JP2003257245A - Foil piece shape copper powder and conductive paste using the same - Google Patents

Foil piece shape copper powder and conductive paste using the same

Info

Publication number
JP2003257245A
JP2003257245A JP2002060729A JP2002060729A JP2003257245A JP 2003257245 A JP2003257245 A JP 2003257245A JP 2002060729 A JP2002060729 A JP 2002060729A JP 2002060729 A JP2002060729 A JP 2002060729A JP 2003257245 A JP2003257245 A JP 2003257245A
Authority
JP
Japan
Prior art keywords
copper powder
particle size
foil
conductive paste
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002060729A
Other languages
Japanese (ja)
Other versions
JP4168116B2 (en
Inventor
Hiromasa Miyoshi
宏昌 三好
Yoshihiro Okada
美洋 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2002060729A priority Critical patent/JP4168116B2/en
Publication of JP2003257245A publication Critical patent/JP2003257245A/en
Application granted granted Critical
Publication of JP4168116B2 publication Critical patent/JP4168116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a copper powder for conductive paste that is thin in thickness and small in particle size. <P>SOLUTION: This is a foil piece shape copper powder that is made of a copper particle of foil piece shape having an average thickness of less than 20 nm and an average length of 40 μm or less and has a particle size distribution having A value of one or more according to the formula: A value=(D90-D 10)/D50. Provided that, D10, D50, and D90 mean a value of the respective particle size D corresponding to Q%=10%, 50% and 90%, in the cumulative particle size curve, wherein the horizontal axis is particle size D (μm) and the vertical axis is Q% (ratio of particles same or smaller than that particle size existing. Unit is volume % of powder). <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,厚みが極めて薄い
箔片状の銅粒子からなる銅粉およびこれを用いた導電ペ
ーストに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper powder composed of foil-like copper particles having an extremely thin thickness, and a conductive paste using the same.

【0002】[0002]

【従来の技術】樹脂に銅粉を分散させた導電ペースト
は,絶縁基板の意図する位置に導電回路を接合または配
属したり,チップ部品に外部電極を付与したりするのに
使用されている。最近では,積層セラミックスコンデン
サーの外部電極としても適用されるようになってきた。
後者の場合には,通常は,セラミックス素体の意図する
外部電極形成部分に導電ペーストを付着させた後,加熱
処理し,その加熱中においてペースト中のビヒクル分を
蒸発または分解除去すると共に銅粉を互いに焼結させる
ことによって外部電極が形成される。
2. Description of the Related Art A conductive paste in which copper powder is dispersed in a resin is used for joining or assigning a conductive circuit to an intended position of an insulating substrate, or for providing an external electrode to a chip component. Recently, it has also come to be used as an external electrode of a laminated ceramic capacitor.
In the latter case, usually, the conductive paste is attached to the intended external electrode formation portion of the ceramic body, and then heat treatment is performed, and the vehicle component in the paste is evaporated or decomposed and removed during the heating, and the copper powder is also removed. External electrodes are formed by sintering the two together.

【0003】このような外部電極の場合,その電極表面
を平滑にするには,導電ペースト中の銅粉が球形の粒状
のものより偏平な形をした薄片状のものの方がよい。特
に,厚みができるだけ薄くて,粒径が小さく,反りや曲
がりの少ないものであれば,それらの薄片が広面側をほ
ぼ平行にして互いに重なり合ったときに接触面積が多く
なり,焼結されたあとでも表面が極めて平滑になり,セ
ラミックス素体との接合も良好となる。この種のコンデ
ンサーは小型化が進行しており,電極部分もそれにつれ
て微小化しているので,銅薄片の広面側の長さ(長径)
があまり大きくなると,そのペーストを塗布したときに
毛羽立つような状態になりことから,長径があまり大き
くないことも要求される。
In the case of such an external electrode, in order to make the surface of the electrode smooth, it is preferable that the copper powder in the conductive paste is a flat flaky one rather than a spherical granular one. In particular, if the thickness is as thin as possible, the grain size is small, and the warpage and bending are small, the contact area becomes large when the flakes overlap with each other with their broad sides substantially parallel, and after sintering, However, the surface becomes extremely smooth and the bonding with the ceramic body is also good. This type of capacitor is becoming smaller, and the electrode parts are becoming smaller accordingly, so the length (major axis) of the wide side of the copper flakes
When the paste becomes too large, the paste becomes fluffy when applied, so that it is also required that the major axis is not too large.

【0004】従来より,偏平な銅粉として次のようなも
のが知られている。例えば特開平8−325612号公
報には,平均長径が15μm以下で偏平比(長径/厚み
の比)が20以下である鱗片状の銅粉およびその製法が
記載されている。特開平7−118701号公報には,
厚みが 0.02 〜 2.0μmで, 表面の長寸が 0.2〜10.0μ
m, 短寸が長寸以下のフレーク状金属粉末が記載されて
いる。
The following are known as flat copper powders. For example, Japanese Unexamined Patent Publication No. 8-325612 describes a scaly copper powder having an average major axis of 15 μm or less and a flatness ratio (major axis / thickness ratio) of 20 or less, and a method for producing the same. Japanese Patent Laid-Open No. 7-118701 discloses
Thickness is 0.02 to 2.0 μm, and surface length is 0.2 to 10.0 μm.
m, flake-like metal powder whose short dimension is less than long dimension is described.

【0005】[0005]

【発明が解決しようとする課題】一般に銅粒子をボール
ミルやアトライタ等を用いて機械的に偏平化しようとし
ても,銅は延伸性が高いので,摩砕されずに圧延され,
長径が大きくなる。このため,機械的な加工によって長
径を小さくしながら且つ厚みが薄い銅粉を得るのは困難
である。特開平8−325612号公報では亜鉛末との
置換反応で微細な銅粉を析出させ,この銅粉を液中で偏
平化させることを提案している。しかし,この方法でも
平均長径が15μm以下で偏平比が20以下のものが得
られるに過ぎない。すなわち,この鱗片上銅粒子の厚み
は0.75μm以上であり,これより厚みの薄い鱗片状
のものは開示されていない。特開平7−118701号
公報では厚みがさらに薄いフレーク状の各種金属粉(銅
を含む)が記載されているが,それでもその厚みは0.
02〜2.0μmの範囲にある。
Generally, when copper particles are mechanically flattened by using a ball mill, an attritor, etc., since copper has high extensibility, it is rolled without being ground,
The major axis becomes large. For this reason, it is difficult to obtain copper powder having a small major axis and a small thickness by mechanical processing. Japanese Unexamined Patent Publication No. 8-325612 proposes to deposit fine copper powder by a substitution reaction with zinc dust and flatten the copper powder in a liquid. However, even with this method, an average major axis of 15 μm or less and an aspect ratio of 20 or less can be obtained. That is, the thickness of the copper particles on scales is 0.75 μm or more, and scale-like ones thinner than this are not disclosed. Japanese Patent Application Laid-Open No. 7-118701 describes various flaky metal powders (including copper) having a smaller thickness, but the thickness thereof is still less.
It is in the range of 02 to 2.0 μm.

【0006】したがって,本発明は,積層セラミックス
コンデンサーの外部電極を形成する導電ペーストに好適
な銅粉,すなわち,小さな粒径を有し且つ従来のものよ
りも一層厚みが薄い箔片状の銅粉を得ることを目的とし
たものである。
Therefore, the present invention provides a copper powder suitable for a conductive paste forming an external electrode of a multilayer ceramic capacitor, that is, a foil-shaped copper powder having a smaller particle size and a thinner thickness than the conventional one. The purpose is to obtain.

【0007】[0007]

【課題を解決するための手段】前記の課題を解決すべく
本発明者らは鋭意研究を重ねたところ,湿式メディアミ
ルを用いて適正な条件で銅粉を圧延すると,長径および
粒径は一定以上には大きくならずに厚みだけを薄くでき
ることが判明した。すなわち本発明によれば,厚さが2
0nm未満で平均長径が40μm以下の箔片状の銅粒子
からなり,下記に定義するD10,D50およびD90
の値の間で下式(1)に従うA値が1以上の粒度分布を有
する箔片状銅粉を提供する。この箔片状銅粉はBET法
で測定した比表面積が,好ましくは 2.0〜5.0 m2/gの
範囲である。 A値=(D90−D10)/D50・・・(1) ただし,D10,D50およびD90は,横軸に粒径D
(μm),縦軸にQ%(その粒径以下の粒子が存在する
割合・単位は粒子の容積%)をとった累積粒度曲線にお
いて,Q%=10%,50%および90%に対応するそ
れぞれの粒径Dの値を言う。
[Means for Solving the Problems] The inventors of the present invention have conducted extensive studies to solve the above problems. As a result, when copper powder is rolled under appropriate conditions using a wet media mill, the long diameter and the particle diameter are constant. It has been found that only the thickness can be reduced without increasing the above. That is, according to the present invention, the thickness is 2
D10, D50 and D90 defined below, consisting of foil-like copper particles with an average major axis of less than 0 nm and 40 μm or less
There is provided a foil flaky copper powder having a particle size distribution with an A value of 1 or more according to the following formula (1). The specific surface area of this foil-shaped copper powder measured by the BET method is preferably in the range of 2.0 to 5.0 m 2 / g. A value = (D90−D10) / D50 (1) where D10, D50 and D90 are the particle size D on the horizontal axis.
(Μm), and the vertical axis corresponds to Q% = 10%, 50%, and 90% in the cumulative particle size curve in which Q% (the ratio and unit of particles having a particle size equal to or smaller than the particle size is the volume% of the particle) is taken. The value of each particle size D is referred to.

【0008】[0008]

【発明の実施の形態】導電ペースト用の銅粉を製造する
には,粒径制御や純度の点,さらには製造性等の点から
湿式還元法を採用するのが便宜である。湿式還元法は,
銅塩水溶液とアルカリ剤を反応させて水酸化銅を析出さ
せ,この水酸化銅を亜酸化銅に液中で一次還元し,得ら
れた亜酸化銅を金属銅に液中で二次還元することを要旨
とする方法であり,粒径の揃った球状銅粉を得るのに適
している。
BEST MODE FOR CARRYING OUT THE INVENTION In order to produce copper powder for a conductive paste, it is convenient to employ a wet reduction method from the standpoints of particle size control, purity, and manufacturability. Wet reduction method
An aqueous solution of a copper salt is reacted with an alkaline agent to precipitate copper hydroxide, and the copper hydroxide is first reduced to cuprous oxide in the liquid, and the obtained cuprous oxide is secondarily reduced to metallic copper in the liquid. This is a method based on this point, and is suitable for obtaining spherical copper powder with a uniform particle size.

【0009】このような球状銅粉を,ボールミルや振動
ミルを用いて,ミル内に装填したメディア(セラミック
やガラスなどの球体)によって偏平な形に変形(圧延)
しようとすると,初期粒径がどのような場合でも,薄く
加工されると,それらが重なりあって再び薄く加工され
るという現象が繰り返されるので,長径は大きくなる
が,厚みは或る値以上は薄くならない。偏平な粒子同士
が重なって一体的な粒子に圧延されるこのような現象は
温度が高くなると加速される。通常のボールミルや振動
ミルでは加工に伴って発生する熱を発散させ難いので,
この点でも不利である。
[0009] Such spherical copper powder is deformed (rolled) into a flat shape by a medium (sphere such as ceramic or glass) loaded in the mill using a ball mill or a vibration mill.
Attempting to do so, no matter what the initial grain size is, if thinly machined, the phenomenon of overlapping and again thinning is repeated, so the major axis becomes large, but the thickness exceeds a certain value. It doesn't become thin. Such a phenomenon in which flat particles are overlapped with each other and rolled into an integral particle is accelerated as the temperature rises. It is difficult to dissipate the heat generated by machining with ordinary ball mills and vibration mills.
This is also a disadvantage.

【0010】この点に着目し,本発明者らは蒸発熱によ
って熱を発散させるのに適した液体(沸点の低いアルコ
ール等)の存在下で銅粉を偏平な形に加工することを試
みた。また,粒子の分散を促進するために各種の分散剤
も使用して,湿式条件下でミル内に装填したメディア
(セラミックやガラスなどの球体)によって球状銅粉を
摩砕することを試みた。その結果,平均粒径が1〜6μ
mの範囲にある球状銅粉を,粒径が1〜5mm好ましく
は1.3〜2.5mmのセラミックボールを装填したミル
(サンドグラインダ)にアルコール類と共に装填し,分
散剤(例えばステアリン酸)を添加して該銅粉を加工し
た場合には,薄く加工されても重なり合って一体化する
ことが抑制され,厚みは処理時間に伴ってどんどん薄く
なり,一定の長径になると破断が起きて長径が大きくな
ることも抑制できることがわかった。
Focusing on this point, the present inventors attempted to process the copper powder into a flat shape in the presence of a liquid (such as alcohol having a low boiling point) suitable for radiating heat by the heat of evaporation. . We also tried to grind spherical copper powder with media (ceramics, glass, etc.) loaded in the mill under wet conditions, using various dispersants to accelerate the dispersion of particles. As a result, the average particle size is 1-6μ
The spherical copper powder in the range of m is loaded with alcohols into a mill (sand grinder) loaded with ceramic balls having a particle size of 1 to 5 mm, preferably 1.3 to 2.5 mm, and a dispersant (for example, stearic acid). When the copper powder is processed by adding, it is suppressed that the copper powder overlaps and integrates even if it is processed thinly. It has been found that it is possible to suppress an increase in the.

【0011】蒸発し易い液体としては一般的なアルコー
ル類が適しており,例えばエタノール,メタノール,イ
ソプロパノールを使用することにより,これらの蒸発時
の潜熱によって加工時に発生する熱を効率よく抜熱でき
る。また,メディアボールとしては,衝撃に耐えるセラ
ミックス例えばアルミナやジルコニアボールが適してい
る。分散剤としては各種の界面活性剤が使用できるが,
使用する蒸発性液体に良好に溶解するものがよく,例え
ばオレイン酸,フタル酸,ステアリン酸等が使用でき
る。
As the liquid that easily evaporates, general alcohols are suitable. For example, by using ethanol, methanol, and isopropanol, the heat generated during processing due to the latent heat during evaporation can be efficiently removed. Further, as the media balls, ceramics that withstand impact, such as alumina and zirconia balls, are suitable. Although various surfactants can be used as the dispersant,
It is preferably one that is well soluble in the evaporative liquid used, and for example oleic acid, phthalic acid, stearic acid, etc. can be used.

【0012】図1と図2は,そのようにして得られた本
発明に従う箔片状の銅粉の電子顕微鏡写真(SEM)の
一例を示したものである。図1と図2は倍率が異なるだ
けで,同一の箔片状の銅粉である。この銅粉は,長径が
平均約30μm,厚みが平均約15nmの粒子からな
る。すなわち,厚みは従来の限界を超えて20nm以下
であり,長径も30μm以下と小さい。そして,各粒子
は一様に分散しており,粒子同士の凝集は見られない。
また,各粒子には曲がりや反りも少なく平たんな箔片状
をしている。
FIG. 1 and FIG. 2 show examples of electron micrographs (SEM) of the thus obtained foil-shaped copper powder according to the present invention. 1 and 2 are the same foil-shaped copper powder, except for the magnification. The copper powder is composed of particles having an average major axis of about 30 μm and an average thickness of about 15 nm. That is, the thickness exceeds the conventional limit and is 20 nm or less, and the major axis is as small as 30 μm or less. Then, each particle is uniformly dispersed, and no agglomeration of particles is observed.
In addition, each particle has a flat foil shape with little bending or warping.

【0013】このようにして本発明によると,厚さが2
0nm未満の箔片状の粒子からなり,平均長径は大きく
ても40μmまで,好ましくは20μmまで,さらに好
ましくは10μmまで,平均粒径が4μm以上好ましく
は10μm以下,好ましくは6μm以下の箔片状銅粉が
得られ,このものは,導電ペースト用のフイラーとして
使用すると,粒子同士の接触面積が極めて大きく且つ互
いに重なり合った状態で塗布されるので,導電性の点で
も表面平滑さの点でも従来のものにはない良好な導電回
路や外部電極を形成することができる。このものを樹脂
に分散させるさいに,本発明に従う箔片状銅粉だけを樹
脂に分散させてもよいが,球状銅粉と適切な割合で混合
して樹脂に分散させてもよい。また,粒度分布が異なる
箔片状銅粉を数種類製造し,それらを適切に混合して樹
脂に分散させてもよい。
Thus, according to the present invention, the thickness is 2
Foil-like particles consisting of foil-like particles of less than 0 nm and having an average major axis of at most 40 μm, preferably up to 20 μm, more preferably up to 10 μm, and an average particle size of 4 μm or more, preferably 10 μm or less, preferably 6 μm or less. Copper powder is obtained, and when used as a filler for conductive paste, the contact areas between particles are extremely large and they are applied in a state of overlapping with each other. It is possible to form excellent conductive circuits and external electrodes that cannot be found in other products. When this is dispersed in the resin, only the foil flaky copper powder according to the present invention may be dispersed in the resin, or spherical copper powder may be mixed in an appropriate ratio and dispersed in the resin. Also, several kinds of foil-shaped copper powders having different particle size distributions may be produced, appropriately mixed and dispersed in the resin.

【0014】本発明に従う箔片状の銅粉は,粒度分布の
測定により,前記(1) 式のA値が1以上を示す点でも特
異なものである。A値が1以上であることは,長径の大
きなものから小さなものまで一様に箔片状である粒子が
広がりをもって分布していることを示しており,このた
め,箔片状であっても充填性がよくなる。また,本発明
に従う箔片状の銅粉は前記(1) 式のD50の値が4.9
μm以上であるのが好ましい。比表面積については,B
ET法で2.0m2/g以上である。一般に厚みが薄くな
るほど比表面積は増加するが,長径が40μmを超える
ような大きな粒子とはなり難いので,比表面積は通常は
5.0m2/g以下となる。比表面積は厚さの指標ともな
り得るので,箔片状粒子の厚さの制御を行う場合には
(その制御は前記の湿式加工法における処理時間の調節
によって行うことができる),厚みの指標として比表面
積を用いるのが便利である。
The foil-shaped copper powder according to the present invention is also unique in that the A value of the above formula (1) shows 1 or more when the particle size distribution is measured. The A value of 1 or more indicates that the particles in the form of foil are uniformly distributed from the one with a large major diameter to the one with a small major diameter. The filling property is improved. Further, the foil-shaped copper powder according to the present invention has a value of D50 of the above formula (1) of 4.9.
It is preferably at least μm. For specific surface area, see B
It is 2.0 m 2 / g or more by the ET method. Generally, the thinner the thickness is, the larger the specific surface area is, but it is difficult to obtain large particles having a major axis of more than 40 μm, and therefore the specific surface area is usually 5.0 m 2 / g or less. Since the specific surface area can also be an index of the thickness, when controlling the thickness of the foil-shaped particles (the control can be performed by adjusting the processing time in the above-mentioned wet processing method), the index of the thickness It is convenient to use the specific surface area as.

【0015】[0015]

【実施例】〔実施例1〕湿式還元法によって製造された
平均粒径1.4μmの銅粉を,2.5mm径のジルコニア
ボールと共に,アイメックス株式会社製の容積が15L
タイプの縦型サンドグラインダに装填し,分散剤として
のステアリン酸を銅粉に対して1wt%の割合で2−プロ
パノールに添加し,この分散剤を溶解したアルコール溶
液を該サンドグラインダに銅粉に対して初期重量115
wt%の割合で装填し,処理を開始し,120分間連続し
て処理した。得られた銅粉を回収し,平均長径,粒度分
布,BET法による比表面積を測定した。その結果を表
1に示した。
EXAMPLES Example 1 Copper powder having an average particle size of 1.4 μm manufactured by a wet reduction method was used together with zirconia balls having a diameter of 2.5 mm and a volume of 15 L manufactured by IMEX Co., Ltd.
Type vertical sand grinder, stearic acid as a dispersant was added to 2-propanol at a ratio of 1 wt% with respect to copper powder, and an alcohol solution in which this dispersant was dissolved was added to the sand grinder to form copper powder. Initial weight 115
It was loaded at a wt% ratio, the treatment was started, and the treatment was continued for 120 minutes. The obtained copper powder was collected, and the average major axis, particle size distribution, and specific surface area by the BET method were measured. The results are shown in Table 1.

【0016】粒度分布はベックマンコールター社製の粒
度分布測定装置(LS230)を用いて測定した。
The particle size distribution was measured using a particle size distribution measuring device (LS230) manufactured by Beckman Coulter.

【0017】さらに,得られた箔片状銅粉に対し,平均
粒径が3μmの球状銅粉を80重量%の割合で混合し,
この混合粉をアクリル樹脂中に89重量%の量で配合し
混練して導電ペーストを得た。この導電ペーストをガラ
スシートに塗布し,その塗膜をガラスシートと共に窒素
ガス中で900℃に分間保持する加熱処理を行って該塗
膜を焼結した。得られた焼成膜の表面粗度を測定し,表
面粗度Raが1.5μm以下のものを○印,1.5μm超
え〜2.5μm未満のものを△,2.5μm以上のものを
×印として三段階評価を行った。その結果も表1に示し
た。
Further, 80% by weight of spherical copper powder having an average particle diameter of 3 μm was mixed with the obtained foil flaky copper powder,
This mixed powder was mixed in acrylic resin in an amount of 89% by weight and kneaded to obtain a conductive paste. This conductive paste was applied to a glass sheet, and the coating film was sintered together with the glass sheet by heating it at 900 ° C. for one minute in nitrogen gas to sinter the coating film. The surface roughness of the obtained fired film was measured, and the surface roughness Ra of 1.5 μm or less was marked with “◯”, the surface roughness Ra of more than 1.5 μm to less than 2.5 μm was “△”, and the surface roughness Ra of 2.5 μm or more was ×. Three-level evaluation was performed as a mark. The results are also shown in Table 1.

【0018】〔実施例2〕処理時間を180分間とした
以外は実施例1を繰り返した。得られた箔片状銅粉につ
いて実施例1と同様の測定を行うと共に,実施例1と同
様に導電ペーストの評価を行った。それらの結果を表1
に示した。
Example 2 Example 1 was repeated except that the treatment time was 180 minutes. The same measurement as in Example 1 was performed on the obtained foil-shaped copper powder, and the conductive paste was evaluated in the same manner as in Example 1. The results are shown in Table 1.
It was shown to.

【0019】〔実施例3〕処理時間を210分間とした
以外は実施例1を繰り返した。得られた箔片状銅粉につ
いて実施例1と同様の測定を行うと共に,実施例1と同
様に導電ペーストの評価を行った。それらの結果を表1
に示した。
Example 3 Example 1 was repeated except that the treatment time was 210 minutes. The same measurement as in Example 1 was performed on the obtained foil-shaped copper powder, and the conductive paste was evaluated in the same manner as in Example 1. The results are shown in Table 1.
It was shown to.

【0020】〔比較例1〕分散剤としてのステアリン酸
を銅粉に対して1wt%の割合で直接添加したが,2−プ
ロパノールは使用しなかった以外は,実施例1を繰り返
した。得られた箔片状銅粉について実施例1と同様の測
定を行うと共に,実施例1と同様に導電ペーストの評価
を行った。それらの結果を表1に示した。
Comparative Example 1 Example 1 was repeated except that stearic acid as a dispersant was directly added in a proportion of 1 wt% with respect to the copper powder, but 2-propanol was not used. The same measurement as in Example 1 was performed on the obtained foil-shaped copper powder, and the conductive paste was evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0021】〔比較例2〕処理時間を60分間の短時間
とした以外は実施例1を繰り返した。得られた箔片状銅
粉について実施例1と同様の測定を行うと共に,実施例
1と同様に導電ペーストの評価を行った。それらの結果
を表1に示した。
Comparative Example 2 Example 1 was repeated except that the treatment time was shortened to 60 minutes. The same measurement as in Example 1 was performed on the obtained foil-shaped copper powder, and the conductive paste was evaluated in the same manner as in Example 1. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1の結果から,実施例1の湿式処理条件
下では,処理時間を長くすると,長径は大きくならずに
比表面積が大きくなることがわかる。すなわち,処理時
間を長くすると箔片状粒子の厚みはどんどん薄くなって
ゆき,所定の長径になると粒子が摩断される。そして,
厚みが20nm以下の微細な銅粒子が得られることがわ
かる。このものは,導電ペーストで厚膜としたときにそ
の焼成品の表面状態が平滑になる。これに対して,厚み
が大きくて且つA値が1以下の比較例1のもの,比表面
積が2.0g/cm3以下の比較例2のものは,いずれも導
電ペーストで厚膜としたときにその焼成品の表面状態が
平滑にならない。
From the results shown in Table 1, it can be seen that under the wet treatment conditions of Example 1, when the treatment time is increased, the major axis is increased and the specific surface area is increased. That is, as the treatment time is lengthened, the thickness of the foil-like particles becomes thinner and thinner, and the particles become worn when the length becomes a predetermined major axis. And
It can be seen that fine copper particles having a thickness of 20 nm or less can be obtained. In this product, when the conductive paste is formed into a thick film, the surface condition of the baked product becomes smooth. On the other hand, Comparative Example 1 having a large thickness and an A value of 1 or less and Comparative Example 2 having a specific surface area of 2.0 g / cm 3 or less were both formed with a thick film of conductive paste. Moreover, the surface condition of the baked product is not smooth.

【0024】[0024]

【発明の効果】以上説明したように,本発明によると,
厚みが20nm以下と極めて薄く,粒径が小さな導電ペ
ーストのフイラーとして好適な箔片状の銅粉が得られ
る。
As described above, according to the present invention,
A foil-like copper powder suitable for a filler of a conductive paste having a very small thickness of 20 nm or less and a small particle size can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に従う箔片状銅粉の一例を示す電子顕微
鏡写真である。
FIG. 1 is an electron micrograph showing an example of a foil flaky copper powder according to the present invention.

【図2】図1の銅粉を倍率を変えて撮影した電子顕微鏡
写真である。
2 is an electron micrograph of the copper powder of FIG. 1 taken at different magnifications.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K018 AA03 BA02 BB01 BB03 BC08 BC12 BD04 KA33 5G301 DA06 DA42 DD01    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4K018 AA03 BA02 BB01 BB03 BC08                       BC12 BD04 KA33                 5G301 DA06 DA42 DD01

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平均厚さが20nm未満で平均長径が4
0μm以下の箔片状の銅粒子からなり,下記に定義する
D10,D50およびD90の値の間で下式(1)に従う
A値が1以上の粒度分布を有する箔片状銅粉。 A値=(D90−D10)/D50・・・(1) ただし,D10,D50およびD90は,横軸に粒径D
(μm),縦軸にQ%(その粒径以下の粒子が存在する
割合・単位は粒子の容積%)をとった累積粒度曲線にお
いて,Q%=10%,50%および90%に対応するそ
れぞれの粒径Dの値を言う。
1. An average thickness of less than 20 nm and an average major axis of 4
A foil-like copper powder consisting of foil-like copper particles of 0 μm or less and having a particle size distribution with an A value of 1 or more according to the following formula (1) among the values of D10, D50 and D90 defined below. A value = (D90−D10) / D50 (1) where D10, D50 and D90 are the particle size D on the horizontal axis.
(Μm), and the vertical axis corresponds to Q% = 10%, 50%, and 90% in the cumulative particle size curve in which Q% (the ratio and unit of particles having a particle size equal to or smaller than the particle size is the volume% of the particle) is taken. The value of each particle size D is referred to.
【請求項2】 BET法で測定した比表面積が 2.0〜5.
0 m2/gである請求項1に記載の箔片状銅粉。
2. The specific surface area measured by the BET method is 2.0 to 5.
The foil-shaped copper powder according to claim 1, which is 0 m 2 / g.
【請求項3】 請求項1に記載の箔片状銅粉に球状銅粉
を混合してなる銅粉。
3. A copper powder obtained by mixing spherical copper powder with the foil-shaped copper powder according to claim 1.
【請求項4】 請求項1に記載の箔片状銅粉を樹脂に分
散させてなる導電ペースト。
4. A conductive paste obtained by dispersing the foil-shaped copper powder according to claim 1 in a resin.
【請求項5】 平均粒径が5μm以下の球状銅粉と請求
項1に記載の箔片状銅粉を樹脂に分散させてなる導電ペ
ースト。
5. A conductive paste obtained by dispersing spherical copper powder having an average particle size of 5 μm or less and the foil-shaped copper powder according to claim 1 in a resin.
JP2002060729A 2002-03-06 2002-03-06 Foil flake copper powder and conductive paste using the same Expired - Fee Related JP4168116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002060729A JP4168116B2 (en) 2002-03-06 2002-03-06 Foil flake copper powder and conductive paste using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002060729A JP4168116B2 (en) 2002-03-06 2002-03-06 Foil flake copper powder and conductive paste using the same

Publications (2)

Publication Number Publication Date
JP2003257245A true JP2003257245A (en) 2003-09-12
JP4168116B2 JP4168116B2 (en) 2008-10-22

Family

ID=28669987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002060729A Expired - Fee Related JP4168116B2 (en) 2002-03-06 2002-03-06 Foil flake copper powder and conductive paste using the same

Country Status (1)

Country Link
JP (1) JP4168116B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048017A1 (en) * 2002-11-22 2004-06-10 Mitsui Mining & Smelting Co.,Ltd. Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder
JP2006118032A (en) * 2004-10-25 2006-05-11 Mitsui Mining & Smelting Co Ltd Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP2008174698A (en) * 2007-01-19 2008-07-31 Nippon Koken Kogyo Kk Smooth flaky powder, high-brightness pigment, and method for producing the same
JP2011208278A (en) * 2010-03-10 2011-10-20 Dowa Holdings Co Ltd Flaky silver powder and method for producing the same
WO2013132831A1 (en) * 2012-03-06 2013-09-12 東洋インキScホールディングス株式会社 Conductive fine particles, method for manufacturing same, conductive resin composition, conductive sheet, and electromagnetic shielding sheet
JP2015034310A (en) * 2013-08-07 2015-02-19 三井金属鉱業株式会社 Composite copper particles and method for manufacturing the same
JP2015034309A (en) * 2013-08-07 2015-02-19 三井金属鉱業株式会社 Composite copper particles and method for manufacturing the same
JP2017106047A (en) * 2015-12-07 2017-06-15 山陽特殊製鋼株式会社 Powder for conductive filler
CN116021010A (en) * 2023-02-01 2023-04-28 苏州星翰新材料科技有限公司 Preparation method of flaky copper powder

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004048017A1 (en) * 2002-11-22 2004-06-10 Mitsui Mining & Smelting Co.,Ltd. Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder
JP2006118032A (en) * 2004-10-25 2006-05-11 Mitsui Mining & Smelting Co Ltd Flake copper powder provided with copper oxide coat layer, method for producing flake copper powder provided with copper oxide coat layer and conductive slurry comprising flake copper powder provided with copper oxide coat layer
JP2008174698A (en) * 2007-01-19 2008-07-31 Nippon Koken Kogyo Kk Smooth flaky powder, high-brightness pigment, and method for producing the same
JP2011208278A (en) * 2010-03-10 2011-10-20 Dowa Holdings Co Ltd Flaky silver powder and method for producing the same
WO2013132831A1 (en) * 2012-03-06 2013-09-12 東洋インキScホールディングス株式会社 Conductive fine particles, method for manufacturing same, conductive resin composition, conductive sheet, and electromagnetic shielding sheet
CN106424711A (en) * 2012-03-06 2017-02-22 东洋油墨Sc控股株式会社 Conductive fine particles, method for manufacturing same, conductive resin composition, conductive sheet, and electromagnetic shielding sheet
JP2015034310A (en) * 2013-08-07 2015-02-19 三井金属鉱業株式会社 Composite copper particles and method for manufacturing the same
JP2015034309A (en) * 2013-08-07 2015-02-19 三井金属鉱業株式会社 Composite copper particles and method for manufacturing the same
JP2017106047A (en) * 2015-12-07 2017-06-15 山陽特殊製鋼株式会社 Powder for conductive filler
CN116021010A (en) * 2023-02-01 2023-04-28 苏州星翰新材料科技有限公司 Preparation method of flaky copper powder

Also Published As

Publication number Publication date
JP4168116B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP4868716B2 (en) Flake copper powder and conductive paste
JP4613362B2 (en) Metal powder for conductive paste and conductive paste
JP5937730B2 (en) Method for producing copper powder
JP5519938B2 (en) Method for producing copper powder for conductive paste
JP6130209B2 (en) Conductive film
JP2009079239A (en) Nickel powder or alloy powder composed mainly of nickel, its manufacturing method, conductive paste and multilayer ceramic capacitor
JP2005200734A (en) Flaky copper powder, and its production method
JP2003257245A (en) Foil piece shape copper powder and conductive paste using the same
KR20010089795A (en) Nickel powder, method for preparation thereof and conductive paste
JP2010135140A (en) Flaky metal fine powder of conductive paint, and manufacturing method thereof
JP4100244B2 (en) Nickel powder and method for producing the same
JP2004217952A (en) Surface-treated copper powder, method for manufacturing surface-treated copper powder, and electroconductive paste using the surface-treated copper powder
JP5255580B2 (en) Method for producing flake copper powder
JP2019108610A (en) Spherical silver powder and method for producing the same
JP5206246B2 (en) Nickel powder and method for producing the same
JP5756694B2 (en) Flat metal particles
JP6610261B2 (en) Anode active material for non-aqueous electrolyte secondary battery
JP2014231643A (en) Method of producing metal powder, metal powder and conductive paste for laminated ceramic capacitor
JP4061462B2 (en) Composite fine particles, conductive paste and conductive film
JP5976559B2 (en) Nanoparticulate barium titanate and method for producing the same
JP2003253312A (en) Method for manufacturing silver powder, and silver powder
JP4224006B2 (en) Indium oxide powder
JP2017115187A (en) Manufacturing method of platinum powder
JP2004218030A (en) Surface-treated metal nickel powder and production method therefor
JP2003129105A (en) Surface treatment method for nickel powder and nickel powder provided by the method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080704

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4168116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees