JP2003257725A - Oxide magnetic material, its manufacturing method, method of forming core, magnetic component, and coil component - Google Patents

Oxide magnetic material, its manufacturing method, method of forming core, magnetic component, and coil component

Info

Publication number
JP2003257725A
JP2003257725A JP2002056205A JP2002056205A JP2003257725A JP 2003257725 A JP2003257725 A JP 2003257725A JP 2002056205 A JP2002056205 A JP 2002056205A JP 2002056205 A JP2002056205 A JP 2002056205A JP 2003257725 A JP2003257725 A JP 2003257725A
Authority
JP
Japan
Prior art keywords
magnetic
oxide
density
core
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002056205A
Other languages
Japanese (ja)
Other versions
JP4215992B2 (en
Inventor
Takushi Akehira
拓志 明平
Yutaka Saito
裕 斎藤
Takuya Ono
卓也 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002056205A priority Critical patent/JP4215992B2/en
Publication of JP2003257725A publication Critical patent/JP2003257725A/en
Application granted granted Critical
Publication of JP4215992B2 publication Critical patent/JP4215992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxide magnetic material from which a high-density molded body for magnetic component that can be suppressed in deformation due to a small density difference in a sintered compact, and is excellent in dimensional accuracy and magnetic characteristic can be obtained; a method of manufacturing the magnetic material; a method of forming core, a magnetic component, and a coil component using the magnetic material. <P>SOLUTION: After a magnetic oxide powder which becomes the oxide magnetic material is weighed, blended, dried, granulated, and calcined, the powder is water-ground. Thereafter, the magnetic oxide powder is made finer in size by dry-grinding the powder. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、酸化物磁性材料お
よびその製造方法と前記酸化物磁性材料を用いたコアの
成形方法と磁性部品とコイル部品に係り、特にドラム型
コア形状のように、複雑な形状の磁性部品に好適なもの
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide magnetic material and a method for producing the same, a method for molding a core using the oxide magnetic material, a magnetic component and a coil component, and more particularly to a drum type core shape. The present invention relates to a magnetic component suitable for a complicated shape.

【0002】[0002]

【従来の技術】Ni−Zn系フェライト等の磁性酸化物
粉体は、一般に、材料酸化物の混合−仮焼−粉砕−造粒
−成形の各工程を経た後、適正に制御された高温下で焼
成することによって製造されている。
2. Description of the Related Art Generally, magnetic oxide powders such as Ni-Zn ferrites are subjected to the steps of mixing of material oxides, calcination, pulverization, granulation, and molding, and then under appropriately controlled high temperature. It is manufactured by firing at.

【0003】前記工程のうち、粉砕は、湿式粉砕が一般
的であるが、湿式粉砕後の粉体材料を成形する場合、一
般的に成形体密度を高くすることが困難である。このた
め、成形圧力を高くする方法で成形体密度を上げると、
成形時のひび割れや、成形体内部の密度の不均一さが原
因で焼成後に変形やひび割れが発生することが知られて
いる。
[0003] Of the above-mentioned steps, the crushing is generally wet crushing, but when molding the powder material after the wet crushing, it is generally difficult to increase the density of the compact. For this reason, if the density of the molded body is increased by increasing the molding pressure,
It is known that deformation and cracks occur after firing due to cracks during molding and uneven density inside the molded body.

【0004】また、図1(A)に示すドラムコア1のよ
うに、複雑な形状のコイル部品用コアを図1(B)に示
す下型2と上型3により成形する際に、巻心部1aの両
端の鍔部1bの密度低下を防止する目的で過剰な圧力を
加えた場合に、巻心部1aの部分にのみ応力が集中して
金型2、3が破損する事例が多数報告されている。特
に、図1(A)において、巻心部1aの加圧方向の径
(図示のようにコア1の巻心部が円柱形状の場合)また
は幅(コア1の巻心部が角柱形状の場合)aが、鍔部1
bの加圧方向の径(鍔部が円柱形状の場合)または幅
(鍔部が多角柱形状の場合)bの60%以下の形状であ
る場合、図1(B)に示すように、巻心部1aの巻心軸
方向に対して垂直方向に加圧すると、巻心部1aが相対
的に密、鍔部1bが相対的に疎となる密度差が生じ、上
述したひび割れ、変形、金型の破損が発生することが知
られている。
Further, when a core for a coil component having a complicated shape such as the drum core 1 shown in FIG. 1 (A) is formed by the lower die 2 and the upper die 3 shown in FIG. 1 (B), a core portion is formed. When excessive pressure is applied for the purpose of preventing the lowering of the density of the collars 1b at both ends of the la, the stress is concentrated only on the core 1a, and the molds 2 and 3 are often damaged. ing. In particular, in FIG. 1 (A), the diameter (in the case where the core 1 of the core 1 has a cylindrical shape) or the width (when the core 1 of the core 1 has a prismatic shape) in the pressing direction of the core 1a. ) A is collar part 1
If the diameter of b in the pressing direction (when the collar is cylindrical) or the width (when the collar is polygonal) is less than 60% of b, as shown in FIG. When pressure is applied in the direction perpendicular to the winding axis direction of the core portion 1a, a density difference occurs in which the winding core portion 1a is relatively dense and the collar portion 1b is relatively sparse, and the above-described cracking, deformation, and gold It is known that mold breakage occurs.

【0005】これらの不具合を解決する手段として、特
開平9−306774号公報に記載のように、円柱ある
いは角柱状に一体成形した成形体の中間部を切削して巻
心部1aの径または幅を鍔部1bの60%以下に加工す
る方法が用いられる場合がある。しかしこの切削による
場合には、生産性が悪く、特に例えば1mm程度の長さ
の小型の形状になるほど寸法精度を含めた生産性が低下
する。
As a means for solving these problems, as described in Japanese Patent Laid-Open No. 9-306774, the diameter or width of the core portion 1a is obtained by cutting the intermediate portion of a molded body integrally molded into a columnar shape or a prismatic shape. There is a case where a method of processing 60% or less of the collar portion 1b is used. However, in the case of this cutting, the productivity is poor, and the productivity including the dimensional accuracy lowers particularly as the shape becomes smaller with a length of, for example, about 1 mm.

【0006】この切削による方法以外に、成形時に全方
位から比較的均一に成形圧力を加える冷間等方圧成形
(CIP)等が知られているが、比較的大型の成形体を
造る場合は効果は大きいが、ドラムコア等のような複雑
な成形体には効果が不十分であり、また、一度に成形で
きる能力にも限界があり、大量生産に適した方法ではな
い。
In addition to this cutting method, cold isostatic pressing (CIP), which applies a molding pressure relatively uniformly from all directions during molding, is known, but in the case of making a relatively large molded body, Although the effect is large, the effect is insufficient for a complicated molded body such as a drum core, and the ability to mold at one time is limited. Therefore, this method is not suitable for mass production.

【0007】さらに、近年、各種電子機器の小型、軽量
化が急速に進み、それに対応すべくこれらの電子機器の
電気回路に用いられる電子部品の小型化、高性能化への
要求も急速に高まってきている。このため、さらなる部
品の小型化に対応するためには、限られた時間の中で大
量に、しかも精密に成形できる成形法を開発することは
勿論、粉体材料に関係する分野からの取り組みも不可欠
になっている。
Further, in recent years, various electronic devices have been rapidly reduced in size and weight, and in order to meet the demand, demands for miniaturization and high performance of electronic parts used in electric circuits of these electronic devices are also rapidly increased. Is coming. For this reason, in order to respond to further miniaturization of parts, it is necessary to develop a molding method that enables accurate molding in large quantities in a limited time, and of course, efforts from fields related to powder materials. Has become essential.

【0008】これらの要求に応じるべく、特開平5−4
3248号公報には、粉体材料を乾式粉砕した後、湿式
粉砕を行うことによって粒子の凝集状態を変化させるこ
とにより、成形体の圧縮密度を2.6g/cm〜3.
2g/cmの範囲に連続的に制御する密度制御方法が
記載されている。
In order to meet these demands, Japanese Patent Laid-Open No. 5-4
According to Japanese Patent No. 3248, the powder material is dry pulverized and then wet pulverized to change the agglomeration state of the particles so that the compacted body has a compressed density of 2.6 g / cm 3 to 3.
A density control method for continuously controlling in the range of 2 g / cm 3 is described.

【0009】[0009]

【発明が解決しようとする課題】前述のように、湿式粉
砕のみで仮焼後の酸化物磁性材料を粉砕すると、粉体を
凝集させることができず、圧縮密度を高くすることはで
きない。また、粗粒子が残りやすい傾向がある。
As described above, if the oxide magnetic material after calcination is pulverized only by wet pulverization, the powder cannot be aggregated and the compressed density cannot be increased. In addition, coarse particles tend to remain.

【0010】一方、乾式粉砕のみでは、粗粒子を微細化
し、粉体を凝集させることはできるものの、焼結体密度
は高くならず、思うような電磁気特性が得られないとい
う問題がある。また、目標とする平均粒子径に粉砕する
までに粉砕機の内壁やメディアから不純物が混入すると
いう不具合がある。
On the other hand, only by dry pulverization, although coarse particles can be made finer and powder can be aggregated, there is a problem that the density of the sintered body is not increased and desired electromagnetic characteristics cannot be obtained. Further, there is a problem that impurities are mixed from the inner wall of the crusher or the media before the crushing to the target average particle size.

【0011】そこで、前記特開平5−43248号公報
に記載のように、粉体材料を乾式粉砕した後、湿式粉砕
を行うことが考えられるが、この方法によると、乾式粉
砕によって作った凝集が僅かにほぐれる傾向を持ち、さ
らに圧縮密度が低下してしまう。その結果、成形体の圧
縮密度として3.2g/cm以上の高密度のものを得
ることが難しく、このため、高い成形体強度のコア等を
得ることが困難である。また、焼結体内部の密度差、変
形等の不具合を抑制することも困難であり、寸法精度お
よび電磁気特性の優れた磁性部品を安定して製造できな
いという問題点があった。
Therefore, it is conceivable that the powder material is dry-milled and then wet-milled as described in JP-A-5-43248. According to this method, the agglomeration produced by the dry milling is performed. It has a tendency to loosen slightly and the compression density further decreases. As a result, it is difficult to obtain a compact having a high compression density of 3.2 g / cm 3 or more, and thus it is difficult to obtain a core having a high compact strength. Further, it is difficult to suppress defects such as density difference and deformation inside the sintered body, and there is a problem that a magnetic component excellent in dimensional accuracy and electromagnetic characteristics cannot be stably manufactured.

【0012】本発明は、このような従来技術の問題点に
鑑み、磁性部品の成形体として高密度で、焼結体内部で
の密度差が小さく、もって変形を抑制でき、寸法精度、
電磁気特性が優れたものを得ることができる酸化物磁性
材料およびその製造方法を提供することを目的とする。
また、本発明は、前記酸化物磁性材料を用いたコアの成
形方法と磁性部品とコイル部品を提供することを目的と
する。
In view of the problems of the prior art as described above, the present invention has a high density as a molded body of a magnetic component, has a small density difference inside the sintered body, can suppress deformation, and has dimensional accuracy,
It is an object of the present invention to provide an oxide magnetic material that can obtain a material having excellent electromagnetic characteristics and a method for producing the same.
Another object of the present invention is to provide a method for molding a core using the above oxide magnetic material, and a magnetic component and a coil component.

【0013】[0013]

【課題を解決するための手段】本発明の酸化物磁性材料
の製造方法は、磁性酸化物の材料となる複数種類の酸化
物を秤量、配合した後仮焼し、仮焼後の磁性酸化物粉体
に湿式粉砕処理を施し、その後乾式粉砕処理を施して磁
性酸化物粉体を微細化することを特徴とする(請求項
1)。
Means for Solving the Problems The method for producing an oxide magnetic material according to the present invention comprises: measuring and blending a plurality of types of oxides which are materials for a magnetic oxide, calcining the mixture, and calcining the magnetic oxide. It is characterized in that the powder is subjected to a wet pulverization treatment and then subjected to a dry pulverization treatment to make the magnetic oxide powder fine.

【0014】このように、湿式粉砕の後に乾式粉砕を行
うことにより、単に湿式粉砕による場合に比較して凝集
を起こし易くなり、圧縮密度を高くすることができ、し
かも単に乾式粉砕による場合よりも湿式粉砕で前処理す
ることにより、焼結体密度を高くし、電磁気特性を良好
とすることが可能になる。
As described above, by performing the dry pulverization after the wet pulverization, aggregation is more likely to occur and the compression density can be increased as compared with the case of the simple wet pulverization, and moreover, the case of the simple dry pulverization. Pretreatment by wet pulverization makes it possible to increase the density of the sintered body and improve the electromagnetic characteristics.

【0015】また、湿式粉砕の後に乾式粉砕を行うこと
により、乾式粉砕の時間を短縮できるので、粉砕機の内
壁やメディアからの不純物の混入を少なくすることがで
き、コア内(ドラムコアであれば、巻心部と鍔部)の密
度差を小さくすることとも相まって、磁性部品の電磁気
特性の向上が達成できる。
Further, by performing the dry pulverization after the wet pulverization, the time of the dry pulverization can be shortened, so that the mixing of impurities from the inner wall of the pulverizer and the media can be reduced, and the inside of the core (in the case of a drum core, In addition to the reduction of the density difference between the core and the collar, the electromagnetic characteristics of the magnetic component can be improved.

【0016】より詳しくは、湿式粉砕処理では充分に粉
砕処理できなかった磁性酸化物粉体中の粗大粒子を短時
間に粉砕し、平均粒子径が0.4〜1.8μm、より好
ましくは0.6〜1.2μmの尖鋭な粒子径分布の酸化
物磁性材料粉体を得ることができる。
More specifically, coarse particles in the magnetic oxide powder, which could not be sufficiently crushed by the wet crushing process, are crushed in a short time so that the average particle size is 0.4 to 1.8 μm, more preferably 0. Oxide magnetic material powder having a sharp particle size distribution of 6 to 1.2 μm can be obtained.

【0017】また、比表面積を2.4g/cm以上に
処理しながら、酸化物磁性材料粉体を凝集させて成形体
の圧縮密度を低圧成形下でも3.2g/cm以上に制
御可能とし、これによって複雑な形状のコアを研削加工
等をすることなく一体成形可能とするものである。
Further, while treating the specific surface area to 2.4 g / cm 3 or more, the oxide magnetic material powder is aggregated to control the compression density of the molded body to 3.2 g / cm 3 or more even under low pressure molding. In this way, a core having a complicated shape can be integrally molded without grinding or the like.

【0018】本発明において、湿式粉砕に用いる粉砕機
として、湿式ボールミルやアトライター等を用いること
ができ、また、乾式粉砕に用いる粉砕機として、乾式ボ
ールミル、振動式ミル等を用いることができる。
In the present invention, a wet ball mill, an attritor or the like can be used as a pulverizer used for wet pulverization, and a dry ball mill, a vibration mill or the like can be used as a pulverizer used for dry pulverization.

【0019】本発明の製造方法を用いる酸化物磁性材料
の製造方法としては、磁性酸化物がMn−Zn系フェラ
イトも対象となるが、特に電気抵抗が高く、コイルの直
巻が行えるNi−Zn系フェライトの製造方法(請求項
2)として、好適に適用することができる。
As a method for producing an oxide magnetic material using the production method of the present invention, a magnetic oxide is applicable to a Mn-Zn type ferrite, but Ni-Zn which has a particularly high electric resistance and can be directly wound on a coil. It can be suitably applied as a method for producing a system ferrite (claim 2).

【0020】また、本発明による製造方法を実施する場
合、前記湿式粉砕、乾式粉砕を経た後、磁性酸化物粉体
をスラリー化した後、造粒、乾燥工程を経て成形するこ
とにより、0.1MPaにおける成形体密度が3.2g
/cm以上の成形体を得る(請求項3)ように粉砕処
理することが可能となる。
Further, when the production method according to the present invention is carried out, after the wet pulverization and the dry pulverization, the magnetic oxide powder is slurried, and then the granules are dried and molded to obtain a particle size of 0. Molded product density at 1 MPa is 3.2 g
It is possible to carry out the pulverization treatment so as to obtain a molded product having a density of / cm 3 or more (claim 3).

【0021】また、本発明の前記製造方法によって前記
粉砕処理を施した磁性酸化物粉体をスラリー化した後、
造粒、乾燥工程を経てコア形状に加圧成形する際に、コ
アの加圧方向の最小幅を、加圧方向の最大幅の65%以
下にして成形する(請求項4)際に、焼結体製品として
の歩留まりを高くして実施することができる。
Further, after the magnetic oxide powder that has been subjected to the pulverization treatment by the manufacturing method of the present invention is slurried,
When press-molding into a core shape through granulation and drying steps, the minimum width of the core in the pressurizing direction is set to 65% or less of the maximum width in the pressurizing direction (Claim 4). It can be carried out with a high yield as a united product.

【0022】また、本発明の前記製造方法によって前記
粉砕処理を施した磁性酸化物粉体をスラリー化した後、
造粒、乾燥工程を経て、ドラム型コア形状に、その巻心
軸方向に対して垂直方向に加圧成形する際に、巻心部の
加圧方向の径または幅を、鍔部の加圧方向の径または幅
の60%以下にして成形する(請求項5)ことにより、
焼結体製品としての歩留まりを高くして実施することが
できる。
Further, after the magnetic oxide powder that has been subjected to the pulverization treatment by the above-mentioned manufacturing method of the present invention is slurried,
When press-molding into a drum-shaped core shape in the direction perpendicular to the core axis direction through granulation and drying steps, the diameter or width of the core in the pressurizing direction can be adjusted by pressing the collar section. By making the diameter or width in the direction 60% or less of the width (Claim 5),
It can be carried out with a high yield as a sintered product.

【0023】また、本発明の前記製造方法による粉砕処
理を施した磁性酸化物粉体をスラリー化した後、造粒、
乾燥工程を経て成形する際の成形圧力の変化量ΔP(M
Pa)に対する成形体密度の変化量Δd(g/cm
の比Δd/ΔPが、0.05MPa〜0.3MPaの成
形圧力範囲において、Δd/ΔP≦1.6である酸化物
磁性材料(請求項6)を得ることができ、かつそのよう
な特性を有することが、低い成形圧力で(すなわち焼結
体製品におけるひび割れや変形を少なくして)高い圧縮
密度を得、しかも均一な密度分布を得る上で好ましい。
Further, after the magnetic oxide powder which has been pulverized by the above-mentioned manufacturing method of the present invention is slurried, it is granulated,
Amount of change in molding pressure ΔP (M
Amount of change in density of molded body with respect to Pa) Δd (g / cm 3 )
In the molding pressure range of 0.05 MPa to 0.3 MPa, a ratio Δd / ΔP of Δd / ΔP ≦ 1.6 can be obtained, and an oxide magnetic material (claim 6) having such characteristics can be obtained. It is preferable to have a high compaction density with a low molding pressure (that is, to reduce cracks and deformation in the sintered product) and to obtain a uniform density distribution.

【0024】また、本発明の前記製造方法による粉砕処
理を施した磁性酸化物粉体の成形体密度の変化量Δd
(g/cm)に対する、焼結後の密度の変化量ΔD
(g/cm)の比ΔD/ΔdがΔD/Δd≦0.13
である酸化物磁性材料(請求項7)を得ることができ、
かつそのような特性を有することが、低い成形圧力で
(すなわち焼結体製品におけるひび割れや変形を少なく
して)高い焼結体密度を得る上において好ましい。
Further, the amount of change Δd in the compact density of the magnetic oxide powder that has been pulverized by the above-described manufacturing method of the present invention.
Change amount ΔD of density after sintering with respect to (g / cm 3 ).
The ratio ΔD / Δd of (g / cm 3 ) is ΔD / Δd ≦ 0.13.
It is possible to obtain an oxide magnetic material (claim 7) that is
Moreover, it is preferable to have such characteristics in order to obtain a high sintered compact density at a low molding pressure (that is, to reduce cracking and deformation in the sintered compact product).

【0025】また、本発明の前記製造方法による粉砕処
理を施した磁性酸化物粉体から成形、焼結されてなる磁
性部品(請求項8)とすることにより、焼結体内部の密
度差が小さく、変形の少ない歩留まりの良い電磁気特性
の優れた磁性部品を得ることができる。
Further, by using a magnetic component (claim 8) formed and sintered from the magnetic oxide powder that has been pulverized by the above-mentioned manufacturing method of the present invention, the density difference inside the sintered body can be reduced. It is possible to obtain a magnetic component which is small and has a small yield with a good yield and excellent electromagnetic characteristics.

【0026】また、本発明の前記製造方法による磁性部
品をコアとして備えたコイル部品(請求項9)を得るこ
とにより、電磁気特性の優れたコイル部品を得ることが
できる。
Further, by obtaining the coil component having the magnetic component as the core by the manufacturing method of the present invention (claim 9), the coil component having excellent electromagnetic characteristics can be obtained.

【0027】[0027]

【発明の実施の形態】本発明の酸化物磁性材料の製造方
法は、インダクタ、トランス、アンテナ、テレビのブラ
ウン管、その他、磁性を要する部品の材料を得る場合に
好適なものであり、特に図1(A)に示したようなドラ
ムコアのような複雑な形状、すなわち成形時における金
型の移動方向について、成形体の加圧方向の径または幅
a、bが大幅に異なるような磁性部品を得る場合の酸化
物磁性材料として好適なものである。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing an oxide magnetic material of the present invention is suitable for obtaining materials for inductors, transformers, antennas, television cathode ray tubes, and other parts that require magnetism. A magnetic part having a complicated shape such as a drum core as shown in (A), that is, a diameter or width a or b in the pressing direction of the molded body is significantly different in the moving direction of the mold during molding is obtained. In this case, it is suitable as an oxide magnetic material.

【0028】図2は本発明による酸化物磁性材料の製造
方法の一実施の形態を示すブロック図である。図2に示
すように、本実施の形態においては、所定の特性のフェ
ライトが得られるように、個々の酸化物粉体を秤量し、
水を加えて湿式配合する(工程a)。次にスプレー乾燥
装置等を用いて乾燥造粒する(工程b)。次にこの粉体
を仮焼する(工程c)。
FIG. 2 is a block diagram showing an embodiment of a method for producing an oxide magnetic material according to the present invention. As shown in FIG. 2, in the present embodiment, individual oxide powders are weighed so that ferrite having predetermined characteristics is obtained,
Wet mixing is performed by adding water (step a). Next, dry granulation is performed using a spray dryer or the like (step b). Next, this powder is calcined (step c).

【0029】次にこの焼結体に水を加え、湿式ボールミ
ル等により湿式粉砕する(工程d)。この粉砕したもの
を乾燥する(工程e)。そしてこの湿式粉砕し、乾燥し
たものを乾式の振動式ボールミル等により乾式粉砕する
(工程f)。次に分散剤、結合剤等を適正量加え(工程
g)、スプレー乾燥装置等を用いて乾燥造粒する(工程
h)ことにより、酸化物磁性材粉体を得る。
Next, water is added to this sintered body and wet pulverization is performed by a wet ball mill or the like (step d). The crushed product is dried (step e). Then, the wet-milled and dried product is dry-milled by a dry vibrating ball mill or the like (step f). Next, an oxide magnetic material powder is obtained by adding an appropriate amount of a dispersant, a binder and the like (step g) and performing dry granulation using a spray dryer or the like (step h).

【0030】[0030]

【実施例】(比較例1)−湿式粉砕 Fe、ZnO、NiO、およびCuOからなる酸
化物材料を所定のモル比で湿式混合した後、900℃で
仮焼した。得られた酸化物組成は、Fe:Zn
O:NiO:CuO=66.3:19.6:9.3:
4.8(重量%)であった。また、この仮焼後の材料の
比表面積は1.2m/g、圧縮密度は2.40g/c
であった。次に、この酸化物を湿式粉砕処理した。
この湿式粉砕は、ボール1500gに対し、酸化物粉体
1000gとして湿式ボールミルにより20時間行っ
た。
EXAMPLES (Comparative Example 1) - Wet grinding Fe 2 O 3, ZnO, NiO , and after wet mixing of the oxide material consisting of CuO in a predetermined molar ratio, and then calcined at 900 ° C.. The obtained oxide composition was Fe 2 O 3 : Zn.
O: NiO: CuO = 66.3: 19.6: 9.3:
It was 4.8 (wt%). The specific surface area of the material after the calcination is 1.2 m 2 / g, and the compression density is 2.40 g / c.
It was m 3 . Next, this oxide was wet-milled.
This wet pulverization was carried out for 20 hours by a wet ball mill with 1500 g of balls as 1000 g of oxide powder.

【0031】次に、この粉砕された酸化物に結合剤、分
散剤を適正量加えた後、スプレー乾燥装置を使用して乾
燥造粒を行った。
Next, after adding an appropriate amount of a binder and a dispersant to the pulverized oxide, dry granulation was performed using a spray dryer.

【0032】(比較例2)−乾式粉砕 比較例1と同一の仮焼材を湿式粉砕することなく、乾式
粉砕処理した。乾式粉砕は、乾式の振動式ボールミルに
より行い、ボール4000gに対し、酸化物粉体を60
0g加えて90分行った。次にこの乾式粉砕したものを
湿式工程でスラリー化した後、結合剤、分散剤等を適正
量加え、スプレー乾燥装置を使用して乾燥造粒を行っ
た。
(Comparative Example 2) -Dry pulverization The same calcined material as in Comparative Example 1 was dry pulverized without wet pulverization. Dry pulverization is performed by a dry vibrating ball mill, and 60 g of oxide powder is added to 4000 g of balls.
0 g was added and the operation was performed for 90 minutes. Next, after the dry pulverized product was slurried in a wet process, an appropriate amount of a binder, a dispersant and the like were added, and dry granulation was performed using a spray dryer.

【0033】(実施例1)−湿式粉砕+乾式粉砕 比較例1のように湿式粉砕処理した後、これをさらに乾
式粉砕処理した。乾式粉砕は、乾式の振動式ボールミル
により行い、ボール4000gに対し、酸化物粉体を6
00g加えて60分行った。次にこの乾式粉砕したもの
を湿式工程でスラリー化した後、結合剤、分散剤等を適
正量加え、スプレー乾燥装置を使用して乾燥造粒を行っ
た。
Example 1 Wet Grinding + Dry Grinding After wet grinding as in Comparative Example 1, this was further dry ground. Dry pulverization was performed with a dry vibration type ball mill, and 6 parts of oxide powder was added to 4000 g of balls.
00g was added and it performed for 60 minutes. Next, after the dry pulverized product was slurried in a wet process, an appropriate amount of a binder, a dispersant and the like were added, and dry granulation was performed using a spray dryer.

【0034】(実施例2)−湿式粉砕+乾式粉砕 比較例1のように湿式粉砕処理した後、これを乾式粉砕
処理した。乾式粉砕は、乾式の振動式ボールミルにより
行い、ボール8000gに対し、酸化物粉体を600g
加えて60分行った。次にこの乾式粉砕したものを湿式
工程でスラリー化した後、結合剤、分散剤等を適正量加
え、スプレー乾燥装置を使用して乾燥造粒を行った。
Example 2 Wet Grinding + Dry Grinding After wet grinding as in Comparative Example 1, this was dry ground. Dry pulverization is performed with a dry vibration type ball mill, and 600 g of oxide powder is added to 8000 g of balls.
In addition, it went for 60 minutes. Next, after the dry pulverized product was slurried in a wet process, an appropriate amount of a binder, a dispersant and the like were added, and dry granulation was performed using a spray dryer.

【0035】(特性等の測定)上述のようにして作製し
た各粉体の粒度分布、種々の成形圧力における圧縮密度
および成形圧力の変化に対する圧縮密度の変化を測定し
た。また、このような種々の粉体を用いて円環状に圧縮
成形したものを焼成炉内で1000〜1200℃で焼成
した。そして焼結体密度、電磁気特性(初期透磁率
μ、飽和磁束密度B)等を求めた。同様に、寸法精
度、歩留まり等についてはドラム型コア形状にて求め
た。
(Measurement of Properties, etc.) The particle size distribution of each powder produced as described above, the compression density at various molding pressures, and the change in compression density with respect to changes in molding pressure were measured. Moreover, what was compression-molded in an annular shape using such various powders was fired at 1000 to 1200 ° C. in a firing furnace. Then, the sintered body density, electromagnetic characteristics (initial magnetic permeability μ i , saturation magnetic flux density B S ) and the like were obtained. Similarly, the dimensional accuracy, the yield, and the like were obtained with the drum core shape.

【0036】[粒度分布]図3に前記各例における粒度
分布を示す。図3に示すように、湿式粉砕のみによる比
較例1の場合、乾式粉砕による比較例2や、湿式粉砕+
乾式粉砕による実施例1、2に比較して粒径が大きく、
かつ粒度分布が尖鋭ではなく、粒径が広い範囲におよ
ぶ。
[Particle Size Distribution] FIG. 3 shows the particle size distribution in each of the above examples. As shown in FIG. 3, in the case of Comparative Example 1 only by wet pulverization, Comparative Example 2 by dry pulverization or wet pulverization +
The particle size is larger than in Examples 1 and 2 by dry crushing,
Moreover, the particle size distribution is not sharp, and the particle size extends over a wide range.

【0037】比較例2や実施例1、2による場合には粒
径や粒度分布にほとんど差がなく、湿式粉砕のみによる
場合に比較して粒径を小さく、かつ粒径を揃えることが
できることが分かる。すなわち、実施例1、2による場
合、乾式粉砕時間が短縮されたにもかかわらず(すなわ
ち粉砕機の内壁やメディヤからの不純物の混入を少なく
して)乾式粉砕のみによる比較例2とほぼ同様の粒度分
布を得ることができる。
In the case of Comparative Example 2 and Examples 1 and 2, there is almost no difference in particle size and particle size distribution, and it is possible to make the particle size smaller and uniform in particle size as compared with the case of only wet pulverization. I understand. That is, in the case of Examples 1 and 2, although the dry pulverization time was shortened (that is, the mixing of impurities from the inner wall of the pulverizer and the media was reduced), the dry pulverization time was almost the same as Comparative Example 2. A particle size distribution can be obtained.

【0038】[圧縮密度]表1のその1および図4に前
記各例により得られた粉体を種々の成形圧力で成形した
場合の圧縮密度を示す。表1のその1に示すように、湿
式粉砕のみによる比較例1に比較し、乾式粉砕のみによ
る比較例2および湿式粉砕+乾式粉砕による実施例1、
2による場合、0.05MPa〜0.3MPaにおい
て、高い圧縮密度を得ることができる。
[Compressed Density] No. 1 of Table 1 and FIG. 4 show the compressed densities of the powders obtained in the above-mentioned respective examples when molded under various molding pressures. As shown in No. 1 of Table 1, as compared with Comparative Example 1 only by wet grinding, Comparative Example 2 only by dry grinding and Example 1 by wet grinding + dry grinding,
In the case of 2, the high compression density can be obtained at 0.05 MPa to 0.3 MPa.

【0039】[0039]

【表1】 [Table 1]

【0040】[Δd/ΔP]表1のその2に、成形圧力
(MPa)の変化量ΔPに対する圧縮密度(g/c
)の変化量Δdの比Δd/ΔPを、成形圧力の変化
量が0.05〜0.3、0.05〜0.1、0.05〜
0.2、0.2〜0.3、0.1〜0.3(MPa)の
各範囲について示す。
[Δd / ΔP] In Table 2, No. 2, the compression density (g / c) with respect to the variation ΔP of the molding pressure (MPa) is shown.
m 3 ), the ratio Δd / ΔP of the change amount Δd of the change amount of the molding pressure is 0.05 to 0.3, 0.05 to 0.1, 0.05 to
It shows about each range of 0.2, 0.2-0.3, 0.1-0.3 (MPa).

【0041】表2のその2から分かるように、湿式粉砕
のみによる比較例1に比較し、乾式粉砕のみによる比較
例2および湿式粉砕+乾式粉砕による実施例1、2の場
合、前記比Δd/ΔPが小さくなり、低い圧力で高い圧
縮密度が得られることが分かった。実施例1、2、比較
例2においては、成形圧力の変化の範囲が0.05〜
0.3MPaの範囲において、Δd/ΔP=1.6以下
の値が得られる。
As can be seen from No. 2 in Table 2, as compared with Comparative Example 1 by wet pulverization only, in the case of Comparative Example 2 by dry pulverization only and Examples 1 and 2 by wet pulverization + dry pulverization, the ratio Δd / It was found that ΔP becomes small and a high compression density can be obtained at a low pressure. In Examples 1 and 2 and Comparative Example 2, the range of change in molding pressure is 0.05 to
A value of Δd / ΔP = 1.6 or less is obtained in the range of 0.3 MPa.

【0042】[焼結体密度]図5に実施例1、2と比較
例1、2の成形体密度に対する焼結体密度を示す。実施
例1、2による場合、成形体密度が3.2〜3.6g/
cmの範囲において、比較例1、2よりも高い焼結体
密度が得られた。また、前記成形体密度の範囲におい
て、成形体密度(g/cm)の変化量Δdに対する焼
結体密度(g/cm)の変化量ΔDの比ΔD/Δdは
実施例1、2の場合0.13以下となり、比較例1の場
合の0.25に比較して小さい値が得られ、成形体密度
が低い場合でも焼結体密度が高いことが確認された。
[Sintered Body Density] FIG. 5 shows the sintered body densities of the compacts of Examples 1 and 2 and Comparative Examples 1 and 2. In the case of Examples 1 and 2, the compact density is 3.2 to 3.6 g /
In the range of cm 3, a higher sintered body density than that of Comparative Examples 1 and 2 was obtained. It is also in the scope of the green density, the ratio [Delta] D / [Delta] d of the variation [Delta] D of the sintered body density with respect to the change amount [Delta] d of the green density (g / cm 3) (g / cm 3) is the Examples 1 and 2 In this case, the value was 0.13 or less, which was smaller than 0.25 in Comparative Example 1, and it was confirmed that the sintered body density was high even when the compact density was low.

【0043】[歩留まりおよび電磁気特性]前記各例で
得られた粉体を用いて成形圧0.1MPaにより成形し
た場合の金型破損、有効成形数と歩留まりと電磁気特性
(初期透磁率μ、飽和磁束密度B )と焼結体密度を
求めた結果を表2に示す。比較例1においては、5千個
で摩耗が進行し、使用不可能となった。一方、比較例2
および実施例1、2の場合には、20万個の成形によっ
ても使用不可能となる程の金型摩耗は生じなかった。
[Yield and Electromagnetic Characteristics] In each of the above examples
The obtained powder is used for molding at a molding pressure of 0.1 MPa.
Die damage, effective molding number, yield and electromagnetic characteristics
(Initial permeability μi, Saturation magnetic flux density B S) And sintered body density
Table 2 shows the obtained results. In Comparative Example 1, 5,000 pieces
It was worn out and became unusable. On the other hand, Comparative Example 2
In the case of Examples 1 and 2, molding of 200,000 pieces
However, the mold did not wear so much that it became unusable.

【0044】通常量産を考慮すると、80%の以上の歩
留まりが望ましい。比較例2の場合、20万個の成形に
おいて、変形等のために寸法精度が悪く、60〜70%
の歩留まりが得られたが、実施例1の場合、85%以上
の歩留まりが得られ、実施例2の場合、90%以上の歩
留まりが得られた。
Considering mass production, a yield of 80% or more is usually desirable. In the case of Comparative Example 2, when 200,000 pieces were molded, the dimensional accuracy was poor due to deformation and the like, and 60 to 70%.
The yield of 1 was obtained, but in the case of Example 1, the yield of 85% or more was obtained, and in the case of Example 2, the yield of 90% or more was obtained.

【0045】また、表2に示すように、初透磁率μ
飽和密度B、焼結体密度dについては、比較例1、2
に比較し、実施例1、2による場合にはすべて優れた数
値をあげることができた。これは実施例1、2の場合、
焼結体の構成部分(巻心部、鍔部)の密度差が小さくす
ることができたためである。
Further, as shown in Table 2, the initial magnetic permeability μ i ,
Regarding the saturation density B S and the sintered body density d, Comparative Examples 1 and 2
In comparison with the above, all of the cases according to Examples 1 and 2 were able to give excellent numerical values. In the case of Examples 1 and 2,
This is because the difference in density between the constituent parts (core and flange) of the sintered body can be reduced.

【0046】[0046]

【表2】 [Table 2]

【0047】ドラムコア形状に成形したときの芯鍔比
(巻心部の径または幅/鍔部の径または幅)と有効成形
数(1セットの金型で成形できるコアの個数)との関係
を表3に示す。表3に示すように、芯鍔比と有効成形数
については、実施例1、2および比較例2による場合
は、芯鍔比45%までは有効成形数は200,000個
以上得られており、実用上充分な成形数を得ている。ま
た芯鍔比35%では実施例1および比較例2で100,
000個、実施例2で150,000個と有効成形数は
比較的減ってはいるが、実用的な成形数を得ている。比
較例1においては、芯鍔比70%までは実用上使用可能
な成形数を得ているが、65%を境界にして金型破損が
発生し、有効成形数が激減する傾向にある。これは成形
時に芯部に過剰な圧力がかかるため、金型が荷重に耐え
られずに破損することによるものである。
The relationship between the core / collar ratio (diameter or width of the core / diameter or width of the collar) and the number of effective moldings (the number of cores that can be molded with one set of dies) when molded into a drum core shape It shows in Table 3. As shown in Table 3, regarding the core collar ratio and the effective molding number, in the case of Examples 1 and 2 and Comparative Example 2, the number of effective moldings is 200,000 or more up to the core collar ratio of 45%. , The practically sufficient number of moldings has been obtained. Further, when the core-collar ratio is 35%, 100 is obtained in Example 1 and Comparative Example 2,
Although the number of effective moldings is 000, the number of moldings in Example 2 is 150,000, which is relatively small, a practical number of moldings is obtained. In Comparative Example 1, the number of moldings that can be practically used is obtained up to the core-collar ratio of 70%, but the mold breakage occurs at the boundary of 65%, and the effective number of moldings tends to be drastically reduced. This is because an excessive pressure is applied to the core at the time of molding, so that the mold cannot withstand the load and is damaged.

【0048】[0048]

【表3】 [Table 3]

【0049】[0049]

【発明の効果】本発明によれば、湿式粉砕の後に乾式粉
砕を行うため、粒径が小さい磁性酸化物粉体が得られ、
低い成形圧で高い圧縮密度の成形体を得ることが可能と
なり、もって焼結体密度が高く、構成部分の密度差の小
さい磁性部品およびコイル部品用のコアを得ることが可
能となる。
EFFECTS OF THE INVENTION According to the present invention, since wet pulverization is performed before dry pulverization, a magnetic oxide powder having a small particle size can be obtained.
It is possible to obtain a compact having a high compression density with a low compacting pressure, and thus it is possible to obtain a core for a magnetic component and a coil component, which has a high density of the sintered compact and has a small difference in density between constituent parts.

【0050】また、単に乾式粉砕処理を行ったものに比
較し、製品の歩留まりが向上する。このような歩留まり
の向上は、低い成形圧で高い成形体密度を得ることがで
き、変形やひび割れを抑制することができる上、成形体
の構成部分の密度差を極めて小さく抑えることができ、
さらに不純物混入量を低下させて電磁気特性を向上させ
たことによる。
Further, the product yield is improved as compared with the case where the dry crushing treatment is simply performed. Such an improvement in yield can obtain a high compact density with a low compaction pressure, can suppress deformation and cracks, and can suppress the density difference between the constituent parts of the compact to be extremely small.
This is because the amount of impurities mixed is further reduced to improve the electromagnetic characteristics.

【0051】また、前記湿式粉砕、乾式粉砕後に、0.
1MPaにおける成形体密度が3.2g/cm以上の
成形体を得ることにより、焼結体密度が高く、電磁気特
性が優れた磁性部品、コイル部品を得ることができる。
After the wet pulverization and the dry pulverization, 0.
By obtaining a compact having a compact density of 3.2 g / cm 3 or more at 1 MPa, it is possible to obtain a magnetic component and a coil component having a high sintered compact density and excellent electromagnetic characteristics.

【0052】また、コアに加圧成形する際に、巻心部の
加圧方向の最小幅を最大幅の65%以下とするか、ある
いはドラム型コア形状における巻心部の加圧方向の径ま
たは幅を、鍔の加圧方向の径または幅の60%以下にし
たもののように、複雑な形状の磁性部品を加工成形する
際にも、構成部分の密度差が小さく、歩留まりの向上を
達成することが可能となる。
When the core is pressure-molded, the minimum width of the core in the pressure direction is set to 65% or less of the maximum width, or the diameter of the core in the drum core shape in the pressure direction. Also, even when processing and molding magnetic parts with complicated shapes such as those whose width is 60% or less of the diameter or width of the brim in the pressing direction, the density difference of the constituent parts is small and the yield is improved. It becomes possible to do.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明により製造する磁性部品の一例
であるドラムコアを示す側面図、(B)はその製造用金
型を示す断面図である。
FIG. 1A is a side view showing a drum core which is an example of a magnetic component manufactured according to the present invention, and FIG. 1B is a cross-sectional view showing a manufacturing die thereof.

【図2】本発明による酸化物磁性材料の製造方法の一実
施の形態を示すブロック図である。
FIG. 2 is a block diagram showing an embodiment of a method for producing an oxide magnetic material according to the present invention.

【図3】本発明の製造方法による酸化物磁性材料と比較
例の酸化物磁性材料の粒度分布を示す図である。
FIG. 3 is a diagram showing particle size distributions of an oxide magnetic material according to a manufacturing method of the present invention and an oxide magnetic material of a comparative example.

【図4】本発明の製造方法による酸化物磁性材料と比較
例の酸化物磁性材料の成形圧力と圧縮密度との関係を示
す図である。
FIG. 4 is a diagram showing a relationship between a molding pressure and a compression density of an oxide magnetic material according to a manufacturing method of the present invention and an oxide magnetic material of a comparative example.

【図5】本発明の製造方法による酸化物磁性材料と比較
例の酸化物磁性材料の成形体密度と焼結体密度との関係
を示す図である。
FIG. 5 is a diagram showing the relationship between the compact density and the sintered compact density of the oxide magnetic material according to the manufacturing method of the present invention and the oxide magnetic material of the comparative example.

【符号の説明】[Explanation of symbols]

1:ドラムコア、1a:巻心部、1b:鍔部、2:下
型、3:上型
1: Drum core, 1a: Core part, 1b: Collar part, 2: Lower mold, 3: Upper mold

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 卓也 東京都中央区日本橋一丁目13番1号 ティ −ディ−ケイ株式会社内 Fターム(参考) 5E041 AB01 BD01 HB17 NN02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takuya Ono             1-13-1, Nihonbashi, Chuo-ku, Tokyo             -D-K Co., Ltd. F-term (reference) 5E041 AB01 BD01 HB17 NN02

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】磁性酸化物の材料となる複数種類の酸化物
を秤量、配合した後仮焼し、仮焼後の磁性酸化物粉体に
湿式粉砕処理を施し、その後乾式粉砕処理を施して磁性
酸化物粉体を微細化することを特徴とする酸化物磁性材
料の製造方法。
1. A plurality of kinds of oxides, which are materials for magnetic oxides, are weighed and mixed, and then calcined, and the calcined magnetic oxide powders are subjected to wet pulverization treatment and then dry pulverization treatment. A method for producing an oxide magnetic material, which comprises miniaturizing a magnetic oxide powder.
【請求項2】請求項1に記載された磁性酸化物がNi−
Zn系フェライトであることを特徴とする酸化物磁性材
料の製造方法。
2. The magnetic oxide according to claim 1 is Ni-
A method for producing an oxide magnetic material, which is a Zn-based ferrite.
【請求項3】請求項1または2に記載された粉砕処理を
施した磁性酸化物粉体をスラリー化した後、造粒、乾燥
工程を経て成形することにより、0.1MPaにおける
成形体密度が3.2g/cm以上の成形体を得ること
を特徴とする酸化物磁性材料の製造方法。
3. A slurry of the pulverized magnetic oxide powder according to claim 1 or 2 is slurried, and then granulated and dried to form a compact, thereby obtaining a compact having a density of 0.1 MPa. A method for producing an oxide magnetic material, which comprises obtaining a molded body of 3.2 g / cm 3 or more.
【請求項4】請求項1または2に記載された粉砕処理を
施した磁性酸化物粉体をスラリー化した後、造粒、乾燥
工程を経てコア形状に加圧成形する際に、コアの加圧方
向の最小幅を、加圧方向の最大幅の65%以下にして成
形することを特徴とするコアの成形方法。
4. When the magnetic oxide powder that has been crushed according to claim 1 or 2 is slurried and then subjected to granulation and drying steps to form a core shape under pressure, A method for molding a core, wherein the minimum width in the pressure direction is 65% or less of the maximum width in the pressure direction.
【請求項5】請求項1または2に記載された粉砕処理を
施した磁性酸化物粉体をスラリー化した後、造粒、乾燥
工程を経て、ドラム型コア形状に、その巻心軸方向に対
して垂直方向に加圧成形する際に、巻心部の加圧方向の
径または幅を、鍔部の加圧方向の径または幅の60%以
下にして成形することを特徴とするコアの成形方法。
5. The magnetic oxide powder which has been crushed according to claim 1 or 2 is slurried, then granulated and dried to form a drum-shaped core in the axial direction of the core. On the other hand, when pressure molding is performed in the vertical direction, the diameter or width of the core portion in the pressure direction is 60% or less of the diameter or width of the collar portion in the pressure direction. Molding method.
【請求項6】請求項1または2に記載された粉砕処理を
施した磁性酸化物粉体をスラリー化した後、造粒、乾燥
工程を経て成形する際の成形圧力の変化量ΔP(MP
a)に対する成形体密度の変化量Δd(g/cm)の
比Δd/ΔPが、0.05MPa〜0.3MPaの成形
圧力範囲において、Δd/ΔP≦1.6であることを特
徴とする酸化物磁性材料。
6. A change amount ΔP (MP) in molding pressure when the magnetic oxide powder subjected to the pulverization treatment according to claim 1 or 2 is slurried and then granulated and dried.
The ratio Δd / ΔP of the amount of change Δd (g / cm 3 ) of the compact density to a) is characterized in that Δd / ΔP ≦ 1.6 in the molding pressure range of 0.05 MPa to 0.3 MPa. Oxide magnetic material.
【請求項7】請求項1または2に記載された粉砕処理を
施した磁性酸化物粉体の成形体密度の変化量Δd(g/
cm)に対する、焼結後の密度の変化量ΔD(g/c
)の比ΔD/ΔdがΔD/Δd≦0.13であるこ
とを特徴とする酸化物磁性材料。
7. A change amount Δd (g / g) in the density of a compact of the magnetic oxide powder which has been subjected to the pulverization treatment according to claim 1 or 2.
cm 3 ), the amount of change in density after sintering ΔD (g / c
An oxide magnetic material characterized in that the ratio ΔD / Δd of m 3 ) is ΔD / Δd ≦ 0.13.
【請求項8】請求項1または2に記載された粉砕処理を
施した磁性酸化物粉体から成形、焼結されてなることを
特徴とする磁性部品。
8. A magnetic component obtained by molding and sintering the magnetic oxide powder which has been subjected to the crushing treatment according to claim 1 or 2.
【請求項9】請求項8に記載された磁性部品をコアとし
て備えたことを特徴とするコイル部品。
9. A coil component comprising the magnetic component according to claim 8 as a core.
JP2002056205A 2002-03-01 2002-03-01 Oxide magnetic powder and core manufacturing method, core molding method, magnetic component and coil component Expired - Fee Related JP4215992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002056205A JP4215992B2 (en) 2002-03-01 2002-03-01 Oxide magnetic powder and core manufacturing method, core molding method, magnetic component and coil component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002056205A JP4215992B2 (en) 2002-03-01 2002-03-01 Oxide magnetic powder and core manufacturing method, core molding method, magnetic component and coil component

Publications (2)

Publication Number Publication Date
JP2003257725A true JP2003257725A (en) 2003-09-12
JP4215992B2 JP4215992B2 (en) 2009-01-28

Family

ID=28666839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002056205A Expired - Fee Related JP4215992B2 (en) 2002-03-01 2002-03-01 Oxide magnetic powder and core manufacturing method, core molding method, magnetic component and coil component

Country Status (1)

Country Link
JP (1) JP4215992B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010529A (en) * 2008-06-30 2010-01-14 Mitsui Chemicals Inc Magnetic core and method of manufacturing the same
JP2011003637A (en) * 2009-06-17 2011-01-06 Tdk Corp Coil part
JP2017204595A (en) * 2016-05-13 2017-11-16 株式会社村田製作所 Ceramic core, wound type electronic component, and method for manufacturing ceramic core
JP2017204596A (en) * 2016-05-13 2017-11-16 株式会社村田製作所 Ceramic core, wound type electronic component, and method for manufacturing ceramic core
EP3680923A1 (en) 2019-01-11 2020-07-15 Kyocera Corporation Core component, method of manufacturing same, and inductor
EP3680924A1 (en) 2019-01-11 2020-07-15 Kyocera Corporation Core component, method of manufacturing same, and inductor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010529A (en) * 2008-06-30 2010-01-14 Mitsui Chemicals Inc Magnetic core and method of manufacturing the same
JP2011003637A (en) * 2009-06-17 2011-01-06 Tdk Corp Coil part
US8183969B2 (en) 2009-06-17 2012-05-22 Tdk Corporation Coil component
JP2017204595A (en) * 2016-05-13 2017-11-16 株式会社村田製作所 Ceramic core, wound type electronic component, and method for manufacturing ceramic core
JP2017204596A (en) * 2016-05-13 2017-11-16 株式会社村田製作所 Ceramic core, wound type electronic component, and method for manufacturing ceramic core
US10636558B2 (en) 2016-05-13 2020-04-28 Murata Manufacturing Co., Ltd. Ceramic core, wire-wound electronic component, and manufacturing method for ceramic core
US10867739B2 (en) 2016-05-13 2020-12-15 Murata Manufacturing Co., Ltd. Ceramic core, wire-wound electronic component, and method for producing ceramic core
EP3680923A1 (en) 2019-01-11 2020-07-15 Kyocera Corporation Core component, method of manufacturing same, and inductor
EP3680924A1 (en) 2019-01-11 2020-07-15 Kyocera Corporation Core component, method of manufacturing same, and inductor
US11581120B2 (en) 2019-01-11 2023-02-14 Kyocera Corporation Core component, method of manufacturing same, and inductor
US11749441B2 (en) 2019-01-11 2023-09-05 Kyocera Corporation Core component, method of manufacturing same, and inductor

Also Published As

Publication number Publication date
JP4215992B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JPWO2018189967A1 (en) Rod-shaped MnZn ferrite core, method of manufacturing the same, and antenna
KR20080037521A (en) Hexagonal z type ferrite sintered material and method of fabricating the same
TWI667200B (en) MnCoZn series ferrite and manufacturing method thereof
WO2019044060A1 (en) Mncozn ferrite and method for producing same
JP2003257725A (en) Oxide magnetic material, its manufacturing method, method of forming core, magnetic component, and coil component
JP2007012891A (en) Ferrite core manufacturing method
JP4877514B2 (en) Manufacturing method of sintered ferrite magnet
CN116323491A (en) MnZn ferrite and method for producing same
JP2708160B2 (en) Ferrite manufacturing method
JP2005015281A (en) Method of manufacturing sintered member, composition for molding, method of manufacturing ferrite core, and ferrite core
JP2004165217A (en) Ferrite core and method of manufacturing
JP2006111518A (en) Method for manufacturing soft ferrite core
JP3856722B2 (en) Manufacturing method of spinel type ferrite core
JP7213207B2 (en) Inductive component manufacturing method and inductive component
JP7426818B2 (en) Manufacturing method of magnetic material and coil parts including magnetic material
JP3545438B2 (en) Method for producing Ni-Zn ferrite powder
TWI692462B (en) MnCoZn series ferrite iron and its manufacturing method
JP2005170763A (en) Mn/Zn FERRITE, ITS MANUFACTURING METHOD AND ELECTRONIC PART
JP3467838B2 (en) Ferrite resin and method for producing ferrite resin
JPH09312211A (en) Oxide permanent magnet and manufacture thereof
JP4400710B2 (en) Ferrite magnet manufacturing method
JP2006206384A (en) Ceramic material for non-reciprocal circuit element and its production method
JP3230415B2 (en) Magnetic core and inductor
JPH0488606A (en) Manufacture of soft magnetic ferrite
JP2001274010A (en) Polar anisotropic cylindrical ferrite magnet and magnetic field granular material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees