダストの発生を示す。さらに、H2/SiH4グロー放電の繰り返し回数を変化させクリーニング後のTFT基板1枚目における移動度の変化を図8に示す。H2/SiH4ガス比4とし、2回以上のくり返しにおいて安定した膜質が得られる。
【0022】
以上の様に、クリーニング後にH2ガス100%雰囲気でのグロー放電とH2ガスで希釈したSiH4ガス雰囲気でのグロー放電とによる連続放電を行うことにより不純物のTFT形成膜中への混入を減らし、TFT特性において依存性のない安定な製膜が実現できる。さらに、クリーニング直後の堆積膜厚を減少できるため、堆積膜のクリーニング除去時間の短縮、膜剥がれによるダストの発生を抑制できる。
【0023】
なお、実施例において、クリーニングガスはNF3を用いたが、
CF4、SF6等のフッ素系ガスとしても良い。また、H2ガスと他の活性ガスとの混合ガス、例えばH2+SiH2Cl2等でも同様の効果が期待できる。
【0024】
なお、上記の説明はTFTに用いるゲート絶縁膜、非晶質シリコン半導体薄膜の例を中心に述べてきたが、非晶質シリコンを用いるその他の半導体装置はいうまでもなく、プラズマ化学気相堆積法を用いて非晶質シリコン以外の薄膜を堆積する工程を有する半導体装置の製造方法および半導体製造装置にも本発明は有効である。
【0025】
【発明の効果】
以上のように本発明は、半導体薄膜を作製する化学気相堆積装置のクリーニング後に堆積装置内で引き続き基板を設置せずH2ガス100%雰囲気でのグロー放電とH2ガスで希釈したSiH4ガス雰囲気でのグロー放電とによる連続放電を少なくとも複数回行うことでTFT形成膜中への不純物を減少させ、クリーニング直後から十分な特性を示すTFTが得られ、産業的価値が大きい。
【図面の簡単な説明】
【図1】本発明の実施例におけるクリーニング時の堆積室内のタイムチャート
【図2】本発明の実施例におけるクリーニング後に基板を装置内に設置して作成した基板1枚目膜中への不純物含有量をH2ガス/SiH4ガス比に対して示した図
【図3】本発明の実施例におけるクリーニング後に基板を装置内に設置して作成したTFT膜中への不純物含有量をクリーニング後TFT基板堆積回数に対して示した図
【図4】本発明の実施例におけるクリーニング後に基板を装置内に設置して作成した際のTFT形成膜への不純物含有量を各膜に対して示した図
【図5】本発明の実施例におけるクリーニング後に基板を装置内に設置して作成したTFT特性の経時変化を示した図
【図6】本発明の実施例におけるクリーニング後に基板を装置内に設置して作成したTFT基板に対してダスト付着数を示した図
【図7】本発明の実施例におけるH2/SiH4ガス比に対するクリーニング直後の堆積膜厚を示した図
【図8】本発明の実施例におけるクリーニング後に基板を装置内に設置して作成したTFT基板の1枚目における移動度をH2/SiH4グロー放電の繰り返し回数に対して示した図
【図9】TFTの要部構成断面図
【図10】化学気相堆積装置の概略図
【符号の説明】
1 ガラス基板
2 ゲート電極
3 ゲート絶縁膜
4 非晶質シリコン半導体膜
5a、5b n+非晶質シリコン半導体膜
6a、6b ソース・ドレイン電極
7 チャンネルストッパ絶縁膜
11 堆積室
12 対向放電電極
13 基板
14 放電電極
15 ガス
16 放電電源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor device, a semiconductor layer of a thin film transistor for constituting the image display application equipment in conjunction with such liquid crystal display device (hereinafter referred to as TFT), to manufacture how the thin film to be the insulating film layer Related.
[0002]
[Prior art]
A conventional method for producing a thin film will be described below.
[0003]
FIG. 9 shows a cross-sectional view of the main part of the TFT. A gate electrode 2 is formed on a glass substrate 1, an amorphous silicon semiconductor layer 4 is formed through a gate insulating film 3, and source and drain electrodes 6a and 6b are connected through n + amorphous silicon semiconductor layers 5a and 5b. Is formed.
[0004]
Conventionally, the above-described gate insulating film 3 (3000 非晶 質), amorphous silicon semiconductor layer 4 (500Å), channel stopper insulating film 7 (2000Å) n + amorphous silicon semiconductor layers 5a and 5b are formed of material gases as shown in FIG. The plasma chemical vapor deposition apparatus using glow discharge of SiH4, NH3, and PH3 is used. The plasma chemical vapor deposition apparatus shown in FIG. 10 is a capacitive coupling type in which the discharge electrode 14 and the counter discharge electrode 12 are installed in parallel, and the substrate is installed on the counter discharge electrode 12.
[0005]
In this plasma chemical vapor deposition apparatus, after the thin film is deposited, NF 3 , SF 6 is used to prevent generation of dust due to peeling of the film attached to the counter electrode 14 other than the substrate, the deposition chamber 11 and the like. Gas cleaning such as introducing a gas such as CF 4 and removing the film by glow discharge is performed periodically. Further, in order to stabilize the quality of the film to be manufactured, a film deposition operation is performed immediately after periodic cleaning without installing the substrate, and then a thin film is deposited on the substrate for manufacturing the TFT.
[0006]
[Problems to be solved by the invention]
However, in the conventional method, as shown in FIG. 5, a change in film quality was observed along with a change in TFT characteristics over time, which seems to be due to a change in film quality along with the number of depositions immediately after cleaning. This is because fluorine, which is a gas component used during gas cleaning, remains in the deposition chamber and is mixed as an impurity in the TFT formation film. In order to counter these problems, if the deposited film thickness is increased to a film thickness equivalent to 3 sheets (12000 mm) without installing the substrate immediately after cleaning, the change in TFT characteristics over time shown in FIG. 5 is improved. However, there is a problem that the generation of dust increases as shown in FIG.
[0007]
[Means for Solving the Problems]
In the method of manufacturing a semiconductor device according to the present invention, in a plasma chemical vapor deposition apparatus using a fluorine-based gas as a cleaning gas, immediately after gas cleaning, a substrate is not installed in the plasma chemical vapor deposition apparatus. a glow discharge in the SiH 4 gas atmosphere diluted with glow discharge and hydrogen gas in a hydrogen gas atmosphere was continuously processed only by switching the gas without stopping the glow discharge, SiH 4 gas diluted with the hydrogen gas The hydrogen gas / SiH 4 gas ratio in the atmosphere is 4 or more .
[0010]
Further, in the plasma chemical vapor deposition apparatus using a fluorine-based gas as a cleaning gas, the method for manufacturing a semiconductor device according to the present invention is performed immediately after gas cleaning without placing a substrate in the plasma chemical vapor deposition apparatus. % of hydrogen and glow discharge in the SiH 4 gas atmosphere diluted with glow discharge and hydrogen gas in the gas atmosphere was continuously processed only by switching the gas without stopping the glow discharge, before Symbol 100% hydrogen gas atmosphere The continuous treatment of the glow discharge in the above and the glow discharge in an SiH 4 gas atmosphere diluted with hydrogen gas is repeated at least a plurality of times.
[0012]
Producing how the semiconductor device of the present invention, depositing a film by glow discharge at regular deposition chamber residual components of the cleaning gas adhering to the material constituting the exposed device after cleaning and 100% hydrogen gas atmosphere It is vaporized and excited without being absorbed, and is taken into the deposited film by glow discharge in a SiH 4 gas atmosphere diluted to 80% or more with hydrogen gas. That is, the residual component of the cleaning gas is effectively fixed in the film with a low deposited film thickness of amorphous silicon with a low deposition rate.
[0013]
That is, after cleaning the deposition chamber, a glow discharge in a 100% hydrogen gas atmosphere and a glow discharge in a SiH 4 atmosphere diluted with hydrogen gas with a H 2 / SiH 4 gas ratio of 4 or more are continuously performed. The effect of the cleaning gas residue can be suppressed efficiently. Accordingly, unnecessary impurities can be prevented from being mixed into a thin film such as a gate insulating film or an amorphous silicon semiconductor layer to be manufactured, and as a result, film quality can be stabilized and TFT characteristics can be improved.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below.
[0017]
A gate insulating film and an amorphous silicon semiconductor layer are manufactured by introducing SiH 4 , NH 3 , and H 2 gas using a chemical vapor deposition apparatus using a 13.56 MHz glow discharge as shown in FIG. A TFT was formed as shown in FIG. FIG. 1 shows the state of the apparatus from NF 3 gas cleaning to continuous discharge of H 2 glow discharge and SiH 4 glow discharge diluted with H 2.
[0018]
Immediately after cleaning, a glow discharge in a 100% H 2 gas atmosphere is continued without a substrate being placed in the deposition apparatus, and a continuous transition to a glow discharge in a SiH 4 gas atmosphere by H2 dilution with addition of SiH 4 gas is performed without stopping the discharge. Process. In the glow discharge of SiH 4 gas by this H 2 dilution, the process shown in FIG. 1 is performed in which the H 2 / SiH 4 gas ratio is changed and this continuous process is repeated a plurality of times.
[0019]
When the content of impurities in the deposited film immediately after cleaning is compared with the change in the H 2 / SiH 4 gas ratio during glow discharge, the result shown in FIG. 2 is obtained.
When the H 2 / SiH 4 gas ratio is 4 or more, the content of impurities incorporated in the TFT formation film increases linearly.
[0020]
The dependence of the impurity content in the TFT formation film on the number of processed substrates is shown in FIG. 3, and it is the continuous glow discharge in the H 2 gas 100% atmosphere and the glow discharge in the SiH 4 gas atmosphere diluted with H 2 gas. By repeating the treatment a plurality of times, the content of impurities in the TFT formation film decreases. Further, FIG. 4 shows that a large amount of the cleaning gas component is taken in during the formation of the amorphous silicon in the TFT formation film.
[0021]
Further, FIG. 5 shows the mobility of the TFT when the H 2 glow discharge and the H 2 diluted SiH 4 glow discharge are processed in different numbers. FIG. 7 shows that the TFT characteristics can be improved with a thin deposited film thickness after cleaning by continuously performing a combination of H 2 glow discharge and SiH 4 glow discharge by H 2 dilution. Further, FIGS. 5 and 6 show TFT mobility and dust generation after the H 2 glow discharge / H 2 diluted SiH 4 glow discharge continuous treatment is performed three times without stopping the discharge. Further, FIG. 8 shows a change in mobility in the first TFT substrate after cleaning by changing the number of repetitions of H 2 / SiH 4 glow discharge. The H 2 / SiH 4 gas ratio is set to 4, and a stable film quality can be obtained by repeating twice or more times.
[0022]
As described above, the contamination of the glow discharge and the H 2 gas diluted with the SiH 4 of impurities by performing glow discharge and continuous discharge by the gas atmosphere TFT formed film with H 2 gas atmosphere of 100% after cleaning It is possible to realize a stable film formation with no dependency on TFT characteristics. Furthermore, since the deposited film thickness immediately after cleaning can be reduced, the cleaning removal time of the deposited film can be shortened, and the generation of dust due to film peeling can be suppressed.
[0023]
In the example, NF 3 was used as the cleaning gas.
A fluorine-based gas such as CF 4 or SF 6 may be used. Similar effects can be expected with a mixed gas of H 2 gas and other active gas, such as H 2 + SiH 2 Cl 2 .
[0024]
Although the above description has focused on examples of gate insulating films and amorphous silicon semiconductor thin films used for TFTs, it goes without saying that other semiconductor devices using amorphous silicon are plasma chemical vapor deposition. The present invention is also effective for a method of manufacturing a semiconductor device and a semiconductor manufacturing apparatus having a step of depositing a thin film other than amorphous silicon using the method.
[0025]
【The invention's effect】
Above, the present invention, SiH 4 diluted with glow discharge and H 2 gas subsequently with H 2 gas atmosphere of 100% without installing a substrate in a deposition apparatus after the cleaning of chemical vapor deposition apparatus for manufacturing a semiconductor thin film By performing continuous discharge by glow discharge in a gas atmosphere at least a plurality of times, impurities in the TFT forming film are reduced, and a TFT having sufficient characteristics can be obtained immediately after cleaning, which is of great industrial value.
[Brief description of the drawings]
FIG. 1 is a time chart in a deposition chamber at the time of cleaning in an embodiment of the present invention. FIG. 2 contains impurities in the first film of the substrate prepared by installing the substrate in the apparatus after cleaning in the embodiment of the present invention. FIG. 3 shows the amount of H 2 gas / SiH 4 gas ratio. FIG. 3 shows the TFT content after cleaning the impurity content in the TFT film prepared by installing the substrate in the apparatus after cleaning in the embodiment of the present invention. FIG. 4 is a diagram showing the number of times of deposition on a substrate. FIG. 4 is a diagram showing the content of impurities in a TFT formation film for each film when a substrate is installed in the apparatus after cleaning in an embodiment of the present invention. FIG. 5 is a diagram showing a change over time in TFT characteristics created by installing a substrate in the apparatus after cleaning in the embodiment of the present invention. FIG. 6 shows that the substrate is installed in the apparatus after cleaning in the embodiment of the present invention. FIG. 7 is a diagram showing the number of dust attached to the TFT substrate prepared by placing the substrate. FIG. 7 is a diagram showing the deposited film thickness immediately after cleaning with respect to the H 2 / SiH 4 gas ratio in the embodiment of the present invention. FIG. 9 is a diagram showing the mobility of the first TFT substrate prepared by placing the substrate in the apparatus after cleaning in the embodiment of the invention with respect to the number of repetitions of H 2 / SiH 4 glow discharge. Sectional cross-sectional view [Fig. 10] Schematic diagram of chemical vapor deposition system [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass substrate 2 Gate electrode 3 Gate insulating film 4 Amorphous silicon semiconductor film 5a, 5b n + amorphous silicon semiconductor film 6a, 6b Source / drain electrode 7 Channel stopper insulating film 11 Deposition chamber 12 Counter discharge electrode 13 Substrate 14 Discharge electrode 15 Gas 16 Discharge power supply

Claims (4)

フッ素系ガスをクリーニングガスとして用いるプラズマ化学気相堆積装置において、ガスクリーニング直後に、前記プラズマ化学気相堆積装置内に基板を設置しない状態で、100%の水素ガス雰囲気でのグロー放電と水素ガスで希釈したSiHガス雰囲気でのグロー放電とをグロー放電を止めることなくガスの切り替えのみで連続的に処理し、
前記水素ガスで希釈したSiH ガス雰囲気における水素ガス/SiH ガス比は、4以上であることを特徴とする半導体装置の製造方法。
In a plasma chemical vapor deposition apparatus that uses a fluorine-based gas as a cleaning gas, immediately after gas cleaning, a glow discharge and hydrogen gas in a 100% hydrogen gas atmosphere without a substrate installed in the plasma chemical vapor deposition apparatus. in continuously processed only by switching the gas without stopping the glow discharge and glow discharge in SiH 4 gas atmosphere diluted,
A method of manufacturing a semiconductor device, wherein a hydrogen gas / SiH 4 gas ratio in a SiH 4 gas atmosphere diluted with hydrogen gas is 4 or more .
フッ素系ガスをクリーニングガスとして用いるプラズマ化学気相堆積装置において、ガスクリーニング直後に、前記プラズマ化学気相堆積装置内に基板を設置しない状態で、100%の水素ガス雰囲気でのグロー放電と水素ガスで希釈したSiH ガス雰囲気でのグロー放電とをグロー放電を止めることなくガスの切り替えのみで連続的に処理し、
前記100%の水素ガス雰囲気でのグロー放電と、前記水素ガスで希釈したSiH ガス雰囲気でのグロー放電との連続処理は、少なくとも複数回繰り返すことを特徴とする半導体装置の製造方法。
In a plasma chemical vapor deposition apparatus that uses a fluorine-based gas as a cleaning gas, immediately after gas cleaning, a glow discharge and hydrogen gas in a 100% hydrogen gas atmosphere without a substrate installed in the plasma chemical vapor deposition apparatus. The glow discharge in the SiH 4 gas atmosphere diluted with the above is continuously processed only by switching the gas without stopping the glow discharge,
And glow discharge in a hydrogen gas atmosphere in the 100%, the continuous process of the glow discharge in the SiH 4 gas atmosphere diluted with the hydrogen gas, the manufacturing method of this a semi-conductor device you wherein repeated at least several times .
前記フッ素系ガスがNF 、又はSF 、又はCF のいづれかであることを特徴とする請求項1または請求項2のいづれかに記載の半導体装置の製造方法。The method of manufacturing a semiconductor device according to either of claims 1 or claim 2 wherein the fluorine-based gas, characterized in that NF 3, or SF 6, the or at either of CF 4. 前記水素ガスで希釈したSiH ガス雰囲気における水素ガス/SiH ガス比は、4以上であることを特徴とする請求項2に記載の半導体装置の製造方法。 Hydrogen gas / SiH 4 gas ratio in the SiH 4 gas atmosphere diluted with the hydrogen gas, a method of manufacturing a semiconductor device according to claim 2, wherein the this is 4 or more.
JP2000165491A 2000-06-02 2000-06-02 Manufacturing method of semiconductor device Expired - Fee Related JP4469465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000165491A JP4469465B2 (en) 2000-06-02 2000-06-02 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000165491A JP4469465B2 (en) 2000-06-02 2000-06-02 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2001345278A JP2001345278A (en) 2001-12-14
JP4469465B2 true JP4469465B2 (en) 2010-05-26

Family

ID=18668955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000165491A Expired - Fee Related JP4469465B2 (en) 2000-06-02 2000-06-02 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4469465B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713759B2 (en) * 2001-05-01 2011-06-29 東芝モバイルディスプレイ株式会社 Manufacturing method of semiconductor device
JP5598483B2 (en) * 2010-01-29 2014-10-01 旭硝子株式会社 Surface treatment method for fluororesin molded body and fluororesin molded body
JP7118099B2 (en) 2020-01-15 2022-08-15 株式会社Kokusai Electric Semiconductor device manufacturing method, substrate processing apparatus, and program

Also Published As

Publication number Publication date
JP2001345278A (en) 2001-12-14

Similar Documents

Publication Publication Date Title
US8368075B2 (en) Plasma CVD apparatus
WO1995034916A1 (en) Manufacture of thin film semiconductor device, thin film semiconductor device, liquid crystal display device, and electronic device
WO2011051251A1 (en) Etching process for producing a tft matrix
US6395652B2 (en) Method of manufacturing thin film transistor
TW201246551A (en) Thin film transistor
US8330193B2 (en) Silicon oxide film, production method therefor and semiconductor device having gate insulation film using the same
JP4469465B2 (en) Manufacturing method of semiconductor device
JP3204735B2 (en) Manufacturing method of hydrogenated amorphous silicon thin film transistor
US20090200553A1 (en) High temperature thin film transistor on soda lime glass
JPH11224858A (en) Cleaning method for cvd apparatus
JP2002151693A (en) Bottom gate thin-film transistor, manufacturing method thereof, etching device, and nitriding device
US20130087802A1 (en) Thin film transistor, fabrication method therefor, and display device
US20080132042A1 (en) Process For Cleaning Chamber In Chemical Vapor Deposition Apparatus
JP3471082B2 (en) Coating method for reaction chamber of CVD apparatus
KR100292088B1 (en) Method of fabricating semiconductor device
JPH07297403A (en) Manufacture of thin film transistor
KR100571005B1 (en) Method for fabrication of semiconductor devcie
KR950006349B1 (en) Anealing method of amolphous silicon tft
JP4278857B2 (en) Thin film transistor and manufacturing method thereof
JP2002359250A (en) Method for forming thin-film transistor
JP2005109321A (en) Manufacturing method of array substrate
KR20230115908A (en) Method for Manufacturing Thin Film and Thin Film
JP2001351867A (en) Method and apparatus of semiconductor device
JPS63172422A (en) Manufacture of semiconductor device
JP2003234344A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Ref document number: 4469465

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140305

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees