JP2003254499A - Hydrogen supplying station - Google Patents

Hydrogen supplying station

Info

Publication number
JP2003254499A
JP2003254499A JP2002057450A JP2002057450A JP2003254499A JP 2003254499 A JP2003254499 A JP 2003254499A JP 2002057450 A JP2002057450 A JP 2002057450A JP 2002057450 A JP2002057450 A JP 2002057450A JP 2003254499 A JP2003254499 A JP 2003254499A
Authority
JP
Japan
Prior art keywords
hydrogen
tank
heat exchange
exchange medium
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002057450A
Other languages
Japanese (ja)
Inventor
Masayuki Kawai
雅之 河合
Hidemasa Ishikawa
秀征 石川
Koichi Katsurayama
弘一 葛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP2002057450A priority Critical patent/JP2003254499A/en
Publication of JP2003254499A publication Critical patent/JP2003254499A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/34Hydrogen distribution

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen supplying system for shortening waiting time required for an occlusion process and facilitating management of temperature and pressure in a tank. <P>SOLUTION: A plurality of MH tanks 11-14 filled with a hydrogen storage alloy are provided, and heat exchanging medium passages 61-64 are respectively provided in each MH tank 11-14. Each entrance of each heat exchanging medium passage 61-64 is communicated with a hot water tank 15 and a cold water tank 16 via outward route three way valves 31-34, a hot water outward route 51 and a cold water outward route 53. A tank of a small capacity of about 1.5 times of a common on-vehicle tank is used as each MH tank 11-14, and if hydrogen of about 80% of a maximum storage capacity of each tank is occluded, it can be supplied to the on-vehicle tank. In each MH tank 11-14, the occlusion process is carried out after the hydrogen is supplied to the on- vehicle tank of one vehicle. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は,燃料電池自動車へ
燃料である水素を供給する水素供給ステーションに関す
る。さらに詳細には,水素貯蔵用のタンクに水素吸蔵合
金を使用した水素供給ステーションに関するものであ
る。
TECHNICAL FIELD The present invention relates to a hydrogen supply station for supplying hydrogen as fuel to a fuel cell vehicle. More specifically, the present invention relates to a hydrogen supply station that uses a hydrogen storage alloy for a hydrogen storage tank.

【0002】[0002]

【従来の技術】燃料の水素と空気中の酸素から発電して
走行用のエネルギーを得る燃料電池自動車に,燃料の水
素を供給する方法として,自動車にボンベやタンク等を
積み込み,水素供給ステーションにおいてその車載タン
クに水素を供給する方法がある。そのために,ガソリン
スタンドのような水素供給ステーションを設置して,水
素を生成して貯蔵しておき,適宜,自動車の車載タンク
に水素を供給する。このような水素供給ステーションと
して,天然ガスや都市ガス等から改質過程によって水素
を生成し,生成した水素を水素吸蔵合金を内蔵した大容
量のタンクに貯蔵しておくものが提案されている。
2. Description of the Related Art As a method for supplying hydrogen as a fuel to a fuel cell vehicle that generates energy for traveling by generating electricity from hydrogen as a fuel and oxygen in the air, a cylinder, a tank, etc. are loaded in the vehicle and used in a hydrogen supply station. There is a method of supplying hydrogen to the vehicle tank. Therefore, a hydrogen supply station such as a gas station is installed to generate and store hydrogen, and hydrogen is appropriately supplied to an in-vehicle tank of an automobile. As such a hydrogen supply station, one has been proposed in which hydrogen is generated from a natural gas or city gas by a reforming process and the generated hydrogen is stored in a large-capacity tank containing a hydrogen storage alloy.

【0003】水素吸蔵合金は,温度により水素の吸蔵量
と水素圧力との関係が大きく変化する(図5参照)。そ
こで,各過程における効率を上昇させるために,吸蔵過
程では水素吸蔵合金を内蔵した水素貯蔵タンク(以下,
MHタンクと表記する)を冷却し,放出過程ではMHタ
ンクを加温する。従来の水素供給ステーション100で
は,図6,図7に示すように,温水タンク112と冷水
タンク113とを備え,適宜,温水または冷水をMHタ
ンク111に供給して,温度を管理している。
In the hydrogen storage alloy, the relationship between the hydrogen storage amount and the hydrogen pressure changes greatly depending on the temperature (see FIG. 5). Therefore, in order to increase the efficiency in each process, a hydrogen storage tank containing a hydrogen storage alloy (hereinafter,
(Referred to as MH tank) is cooled, and the MH tank is heated during the discharging process. As shown in FIGS. 6 and 7, the conventional hydrogen supply station 100 includes a hot water tank 112 and a cold water tank 113, and appropriately supplies hot water or cold water to the MH tank 111 to control the temperature.

【0004】図6に示したのは,MHタンク111内に
貯蔵されている水素を,4台の車両の車載タンク114
〜117に同時に供給している放出過程である。この過
程では,MHタンク111に温水タンク112から約8
0℃の温水を供給して加温している。このとき,車載タ
ンク114〜117が同じく水素吸蔵合金を内蔵したも
のであれば,同時に車載タンク114〜117を冷却す
ればさらに効率がよい。一方,改質過程で生成した水素
をMHタンク111に吸蔵させる吸蔵過程では,図7に
示すように,MHタンク111に冷水タンク113から
約20℃の冷水を供給して冷却する。これによって,よ
り多くの水素を効率よく吸蔵させるようにしている。こ
の吸蔵過程中は,車載タンク114〜117に水素を供
給することはできない。
FIG. 6 shows that the hydrogen stored in the MH tank 111 is stored in the on-vehicle tanks 114 of four vehicles.
To 117 at the same time as the discharging process. In this process, from the hot water tank 112 to the MH tank 111, about 8
Warm water at 0 ° C is supplied to warm the water. At this time, if the vehicle-mounted tanks 114 to 117 also contain a hydrogen storage alloy, it is more efficient to cool the vehicle-mounted tanks 114 to 117 at the same time. On the other hand, in the storage process of storing the hydrogen generated in the reforming process in the MH tank 111, as shown in FIG. 7, cold water at about 20 ° C. is supplied from the cold water tank 113 to the MH tank 111 for cooling. As a result, more hydrogen is occluded efficiently. During this occlusion process, hydrogen cannot be supplied to the vehicle-mounted tanks 114 to 117.

【0005】[0005]

【発明が解決しようとする課題】しかしながら,前記し
た従来の水素供給ステーション100では,車載タンク
114〜117の何倍もの水素を吸蔵できる大容量のM
Hタンク111を使用している。そのため,多くの車載
タンク114〜117に次々と水素を供給できる一方
で,吸蔵過程にかかる所要時間が長い。例えば,水素吸
蔵量15.6Nm3の大型タンクでは,ほぼ空の状態か
らほぼ満タンまで吸蔵するのに約65分が必要である。
もしも,吸蔵過程が開始されてすぐに,水素供給のため
に自動車が到着した場合,長時間の待ち時間が生じてし
まうという不都合があった。
However, in the above-described conventional hydrogen supply station 100, a large-capacity M that can store hydrogen many times as much as the in-vehicle tanks 114 to 117 can store.
The H tank 111 is used. Therefore, hydrogen can be supplied to many on-vehicle tanks 114 to 117 one after another, but the time required for the occlusion process is long. For example, in a large tank with a hydrogen storage capacity of 15.6 Nm 3 , it takes about 65 minutes to store a hydrogen from a nearly empty state to a nearly full tank.
If a car arrives for hydrogen supply immediately after the occlusion process is started, there is a disadvantage that a long waiting time occurs.

【0006】また,従来の水素供給ステーション100
では,放出過程においては,放出速度を上げるためにM
Hタンク111に約80℃の温水を供給している。とこ
ろが,例えば吸蔵過程の終了直後など,かなり多くの水
素が吸蔵されている状態で急激に80℃に加温される
と,MHタンク111の内部圧力が一時的に高圧になる
ことがある。内部圧力が1.0MPaGより大きいタン
クは,高圧ガス保安法の規制対象となるので,取り扱い
が面倒である。そこで,放出過程ではMHタンク111
内部の圧力を圧力センサで常時計測して,内部圧力が
1.0MPaG近くになったら温水の供給を停止したり
冷水を一時的に供給したりして,MHタンク111の温
度を少し下げる。そして,水素の放出速度をやや落とす
ことによって,内部圧力が1.0MPaGを超えないよ
うにしている。この結果,図8に示すように,満タン状
態からの放出過程開始直後において,水素放出速度は大
きく波打つ。このことは,放出時の温度や圧力の管理を
煩雑なものとし,水素放出量が不安定となるおそれがあ
った。
In addition, the conventional hydrogen supply station 100
Then, in the release process, in order to increase the release rate, M
Hot water of about 80 ° C. is supplied to the H tank 111. However, if the temperature is rapidly heated to 80 ° C. while a considerable amount of hydrogen is stored, for example immediately after the end of the storage process, the internal pressure of the MH tank 111 may temporarily become high. A tank having an internal pressure of more than 1.0 MPaG is subject to the regulations of the High Pressure Gas Safety Law, and thus is troublesome to handle. Therefore, in the discharging process, the MH tank 111
The internal pressure is constantly measured by a pressure sensor, and when the internal pressure approaches 1.0 MPaG, the hot water supply is stopped or the cold water is temporarily supplied to slightly lower the temperature of the MH tank 111. Then, the internal pressure does not exceed 1.0 MPaG by slightly reducing the hydrogen release rate. As a result, as shown in FIG. 8, immediately after the start of the release process from the full state, the hydrogen release rate undulates. This complicates the control of temperature and pressure at the time of desorption, and there is a risk that the hydrogen desorption amount becomes unstable.

【0007】本発明は,前記した従来の水素供給ステー
ションが有する問題点を解決するためになされたもので
ある。すなわちその課題とするところは,吸蔵過程にか
かる待ち時間を短縮するとともに,タンク内の温度や圧
力の管理を容易にした水素供給ステーションを提供する
ことにある。
The present invention has been made to solve the problems of the above-described conventional hydrogen supply station. That is, the problem is to provide a hydrogen supply station that shortens the waiting time required for the occlusion process and facilitates management of the temperature and pressure in the tank.

【0008】[0008]

【課題を解決するための手段】この課題の解決を目的と
してなされた本発明の水素供給ステーションは,水素吸
蔵合金を内蔵する複数の水素貯蔵タンクと,水素貯蔵タ
ンクごとに設けられるとともに,その水素吸蔵合金と熱
交換可能な熱交換媒体を流通させる熱交換媒体流路と,
各熱交換媒体流路に加温用の熱交換媒体を供給する加温
用媒体供給流路と,各熱交換媒体流路に冷却用の熱交換
媒体を供給する冷却用媒体供給流路と,加温用媒体供給
流路および冷却用媒体供給流路と各熱交換媒体流路のそ
れぞれの入口とを接続する三方弁とを有するものであ
る。
The hydrogen supply station of the present invention, which has been made for the purpose of solving this problem, is provided with a plurality of hydrogen storage tanks each containing a hydrogen storage alloy, and each hydrogen storage tank is provided with the hydrogen storage tank. A heat exchange medium flow path for circulating a heat exchange medium capable of exchanging heat with the storage alloy;
A heating medium supply passage for supplying a heat exchange medium for heating to each heat exchange medium passage, and a cooling medium supply passage for supplying a heat exchange medium for cooling to each heat exchange medium passage, It has a three-way valve that connects the heating medium supply flow path and the cooling medium supply flow path to the respective inlets of the heat exchange medium flow paths.

【0009】本発明の水素供給ステーションによれば,
複数の水素貯蔵タンクのそれぞれに,熱交換媒体を流通
させる熱交換媒体流路が設けられ,さらに各熱交換媒体
流路の入口は,三方弁によって加温用媒体供給流路およ
び冷却用媒体供給流路と接続されている。従って,複数
の水素貯蔵タンクはそれぞれ独立に温度調節される。こ
のことから,吸蔵過程と放出過程という異なる温度状態
が必要な過程を,別の水素貯蔵タンクで同時に行うこと
ができる。従って,要求に応じて車両の車載タンクに水
素を供給するとともに,他のタンクには水素を吸蔵して
おくことができるので,車両の待ち時間を短縮できる。
According to the hydrogen supply station of the present invention,
Each of the plurality of hydrogen storage tanks is provided with a heat exchange medium passage through which a heat exchange medium is circulated, and the inlet of each heat exchange medium passage is provided with a three-way valve to supply a heating medium supply passage and a cooling medium supply passage. It is connected to the flow channel. Therefore, the temperature of each of the hydrogen storage tanks is controlled independently. From this, it is possible to simultaneously perform the processes requiring different temperature states, that is, the occlusion process and the desorption process, in different hydrogen storage tanks. Therefore, it is possible to supply hydrogen to the vehicle-mounted tank of the vehicle in response to a request and store hydrogen in another tank, so that the waiting time of the vehicle can be shortened.

【0010】さらに,本発明の水素供給ステーション
は,オンサイトの装置であることが望ましい。ガソリン
スタンドのように,需要家近くに固定して設置し,移動
しない装置とすることで,走行車両にとって便利なもの
となる。
Further, the hydrogen supply station of the present invention is preferably an on-site device. It will be convenient for traveling vehicles if it is fixed like a gas station near a customer and installed so that it does not move.

【0011】また,本発明の水素供給ステーションは,
水素貯蔵タンクの各々の最大吸蔵量が,供給対象タンク
の最大吸蔵量の1〜2倍の範囲内にあることが望まし
い。これによって,各水素貯蔵タンクは,各1台の供給
対象タンクに供給することができるからである。また,
この範囲が,より好ましくは1.3〜1.7倍の範囲で
あれば,各水素貯蔵タンクの最大吸蔵量まで吸蔵させて
いない状態でも,供給対象タンクに供給することができ
る。各水素貯蔵タンクは,最大吸蔵量の8割程度までの
吸蔵速度は速いので,最大吸蔵量の範囲をこのようにす
ることで,吸蔵にかかる待ち時間をさらに短縮すること
ができる。
Further, the hydrogen supply station of the present invention is
It is desirable that the maximum storage amount of each hydrogen storage tank be within a range of 1 to 2 times the maximum storage amount of the supply target tank. This is because each hydrogen storage tank can be supplied to each one supply target tank. Also,
If this range is more preferably 1.3 to 1.7 times, the hydrogen can be supplied to the supply target tank even in a state where the hydrogen storage tanks are not storing the maximum storage amount. Since each hydrogen storage tank has a high storage speed up to about 80% of the maximum storage amount, by setting the range of the maximum storage amount in this way, the waiting time for storage can be further shortened.

【0012】また,本発明の別の水素供給ステーション
は,水素吸蔵合金を内蔵する水素貯蔵タンクと,水素貯
蔵タンクに設けられるとともに,その水素吸蔵合金と熱
交換可能な熱交換媒体を流通させる熱交換媒体流路と,
熱交換媒体流路に加温用の熱交換媒体を供給する加温用
媒体供給流路と,熱交換媒体流路に冷却用の熱交換媒体
を供給する冷却用媒体供給流路と,加温用媒体供給流路
および冷却用媒体供給流路と熱交換媒体流路の入口とを
接続する三方弁と,三方弁を調節して加温用の熱交換媒
体と冷却用の熱交換媒体とを混合して熱交換媒体流路に
供給させることにより,熱交換媒体流路に供給される熱
交換媒体の温度を制御する温度制御手段とを有するもの
である。
Further, another hydrogen supply station of the present invention is provided in the hydrogen storage tank containing the hydrogen storage alloy and the hydrogen storage tank, and the heat exchange medium for exchanging heat with the hydrogen storage alloy is circulated. An exchange medium flow path,
A heating medium supply passage for supplying a heat exchange medium for heating to the heat exchange medium passage, a cooling medium supply passage for supplying a heat exchange medium for cooling to the heat exchange medium passage, and a heating A three-way valve that connects the cooling medium supply channel and the cooling medium supply channel to the inlet of the heat exchange medium channel, and adjusts the three-way valve to provide a heat exchange medium for heating and a heat exchange medium for cooling. The temperature control means controls the temperature of the heat exchange medium supplied to the heat exchange medium flow path by mixing and supplying the heat exchange medium flow path to the heat exchange medium flow path.

【0013】本発明の水素供給ステーションによれば,
温度制御手段によって,熱交換媒体流路に供給される熱
交換媒体の温度が制御される。すなわち,熱交換媒体流
路の入口は,三方弁によって加温用媒体供給流路および
冷却用媒体供給流路と接続されており,温度制御手段に
よってこの三方弁が調節される。これにより,水素貯蔵
タンクの状態に応じて,加温用の熱交換媒体の温度と冷
却用の熱交換媒体の温度との間の最適な温度の熱交換媒
体を供給することができる。例えば,急激な温度変化に
よってタンク内の圧力が適度な範囲を超えて変化するこ
とを回避するような制御も可能である。これにより,タ
ンク内の温度や圧力の管理が容易となった。
According to the hydrogen supply station of the present invention,
The temperature control means controls the temperature of the heat exchange medium supplied to the heat exchange medium flow path. That is, the inlet of the heat exchange medium passage is connected to the heating medium supply passage and the cooling medium supply passage by the three-way valve, and the three-way valve is adjusted by the temperature control means. Thereby, the heat exchange medium having an optimum temperature between the temperature of the heat exchange medium for heating and the temperature of the heat exchange medium for cooling can be supplied according to the state of the hydrogen storage tank. For example, it is possible to perform control so as to prevent the pressure in the tank from changing beyond a proper range due to a rapid temperature change. This made it easier to control the temperature and pressure inside the tank.

【0014】[0014]

【発明の実施の形態】本発明を具体化した実施の形態に
ついて,添付図面を参照しつつ詳細に説明する。本実施
の形態は,都市ガス等から製造した水素を水素吸蔵合金
を内蔵したタンク(MHタンク)に貯蔵し,その貯蔵し
た水素を必要に応じて車載タンクへ供給する水素供給ス
テーションである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments embodying the present invention will be described in detail with reference to the accompanying drawings. The present embodiment is a hydrogen supply station in which hydrogen produced from city gas or the like is stored in a tank (MH tank) containing a hydrogen storage alloy and the stored hydrogen is supplied to an in-vehicle tank as needed.

【0015】水素供給ステーション1は,図1に示すよ
うに,水素ガス製造ユニット10,4台のMHタンク1
1〜14,温水タンク15,冷水タンク16を備える。
製造ユニット10は,都市ガス等から水素を生成するた
めの各種装置であり,ここでは詳細は省略する。各MH
タンク11〜14は,それぞれ水素吸蔵合金を内蔵した
水素貯蔵用のタンクである。ここでは,各MHタンク1
1〜14は,従来のMHタンク111を複数に分割し
た,比較的小容量のものを使用する。この各MHタンク
11〜14の最大吸蔵量は,一般的な車載タンクの最大
吸蔵量の約1.5倍に相当する大きさにするのがよい。
As shown in FIG. 1, the hydrogen supply station 1 includes a hydrogen gas production unit 10 and four MH tanks 1.
1 to 14, a hot water tank 15, and a cold water tank 16 are provided.
The production unit 10 is various devices for producing hydrogen from city gas or the like, and details thereof are omitted here. Each MH
Each of the tanks 11 to 14 is a tank for storing hydrogen which contains a hydrogen storage alloy. Here, each MH tank 1
As for 1 to 14, the conventional MH tank 111 is divided into a plurality of relatively small capacity tanks. The maximum storage amount of each of the MH tanks 11 to 14 is preferably set to a size corresponding to about 1.5 times the maximum storage amount of a general vehicle tank.

【0016】温水タンク15は,加温用の熱交換媒体で
ある約80℃の温水を充填したタンクである。温水タン
ク15では,温水を常に約80℃に保持するようにして
いる。冷水タンク16は,冷却用の熱交換媒体である約
20℃の冷水を充填したタンクである。冷水タンク16
では,冷水を常に約20℃に保持するようにしている。
The warm water tank 15 is a tank filled with warm water of about 80 ° C. which is a heat exchange medium for heating. In the hot water tank 15, the hot water is always kept at about 80 ° C. The cold water tank 16 is a tank filled with cold water of about 20 ° C. which is a heat exchange medium for cooling. Cold water tank 16
Then, cold water is always kept at about 20 ° C.

【0017】各MHタンク11〜14には,それぞれ水
素の入出流路である水素流入路41〜44と水素流出路
45〜48とが接続されている。各水素流入路41〜4
4は,それぞれ開閉弁21〜24を介して水素流路40
に連通されている。水素流路40は,製造ユニット10
に接続されている。水素流出路45〜48は,それぞれ
開閉弁25〜28が接続され,必要に応じて車載タンク
71,72と連通される。
Hydrogen inflow passages 41 to 44 and hydrogen outflow passages 45 to 48, which are hydrogen inflow and outflow passages, are connected to the MH tanks 11 to 14, respectively. Each hydrogen inflow path 41-4
4 is a hydrogen flow channel 40 via the on-off valves 21-24, respectively.
Is in communication with. The hydrogen flow path 40 is used in the manufacturing unit 10
It is connected to the. On-off valves 25 to 28 are connected to the hydrogen outflow passages 45 to 48, respectively, and communicated with the vehicle tanks 71 and 72 as needed.

【0018】温水タンク15には,温水往路51と温水
復路52とが接続され,冷水タンク16には,冷水往路
53と冷水復路54とが接続されている。温水往路51
が加温用媒体供給流路に相当する。冷水往路53が冷却
用媒体供給流路に相当する。また,各MHタンク11〜
14の内部には,それぞれ熱交換媒体流路61〜64が
設けられている。この熱交換媒体流路61〜64は,温
水または冷水を流通させることによって,各MHタンク
11〜14内部の水素吸蔵合金を加熱または冷却するた
めのものである。
The hot water tank 15 is connected with a hot water outgoing path 51 and a hot water return path 52, and the cold water tank 16 is connected with a cold water outgoing path 53 and a cold water return path 54. Hot water outbound route 51
Corresponds to the heating medium supply flow path. The cold water outward passage 53 corresponds to the cooling medium supply passage. Also, each MH tank 11 to 11
Heat exchange medium flow paths 61 to 64 are provided inside the respective units 14. The heat exchange medium passages 61 to 64 are for heating or cooling the hydrogen storage alloys inside the MH tanks 11 to 14 by circulating hot water or cold water.

【0019】温水往路51と冷水往路53とは,往路三
方弁31〜34によって各MHタンク11〜14の熱交
換媒体流路61〜64の各入口と接続されている。温水
復路52と冷水復路54とは,復路三方弁35〜38に
よって各MHタンク11〜14の熱交換媒体流路61〜
64の各出口と接続されている。往路三方弁31〜34
および復路三方弁35〜38は,流路の切り換えだけで
なく,流量制御が可能な3ポート制御弁である。
The hot water outward passage 51 and the cold water outward passage 53 are connected to the respective inlets of the heat exchange medium passages 61 to 64 of the respective MH tanks 11 to 14 by the outward passage three-way valves 31 to 34. The hot water return passage 52 and the cold water return passage 54 are connected to the heat exchange medium passages 61 to 61 of the MH tanks 11 to 14 by the return passage three-way valves 35 to 38.
It is connected to each of the 64 outlets. Outward three-way valve 31-34
The return three-way valves 35 to 38 are 3-port control valves capable of controlling the flow rate as well as switching the flow paths.

【0020】水素供給ステーション1では,各MHタン
ク11〜14がそれぞれ独立に構成されている。図2に
示すように,コントローラ17によって,各MHタンク
11〜14毎に設けられた開閉弁21〜28,往路三方
弁31〜34,復路三方弁35〜38,スイッチ65〜
68が制御される。スイッチ65〜68は,車載タンク
71等が接続されて水素放出が要求されたことを検知す
るためのものである。これらから,コントローラ17に
よって,各MHタンク11〜14に対してそれぞれ独立
に,水素吸蔵合金の温度制御や水素の流通制御を行うこ
とができる。従って,各MHタンク11〜14におい
て,それぞれ異なる各過程を,同時に実行することがで
きる。
In the hydrogen supply station 1, the MH tanks 11 to 14 are independently constructed. As shown in FIG. 2, the controller 17 controls the opening / closing valves 21 to 28, the outward three-way valves 31 to 34, the return three-way valves 35 to 38, and the switches 65 to 65 provided for the respective MH tanks 11 to 14.
68 is controlled. The switches 65 to 68 are for detecting that the in-vehicle tank 71 or the like is connected and hydrogen release is requested. From these, the controller 17 can independently control the temperature of the hydrogen storage alloy and the flow control of hydrogen for each of the MH tanks 11 to 14. Therefore, different processes can be simultaneously executed in the MH tanks 11 to 14.

【0021】図1に示したのは,MHタンク12,14
は製造ユニット10と連通されて吸蔵過程を実行中であ
り,MHタンク11,13は車載タンク71,72へ水
素を供給する放出過程を実行中の状態である。すなわ
ち,MHタンク12,14では,開閉弁22,24が開
放されて水素流路40から水素が流入しており,開閉弁
26,28は閉止されている。また,MHタンク11,
13では,開閉弁25,27が開放されて車載タンク7
1,72と連通されており,水素の逆流を防止するため
に開閉弁21,23は閉止されている。
FIG. 1 shows the MH tanks 12, 14
Is in communication with the manufacturing unit 10 and is executing the occlusion process, and the MH tanks 11 and 13 are in the process of executing the release process of supplying hydrogen to the vehicle tanks 71 and 72. That is, in the MH tanks 12 and 14, the opening / closing valves 22 and 24 are opened, hydrogen is flowing from the hydrogen flow passage 40, and the opening / closing valves 26 and 28 are closed. In addition, the MH tank 11,
13, the on-off valves 25 and 27 are opened and the vehicle tank 7
1, 72 are in communication with each other, and the on-off valves 21, 23 are closed to prevent backflow of hydrogen.

【0022】ここで,本発明者らが水素吸蔵合金の水素
吸蔵特性を測定した結果を図3に示す。図3は,従来の
水素吸蔵量15.6Nm3の大型タンクについて,吸蔵
開始からの時間と吸蔵量との関係をグラフ化したもので
ある。ここで,実線81と破線82とは初期圧力が異な
る場合の結果であり,実線81の方が初期圧力が小さ
く,実験開始段階で吸蔵している水素の量が少ないもの
である。図3の結果から,次のことが分かる。水素吸蔵
合金は,最大吸蔵量の8割程度を,吸蔵開始から20分
程度で吸蔵するのである。これは,全吸蔵時間のうちの
約3分の1に相当する。以後,40分以上かけて残りの
2割の水素を吸蔵するのである。ここでは,吸蔵時の水
素吸蔵合金の温度は20℃に設定した。また,初期圧力
の小さい実線81の方が,立ち上がりもよく,全吸蔵量
も多かった。
FIG. 3 shows the results of the hydrogen storage characteristics of the hydrogen storage alloys measured by the present inventors. FIG. 3 is a graph showing the relationship between the time from the start of storage and the storage amount for a conventional large tank with a hydrogen storage amount of 15.6 Nm 3 . Here, the solid line 81 and the broken line 82 are the results when the initial pressures are different. The solid line 81 has a smaller initial pressure and the amount of hydrogen stored at the start stage of the experiment is smaller. From the results of FIG. 3, the following can be seen. The hydrogen storage alloy stores about 80% of the maximum storage amount in about 20 minutes from the start of storage. This corresponds to about one-third of the total storage time. After that, the remaining 20% of hydrogen is stored over 40 minutes. Here, the temperature of the hydrogen storage alloy during storage was set to 20 ° C. Further, the solid line 81 having a smaller initial pressure had a better rise and a larger total storage amount.

【0023】さらに,本発明者らが水素吸蔵合金の水素
放出特性を測定した結果を図4に示す。図4は,図3と
同様に従来の水素吸蔵量15.6Nm3の大型タンクに
ついて測定したものであり,放出開始からの時間と放出
量との関係をグラフ化したものである。図3と同様に,
実線83と破線84とは放出先の初期圧力が異なる場合
の結果である。図4の結果から,次のことが分かる。水
素吸蔵合金は,最大吸蔵量の8割程度を,放出開始から
10分程度で放出するのである。これは,先の全吸蔵時
間の約6分の1に相当する。図3の吸蔵過程と比較する
と,非常に短時間で放出されることが分かる。ここで
は,放出時の水素吸蔵合金の温度は80℃に設定した。
また,初期圧力の小さい実線83の方が,立ち上がりも
よく,全放出量も多かった。
Further, FIG. 4 shows the results of measurement of hydrogen release characteristics of the hydrogen storage alloy by the present inventors. Similar to FIG. 3, FIG. 4 is a measurement of a conventional large tank having a hydrogen storage capacity of 15.6 Nm 3 , and is a graph showing the relationship between the time from the start of the release and the release amount. Similar to Figure 3,
The solid line 83 and the broken line 84 are the results when the initial pressure at the discharge destination is different. The following can be seen from the results of FIG. The hydrogen storage alloy releases about 80% of the maximum storage amount in about 10 minutes from the start of release. This corresponds to about 1/6 of the total storage time. Compared with the occlusion process of FIG. 3, it can be seen that the substance is released in a very short time. Here, the temperature of the hydrogen storage alloy at the time of release was set to 80 ° C.
Further, the solid line 83 having a smaller initial pressure had a better rise and a larger total release amount.

【0024】図3,図4のグラフは,従来の大型タンク
についての実験の結果であるが,小容量のMHタンク1
1〜14においてもほぼ同様の関係を示す。すなわち,
最大吸蔵量の8割程度の吸蔵にかかる時間は,全吸蔵時
間のうちの約3分の1である。さらに,最大吸蔵量の8
割程度の放出にかかる時間は,その半分,すなわち全吸
蔵時間の約6分の1である。また,これらの時間は,初
期圧力の違いに対してそれほどの差はないことも分かっ
た。つまり,吸蔵時のMHタンク11〜14や放出先の
車載タンク71,72にある程度の水素が残留していて
も,大差はないといえる。
The graphs of FIGS. 3 and 4 show the results of experiments on conventional large-sized tanks.
The relationships 1 to 14 show almost the same relationship. That is,
The time required to store about 80% of the maximum storage amount is about one-third of the total storage time. Furthermore, the maximum storage capacity is 8
The time required for releasing about 50% is half that, that is, about 1/6 of the total storage time. It was also found that these times did not differ much with respect to the difference in initial pressure. That is, it can be said that even if some amount of hydrogen remains in the MH tanks 11 to 14 at the time of occlusion and the vehicle-mounted tanks 71 and 72 at the discharge destination, there is no great difference.

【0025】これらの実験結果をふまえ,水素供給ステ
ーション1の最適な動作方法を説明する。水素供給ステ
ーション1では,各MHタンク11〜14の吸蔵過程に
おいて,まず,その最大吸蔵量の8割程度まで吸蔵す
る。この範囲は,図3で示した吸蔵速度の速い部分範囲
である。そして,要求があれば,この状態から自動車1
台分の車載タンクに水素の供給を行う。各MHタンク1
1〜14の最大吸蔵量は車載タンクの最大吸蔵量の約
1.5倍であるので,この8割程度は車載タンクの約
1.2倍に相当する。車載タンクへの供給量は,最大で
もその自動車の車載タンクの最大吸蔵量であり,1台の
MHタンク11〜14で十分まかなうことができる。1
台分の車載タンクへの供給終了後は直ちに吸蔵過程に入
り,また最大吸蔵量の8割程度まで吸蔵する。自動車に
よる水素供給の要求がなければ,各MHタンク11〜1
4にさらに吸蔵過程を続け,最大吸蔵量まで吸蔵しても
よい。
Based on these experimental results, the optimum operation method of the hydrogen supply station 1 will be described. In the hydrogen supply station 1, in the occlusion process of each of the MH tanks 11 to 14, first, up to about 80% of the maximum occlusion amount is occlusion. This range is a partial range in which the storage speed is fast as shown in FIG. And, if there is a request, the car 1
Hydrogen is supplied to the vehicle tanks for each vehicle. Each MH tank 1
Since the maximum storage amount of 1 to 14 is about 1.5 times the maximum storage amount of the vehicle-mounted tank, about 80% of this corresponds to about 1.2 times that of the vehicle-mounted tank. The supply amount to the vehicle-mounted tank is the maximum storage amount of the vehicle-mounted tank of the vehicle even at the maximum, and one MH tank 11 to 14 is sufficient. 1
Immediately after the supply to the on-board tank for the vehicle is completed, the occlusion process immediately starts and the maximum occlusion amount is about 80%. Unless there is a demand for hydrogen supply by automobile, each MH tank 11-1
The storage process may be further continued to 4 to store up to the maximum storage amount.

【0026】本発明者らが,さらに,最大吸蔵量3.1
Nm3のMHタンクで吸蔵実験を行ったところ,最大吸
蔵量までの吸蔵時間は約19分であった。この8割程度
まで吸蔵させるのに要する時間はその約3分の1の約6
〜7分である。このように,タンクの容量が小さいもの
であれば,それだけ吸蔵時間も短くてすむ。一般的な車
載タンクの大きさ等の事情に鑑みて,適切な容量のMH
タンク11〜14を選択することにより,吸蔵にかかる
待ち時間を従来のものと比較して非常に短くすることが
できる。しかも,各MHタンク11〜14がそれぞれ独
立に設けられているので,自動車の到着に従って順次放
出過程と吸蔵過程とを実行できる。
The present inventors further confirmed that the maximum storage amount 3.1
When an occlusion experiment was conducted in a Nm 3 MH tank, the occlusion time up to the maximum occlusion amount was about 19 minutes. The time required to store up to about 80% is about one-third, about 6
~ 7 minutes. In this way, if the capacity of the tank is small, the storage time can be shortened accordingly. Considering the situation such as the size of a general vehicle tank, MH of appropriate capacity
By selecting the tanks 11 to 14, the waiting time for occlusion can be made extremely shorter than that of the conventional one. Moreover, since the MH tanks 11 to 14 are provided independently of each other, the discharging process and the occlusion process can be sequentially performed as the vehicle arrives.

【0027】次に,水素供給ステーション1でのMHタ
ンク11〜14の温度制御方法について説明する。水素
吸蔵合金の水素吸蔵量と水素圧力との関係は,図5に示
すように,温度によって変化する。従来技術で述べたよ
うに,水素をかなり多量に吸蔵している状態の水素吸蔵
合金を,放出のために急激に80℃に上昇させると圧力
が急上昇してしまう。例えば,図5のc点からd点への
状態変化となり,圧力が1.0MPaGを超えるので法
規制の対象となる。それに対し,本実施の形態の水素供
給ステーション1では,コントローラ17で往路三方弁
31〜34を制御するので,冷水と温水を混合して,各
MHタンク11〜14の熱交換媒体流路61〜64に供
給することができる。
Next, a method for controlling the temperature of the MH tanks 11 to 14 in the hydrogen supply station 1 will be described. The relationship between the hydrogen storage amount of the hydrogen storage alloy and the hydrogen pressure changes with temperature, as shown in FIG. As described in the prior art, when a hydrogen storage alloy in a state in which a considerably large amount of hydrogen is stored is rapidly raised to 80 ° C. for release, the pressure rises sharply. For example, the state changes from point c to point d in FIG. 5, and since the pressure exceeds 1.0 MPaG, it is subject to legal regulation. On the other hand, in the hydrogen supply station 1 of the present embodiment, the controller 17 controls the outward three-way valves 31 to 34, so that cold water and hot water are mixed and the heat exchange medium flow paths 61 to 61 of the MH tanks 11 to 14 are mixed. 64 can be supplied.

【0028】そこで,放出過程の開始と同時に,コント
ローラ17は,往路三方弁31〜34を操作し,それま
で冷水のみを供給して20℃に保たれていたMHタンク
11〜14に,温水を混合して供給する。さらに,水素
の放出が進行するに従って,温水の混合割合を少しずつ
上昇させる。これにより,MHタンク11〜14の熱交
換媒体流路61〜64に供給される温水の温度を徐々に
上昇させて,圧力を急上昇させることなく水素吸蔵合金
の温度を上昇させることができる。例えば,図5に示し
たように,c点からd′点へ状態変化させることができ
る。
Therefore, at the same time as the start of the discharging process, the controller 17 operates the outward three-way valves 31 to 34 to supply the hot water to the MH tanks 11 to 14 which had been kept at 20 ° C. by supplying only the cold water until then. Mix and supply. Further, the mixing ratio of warm water is gradually increased as the release of hydrogen progresses. As a result, the temperature of the hot water supplied to the heat exchange medium passages 61 to 64 of the MH tanks 11 to 14 can be gradually increased, and the temperature of the hydrogen storage alloy can be increased without increasing the pressure sharply. For example, as shown in FIG. 5, the state can be changed from point c to point d '.

【0029】あるいは,放出過程で水素を放出して,水
素残量が少量となった水素吸蔵合金を,吸蔵過程のため
に急激に20℃に冷やした場合は,圧力が急降下する。
例えば,図5のa点からb点への状態変化となり,負圧
状態となってしまう。それに対し,本実施の形態の水素
供給ステーション1では,コントローラ17が往路三方
弁31〜34を制御して,温水と冷水を混合して,各M
Hタンク11〜14の熱交換媒体流路61〜64に供給
できる。例えば,図5に示したように,a点からb′点
まで徐々に冷却することができる。
Alternatively, when hydrogen is released during the release process and the hydrogen storage alloy having a small amount of remaining hydrogen is rapidly cooled to 20 ° C. for the storage process, the pressure drops sharply.
For example, the state changes from point a to point b in FIG. 5, resulting in a negative pressure state. On the other hand, in the hydrogen supply station 1 of the present embodiment, the controller 17 controls the outward three-way valves 31 to 34 to mix hot water and cold water, and each M.
It can be supplied to the heat exchange medium channels 61 to 64 of the H tanks 11 to 14. For example, as shown in FIG. 5, it is possible to gradually cool from the point a to the point b '.

【0030】熱交換媒体である水の温度制御を行うコン
トローラ17が,温度制御手段に相当する。コントロー
ラ17は,その記憶装置に,放出開始や吸蔵開始からの
時間,あるいは,放出水素量や吸蔵水素量に対応してそ
れぞれ望ましい温度やそれぞれの温度に対応する各往路
三方弁31〜34の開度を手順として記憶しておく。そ
して,放出過程あるいは吸蔵過程の開始とともに,記憶
された手順に従って往路三方弁31〜34を制御する。
従って,各MHタンク11〜14の内部圧力を測定する
必要がないので圧力センサは不要であり,容易に温度管
理ができるようになった。また,復路三方弁35〜38
は,各MHタンク11〜14の熱交換媒体流路61〜6
4を通過した熱交換媒体(ここでは,温水と冷水との混
合物)を,温水タンク15あるいは冷水タンク16のう
ちそのときの温度の近い方へ戻すように制御される。
The controller 17 for controlling the temperature of the water as the heat exchange medium corresponds to the temperature control means. The controller 17 opens in the storage device the desired three-way valves 31 to 34 corresponding to the time from the start of release or the start of storage, or the desired temperature or the corresponding amount of released hydrogen or stored hydrogen. Remember the degree as a procedure. Then, the outward three-way valves 31 to 34 are controlled in accordance with the stored procedure at the start of the discharging process or the occlusion process.
Therefore, since it is not necessary to measure the internal pressure of each of the MH tanks 11 to 14, a pressure sensor is not required, and the temperature can be easily controlled. In addition, the return three-way valve 35-38
Are heat exchange medium flow paths 61 to 6 of the MH tanks 11 to 14.
The heat exchange medium (here, a mixture of hot water and cold water) that has passed through 4 is controlled to be returned to the hot water tank 15 or the cold water tank 16 whichever has the closest temperature.

【0031】以上詳細に説明したように,本実施の形態
の水素供給ステーション1によれば,各MHタンク11
〜14が,独立して設けられ,それぞれに温度管理が可
能なので,吸蔵過程と放出過程とを別のタンクで同時に
実行可能である。また,各MHタンク11〜14が一般
的な車載タンクの約1.5倍であるので,最大吸蔵量の
約8割の水素を吸蔵させておけば,1台分の車載タンク
に対する供給量をまかなうことができる。吸蔵過程で
は,まず,各MHタンク11〜14の吸蔵可能量の約8
割を吸蔵するので,短時間で吸蔵できる。従って,吸蔵
にかかる自動車の待ち時間が短くなった。さらに,温水
往路51と冷水往路53とが,各MHタンク11〜14
の熱交換媒体流路61〜64と往路三方弁31〜34に
よって接続されているので,温水と冷水とを混合して各
熱交換媒体流路61〜64に供給できる。コントローラ
17が,記憶された手順に従って往路三方弁31〜34
を操作して温度制御するので,圧力センサは不要であ
り,各MHタンク11〜14の温度管理は容易となっ
た。
As described in detail above, according to the hydrogen supply station 1 of the present embodiment, each MH tank 11
14 to 14 are independently provided, and temperature control is possible for each, so that the occlusion process and the evacuation process can be simultaneously executed in different tanks. Further, since each MH tank 11 to 14 is about 1.5 times as large as a general vehicle tank, if about 80% of the maximum storage amount of hydrogen is stored, the supply amount to one vehicle tank can be increased. Can be covered. In the occlusion process, first, about 8 times the occlusion capacity of each MH tank 11-14 is stored.
Because it occludes the crack, it can occlude in a short time. Therefore, the waiting time of the car for storage is shortened. Further, the hot water outgoing path 51 and the cold water outgoing path 53 are connected to the MH tanks 11 to 14 respectively.
Since the heat exchange medium passages 61 to 64 are connected to the outward three-way valves 31 to 34, hot water and cold water can be mixed and supplied to the heat exchange medium passages 61 to 64. The controller 17 follows the stored procedure to set the outward three-way valves 31 to 34.
Since the temperature is controlled by operating, the pressure sensor is not necessary, and the temperature control of each MH tank 11-14 is easy.

【0032】なお,本実施の形態は単なる例示にすぎ
ず,本発明を何ら限定するものではない。したがって本
発明は当然に,その要旨を逸脱しない範囲内で種々の改
良,変形が可能である。例えば,MHタンク11〜14
の数は4台に限らず,小規模なステーションでは2〜3
台でもよいし,あるいは5台以上でもよい。また,MH
タンク11〜14はいずれも同じ大きさとしたが,例え
ば小型車用や大型車用などと大きさの異なる複数種類の
タンクを備えてもよい。また,温水と冷水を混合した熱
交換媒体の温度を徐々に変化させるとしたが,限界直前
の温度(例えば,吸蔵過程では約30℃,放出過程では
約50℃)まで一気に変化させ,それから少しずつ,ま
たは,階段状に変化させることもできる。また,熱交換
媒体の復路は温度の近い方へ戻すとしたが,復路三方弁
35〜38によって温水復路52と冷水復路54とに分
配してもよいし,常に同じ側へ戻すようにしてもかまわ
ない。
The present embodiment is merely an example and does not limit the present invention. Therefore, naturally, the present invention can be variously improved and modified without departing from the gist thereof. For example, MH tanks 11-14
The number of stations is not limited to four, but 2-3 in small stations
It may be one, or five or more. Also, MH
Although all of the tanks 11 to 14 have the same size, a plurality of types of tanks having different sizes such as those for small cars and those for large cars may be provided. Although the temperature of the heat exchange medium in which hot water and cold water are mixed is gradually changed, the temperature is changed to a temperature just before the limit (for example, about 30 ° C in the occlusion process and about 50 ° C in the ejection process), and then a little. It can also be changed step by step or step by step. Although the return path of the heat exchange medium is returned to the side closer to the temperature, it may be divided into the hot water return path 52 and the cold water return path 54 by the return path three-way valves 35 to 38, or may be always returned to the same side. I don't care.

【0033】[0033]

【発明の効果】以上の説明から明らかなように本発明に
よれば,吸蔵過程にかかる待ち時間を短縮するととも
に,タンク内の温度や圧力の管理を容易にした水素供給
ステーションを提供することができる。
As is apparent from the above description, according to the present invention, it is possible to provide a hydrogen supply station which shortens the waiting time required for the occlusion process and facilitates the control of the temperature and pressure in the tank. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施の形態の水素供給ステーションのブロッ
ク構成図である。
FIG. 1 is a block configuration diagram of a hydrogen supply station of the present embodiment.

【図2】本実施の形態の水素供給ステーションの電気的
ブロック構成図である。
FIG. 2 is an electrical block configuration diagram of a hydrogen supply station according to the present embodiment.

【図3】MHタンクの水素吸蔵特性を示すグラフ図であ
FIG. 3 is a graph showing the hydrogen storage characteristics of the MH tank.

【図4】MHタンクの水素放出特性を示すグラフ図であ
FIG. 4 is a graph showing the hydrogen release characteristics of the MH tank.

【図5】MHタンクの水素吸蔵量と水素圧力の関係を示
すグラフ図である
FIG. 5 is a graph showing the relationship between hydrogen storage amount and hydrogen pressure in the MH tank.

【図6】従来の水素供給ステーションのブロック構成図
である。
FIG. 6 is a block diagram of a conventional hydrogen supply station.

【図7】従来の水素供給ステーションのブロック構成図
である。
FIG. 7 is a block diagram of a conventional hydrogen supply station.

【図8】従来の水素供給ステーションの水素放出特性を
示すグラフ図である。
FIG. 8 is a graph showing hydrogen release characteristics of a conventional hydrogen supply station.

【符号の説明】[Explanation of symbols]

1 水素供給ステーション 11〜14 MHタンク 15 温水タンク 16 冷水タンク 17 コントローラ 31〜34 往路三方弁 51 温水往路 53 冷水往路 61〜64 熱交換媒体流路 71,72 車載タンク 1 Hydrogen supply station 11-14 MH tank 15 Hot water tank 16 Cold water tank 17 Controller 31-34 Forward three-way valve 51 Hot water outbound route 53 Cold water outbound route 61-64 heat exchange medium flow path 71,72 In-vehicle tank

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F17D 3/10 F17D 3/10 (72)発明者 葛山 弘一 愛知県名古屋市熱田区桜田町19番18号 東 邦瓦斯株式会社内 Fターム(参考) 3E072 EA10 3J071 AA02 BB14 CC03 CC13 DD04 DD28 DD29 EE02 FF03 FF15 4G140 AA16 AA17 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 7 Identification code FI theme code (reference) F17D 3/10 F17D 3/10 (72) Inventor Koichi Kuzuyama 19-18 Sakurada-cho, Atsuta-ku, Nagoya-shi, Aichi F-term in Toho Gas Co., Ltd. (reference) 3E072 EA10 3J071 AA02 BB14 CC03 CC13 DD04 DD28 DD29 EE02 FF03 FF15 4G140 AA16 AA17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を内蔵する複数の水素貯蔵
タンクと,前記水素貯蔵タンクごとに設けられるととも
に,その水素吸蔵合金と熱交換可能な熱交換媒体を流通
させる熱交換媒体流路と,前記各熱交換媒体流路に加温
用の熱交換媒体を供給する加温用媒体供給流路と,前記
各熱交換媒体流路に冷却用の熱交換媒体を供給する冷却
用媒体供給流路と,前記加温用媒体供給流路および前記
冷却用媒体供給流路と前記各熱交換媒体流路のそれぞれ
の入口とを接続する三方弁とを有することを特徴とする
水素供給ステーション。
1. A plurality of hydrogen storage tanks each containing a hydrogen storage alloy, and a heat exchange medium flow path which is provided for each hydrogen storage tank and which circulates a heat exchange medium capable of exchanging heat with the hydrogen storage alloys. A heating medium supply passage for supplying a heat exchange medium for heating to each heat exchange medium passage, and a cooling medium supply passage for supplying a heat exchange medium for cooling to each heat exchange medium passage And a three-way valve that connects the heating medium supply passage and the cooling medium supply passage to respective inlets of the heat exchange medium passages.
【請求項2】 オンサイトの装置であることを特徴とす
る請求項1に記載の水素供給ステーション。
2. The hydrogen supply station according to claim 1, wherein the hydrogen supply station is an on-site device.
【請求項3】 前記水素貯蔵タンクの各々の最大吸蔵量
が,供給対象タンクの最大吸蔵量の1〜2倍の範囲内に
あることを特徴とする請求項1または請求項2に記載の
水素供給ステーション。
3. The hydrogen according to claim 1 or 2, wherein the maximum storage amount of each of the hydrogen storage tanks is within a range of 1 to 2 times the maximum storage amount of the supply target tank. Supply station.
【請求項4】 水素吸蔵合金を内蔵する水素貯蔵タンク
と,前記水素貯蔵タンクに設けられるとともに,その水
素吸蔵合金と熱交換可能な熱交換媒体を流通させる熱交
換媒体流路と,前記熱交換媒体流路に加温用の熱交換媒
体を供給する加温用媒体供給流路と,前記熱交換媒体流
路に冷却用の熱交換媒体を供給する冷却用媒体供給流路
と,前記加温用媒体供給流路および前記冷却用媒体供給
流路と前記熱交換媒体流路の入口とを接続する三方弁
と,前記三方弁を調節して加温用の熱交換媒体と冷却用
の熱交換媒体とを混合して前記熱交換媒体流路に供給さ
せることにより,前記熱交換媒体流路に供給される熱交
換媒体の温度を制御する温度制御手段とを有することを
特徴とする水素供給ステーション。
4. A hydrogen storage tank containing a hydrogen storage alloy, a heat exchange medium flow path which is provided in the hydrogen storage tank, and through which a heat exchange medium capable of exchanging heat with the hydrogen storage alloy flows. A heating medium supply passage for supplying a heat exchange medium for heating to the medium passage, a cooling medium supply passage for supplying a heat exchange medium for cooling to the heat exchange medium passage, and the heating Medium supply passage and the cooling medium supply passage, and a three-way valve connecting the inlet of the heat exchange medium passage, and a heat exchange medium for heating and a heat exchange for cooling by adjusting the three-way valve. A hydrogen supply station, comprising: a temperature control means for controlling the temperature of the heat exchange medium supplied to the heat exchange medium channel by mixing the medium and supplying the mixture to the heat exchange medium channel. .
JP2002057450A 2002-03-04 2002-03-04 Hydrogen supplying station Pending JP2003254499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002057450A JP2003254499A (en) 2002-03-04 2002-03-04 Hydrogen supplying station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002057450A JP2003254499A (en) 2002-03-04 2002-03-04 Hydrogen supplying station

Publications (1)

Publication Number Publication Date
JP2003254499A true JP2003254499A (en) 2003-09-10

Family

ID=28667706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002057450A Pending JP2003254499A (en) 2002-03-04 2002-03-04 Hydrogen supplying station

Country Status (1)

Country Link
JP (1) JP2003254499A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103470954A (en) * 2013-09-25 2013-12-25 云南大红山管道有限公司 Seal water supplying system and water supplying method thereof
JP2014125385A (en) * 2012-12-26 2014-07-07 Kobe Steel Ltd Hydrogen storage/release method and hydrogen storage/release apparatus
CN109708002A (en) * 2019-01-22 2019-05-03 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) A kind of temperature compensation type alloy hydrogen storage hydrogen-feeding system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014125385A (en) * 2012-12-26 2014-07-07 Kobe Steel Ltd Hydrogen storage/release method and hydrogen storage/release apparatus
CN103470954A (en) * 2013-09-25 2013-12-25 云南大红山管道有限公司 Seal water supplying system and water supplying method thereof
CN109708002A (en) * 2019-01-22 2019-05-03 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) A kind of temperature compensation type alloy hydrogen storage hydrogen-feeding system

Similar Documents

Publication Publication Date Title
JP4542414B2 (en) Hydrogen tank cooling system for hydrogen fuel vehicle
JP3741009B2 (en) Fuel cell system
EP1803620B1 (en) Hydrogen station, hydrogen filling method, and vehicle
US6630648B2 (en) Device for dispensing of hydrogen
JP3918639B2 (en) Fuel cell system
JPH0842433A (en) Operating method of sensible heat accumulator and assembly
JP2007303625A (en) Hydrogen-filling method, hydrogen-filling device, and vehicle mounted with hydrogen-filling device
JP2003254499A (en) Hydrogen supplying station
JP2004333027A (en) Air conditioner
JP2004253258A (en) Fuel cell system and its control method
US20190308486A1 (en) Electric motor with cooling system and corresponding method
JP2002061797A (en) Halogen station
JP4379043B2 (en) Hydrogen supply station and method of using the same
JP6294217B2 (en) Hydrogen gas supply device
JP2004022366A (en) Fuel cell system and fuel cell vehicle
JP4346055B2 (en) Hydrogen supply system for equipment using hydrogen as fuel
JP4474011B2 (en) Hydrogen supply device for vehicles equipped with fuel cells
JP2001213603A (en) Hydrogen supply system for device using hydrogen as fuel
JP4120994B2 (en) Temperature control method for reaction vessel and temperature adjustment device for reaction vessel
JP4673617B2 (en) Fuel cell system and control method thereof
JP4162948B2 (en) Warm-up jacket and fuel cell system
JP4673618B2 (en) Fuel cell system
JP2004324770A (en) Gas storage system
JP2023551664A (en) Ammonia storage system temperature control process
JP2001355798A (en) Hydrogen filling system and hydrogen filling method