JP4346055B2 - Hydrogen supply system for equipment using hydrogen as fuel - Google Patents

Hydrogen supply system for equipment using hydrogen as fuel Download PDF

Info

Publication number
JP4346055B2
JP4346055B2 JP2000024817A JP2000024817A JP4346055B2 JP 4346055 B2 JP4346055 B2 JP 4346055B2 JP 2000024817 A JP2000024817 A JP 2000024817A JP 2000024817 A JP2000024817 A JP 2000024817A JP 4346055 B2 JP4346055 B2 JP 4346055B2
Authority
JP
Japan
Prior art keywords
hydrogen
storage
storage unit
reformer
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000024817A
Other languages
Japanese (ja)
Other versions
JP2001213602A (en
Inventor
克三 佐保田
滋和 木崎
竜也 菅原
芳雄 縫谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000024817A priority Critical patent/JP4346055B2/en
Publication of JP2001213602A publication Critical patent/JP2001213602A/en
Application granted granted Critical
Publication of JP4346055B2 publication Critical patent/JP4346055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水素を燃料とする機器への水素供給システム、特に、水素を燃料とする機器に水素を供給すべく、アルコール、ガソリン等の原料から水素を生成する改質器を備えた水素供給システムに関する。
【0002】
【関連技術】
本出願人は、先に、改質器の応答遅れに対応し得る水素供給システムとして、改質器により生成された水素を吸蔵し、且つ放出することが可能な水素貯蔵器を有し、その水素貯蔵器は、水素を吸蔵し易い第1水素吸蔵材を備えた第1貯蔵部と、水素を放出し易い第2水素吸蔵材を備えた第2貯蔵部とを有し、第1貯蔵部に改質器からの水素を一旦吸蔵させ、次いでその吸蔵水素を放出して得られた水素を第2貯蔵部に移動して吸蔵させ、前記機器の始動時には第2貯蔵部より吸蔵水素を放出して、その機器に供給するようにしたものを提案している(特願平11−164939号明細書および図面参照)。この水素供給システムは、主として車載用として開発されたものである。
【0003】
【発明が解決しようとする課題】
しかしながら先行技術においては、第1貯蔵部から第2貯蔵部に水素を移動させる際に、第1貯蔵部を60℃程度に加熱し、一方、第2貯蔵部の温度を40〜50℃に保たなければならないが、第1貯蔵部の水素放出圧が低く、また実車走行中において第2貯蔵部の温度を前記範囲に保つことが困難であることから、第2貯蔵部への水素の移動を迅速に、且つ十分に行うことができない、という問題があった。
【0004】
【課題を解決するための手段】
本発明は第1貯蔵部から第2貯蔵部への水素の移動を迅速に、且つ十分に行い、また第2貯蔵部から低い温度で水素の放出を行い得るようにした前記水素供給システムを提供することを目的とする。
【0005】
前記目的を達成するため本発明によれば、水素を燃料とする機器に水素を供給すべく、アルコール、ガソリン等の原料から水素を生成する改質器を備えた水素供給システムにおいて、前記改質器により生成された水素を吸蔵し、且つ放出することが可能な水素貯蔵器を有し、その水素貯蔵器は、低圧吸蔵・高温放出型第1水素吸蔵材を備えた第1貯蔵部と、高圧吸蔵・低温放出型第2水素吸蔵材を備えた第2貯蔵部とを有し、前記第1水素吸蔵材の水素吸蔵圧をP1とし、またその水素放出温度をT1とし、一方、前記第2水素吸蔵材の水素吸蔵圧をP2とし、またその水素放出温度をT2としたとき、P1<P2およびT1>T2の関係が成立し、前記第1貯蔵部に前記改質器からの水素を一旦吸蔵させ、次いでその吸蔵水素を放出して得られた水素を前記第2貯蔵部に移動して吸蔵させ、前記機器の始動時には前記第2貯蔵部より吸蔵水素を放出して、その機器に供給するようにし、前記第1貯蔵部の水素放出用熱源としては前記改質器の排出熱が用いられる、水素を燃料とする機器への水素供給システムが提供される。
【0006】
前記のように構成すると、第1貯蔵部から第2貯蔵部へ水素を移動する際に、第1水素吸蔵材の水素放出特性を利用して第1貯蔵部から高温下で高い放出圧の水素を第2貯蔵部に導入して、その水素を強制的に第2水素吸蔵材に迅速に、且つ十分に吸蔵させることができる。一方、第2貯蔵部からの水素の放出は低い温度で行われる。また第1貯蔵部の水素放出用熱源としては改質器の排出熱が用いられていて、第1貯蔵部の水素放出用熱源として別途、熱源を付加する必要がないので、システム全体としての熱効率が向上する。
【0007】
【発明の実施の形態】
図1に示す水素供給システム1は、水素を燃料とする機器としての燃料電池2を電源とする電気自動車に搭載される。
【0008】
水素供給システム1において、改質器3は、アルコール、ガソリン等の原料から水素を主成分とする改質ガスを生成するもので、その供給側が燃料電池2の改質ガス入口側に供給管路4を介して接続される。空気用供給管路5において、その導入側にエアクリーナ6、モータ7を持つスーパチャージャ8およびインタクーラ9が装置され、また導出側は燃料電池2の空気入口側に接続される。その供給管路5の燃料電池2近傍に第1二方弁V1が装置される。燃料電池2の一対の接続端子は一対の導線10を介して車両駆動モータ11に接続され、またそれら導線10にモータ駆動用補助バッテリ12の一対の接続端子が一対の導線13を介して接続される。
【0009】
燃料電池2の改質ガス出口側および空気出口側はそれぞれ排出管路14,15を介して蒸発器用燃焼器16に接続され、また空気用排出管路15の燃焼器16近傍に第2二方弁V2が装置される。蒸発器17の一方の入口側にメタノールタンク18の一方の出口側が供給管路19を介して接続され、その供給管路19にポンプ20が装置される。また蒸発器17の他方の入口側には水タンク21の出口側が供給管路22を介して接続され、その供給管路22にポンプ23が装置される。蒸発器17の出口側はメタノールおよび水分よりなる混合蒸気用供給管路24を介して改質器3の導入側に接続される。またメタノールタンク18の他方の出口側は別の供給管路25を介して改質器始動用燃焼器26に接続され、その供給管路25にメタノールタンク18側より順次、ポンプ27および第3二方弁V3が装置される。また供給管路25において、ポンプ27および第3二方弁V3間がさらに別の供給管路28を介して蒸発器用燃焼器16の電気ヒータキャタライザ29に接続され、その供給管路28の電気ヒータキャタライザ29近傍に第4二方弁V4が装置される。改質器始動用燃焼器26は、グロープラグ30、電池32およびそれと燃焼器26間に存するスイッチ33を有する加熱回路31を備えている。
【0010】
改質ガス用供給管路4に、その改質器3側より順次、第5二方弁V5、CO除去器34、第1三方弁3V1、熱交換器35、第2三方弁3V2および流量計36が装置される。空気用供給管路5において、燃料電池2近傍の第1二方弁V1上流側から分岐した供給管路37がさらに三つに分岐して改質器始動用燃焼器26、改質器3およびCO除去器34に接続され、その供給管路37の燃焼器26近傍、改質器3近傍およびCO除去器34近傍にそれぞれ第6〜第8二方弁V6〜V8が装置される。空気は、燃焼器26においては燃焼と温度制御のために用いられ、また改質器3においては温度制御のために用いられ、さらにCO除去器34では改質ガス中に含まれるCOをCO2 に酸化するために用いられる。CO除去器34の出口側に存する第1三方弁3V1は第1バイパス管路38を介して燃料電池2の改質ガス用排出管路14に接続される。
【0011】
また改質ガス用供給路4において、熱交換器35の下流側に存する第2三方弁3V2と、流量計36および燃料電池2の入口側間とが第2バイパス管路39によって接続されている。その第2バイパス管路39に、第2三方弁3V2側より順次、流量計40、熱交換器41、水分除去器42、第9二方弁V9、水素貯蔵器43の第1貯蔵部44、第10二方弁V10、流量計45、第11二方弁V11および流量制御弁46が装置される。その流量制御弁46および第11二方弁V11間には必要に応じて温度調節精度向上のため熱交換器47が装置される。
【0012】
第1貯蔵部44に加熱装置48が付設される。その加熱装置48は改質ガス流通用管路49を有し、その管路49の入口側は、改質ガス用供給管路4において、改質器3および第5二方弁V5間に接続され、その出口側は第5二方弁V5およびCO除去器34間に接続される。管路49の入口側に第12二方弁V12が装置される。
【0013】
第2バイパス管路38の第1貯蔵部44下流側において、流量計45および第11二方弁V11間に、水素用供給兼排出管路50を介して水素貯蔵器43の第2貯蔵部51が接続され、その供給兼排出管路50に第2貯蔵部51側より順次、第13二方弁V13および流量計52が装置される。
【0014】
第2貯蔵部51に、ヒータ53、バッテリ54およびスイッチ55を有する加熱回路56と、ラジエータ、水ポンプ、水タンク等を備えた冷却部57を有する冷却回路58が付設される。
【0015】
燃料電池2、車両駆動モータ11、グロープラグ30を有する加熱回路31のスイッチ33、各ポンプ20,23,27ならびにヒータ53を有する加熱回路56のスイッチ55等は、始動スイッチ59をON状態にすることによってECU60を介して作動制御され、一方、始動スイッチ59をOFF状態にすることによって不作動となる。
【0016】
水素貯蔵器43においては、改質器3により生成された水素を吸蔵し、且つ放出することが可能である。その第1貯蔵部44は、入口と出口を持つ、いわゆるスルー型タンクを有し、その入口は第2バイパス管路39の上流側に、また出口は第2バイパス管路39の下流側にそれぞれ接続され、タンク内には第1水素吸蔵材としての第1水素吸蔵合金MH1が充填される。第2貯蔵部51は、入口兼出口を有する通常のタンクを有し、そのタンク内に第2水素吸蔵材としての第2水素吸蔵合金MH2が充填される。図2に示すように、第1水素吸蔵合金MH1は低圧吸蔵・高温放出型であって、80℃、0.15MPa(P1)で水素を吸蔵し、一方、130℃(T1)、0.8MPaで水素を放出する、といった特性を有する。このような水素吸蔵合金としては、LaNi3.96Co0.6 Al0.44合金が用いられる。また第2水素吸蔵合金MH2は高圧吸蔵・低温放出型であって、60℃、0.5MPa(P2)で水素を吸蔵し、一方、30℃(T2)、0.15MPaで水素を放出するといった特性を有する。このような水素吸蔵合金としては、MmNi4.04Co0.6 Mn0.31Al0.05合金(Mmはミッシュメタル)が用いられる。したがって、両水素吸蔵圧P1、P2間および両水素放出温度T1、T2間にはP1<P2、T1>T2の関係が成立している。
【0017】
前記のように構成すると、第1貯蔵部44から第2貯蔵部51へ水素を移動する際に、第1水素吸蔵合金MH1の水素放出特性を利用して第1貯蔵部44から高温下で高い放出圧の水素を第2貯蔵部51に導入して、その水素を強制的に第2水素吸蔵合金MH2に迅速に、且つ十分に吸蔵させることができる。一方、第2貯蔵部51からの水素の放出は低い温度で行われる。
【0018】
次に、図1および図3〜図8を参照して各種モードについて説明する。
【0019】
A.始動モード
このモード開始前において、水素貯蔵器43の第2貯蔵部51における水素吸蔵量は満状態にある。第1〜第13二方弁V1〜V13および流量制御弁46は「閉」状態であり、また第1三方弁3V1は改質ガスを蒸発器用燃焼器16に供給し得るように、つまり燃焼器16側に切換えられており、一方、第2三方弁3V2は、改質ガスを第1貯蔵部44に供給し得るように、つまり第1貯蔵部44側にそれぞれ切換えられている。
【0020】
図1、図3において、始動スイッチ59をON状態にすると、スーパチャージャ8が作動し、空気が、エアクリーナ6、スーパチャージャ8およびインタクーラ9を経て、第1二方弁V1が「開」で、燃料電池2に供給され、また第6〜第8二方弁V6〜V8が「開」で、改質器3の燃焼器26、改質器3およびCO除去器34にそれぞれ供給される。燃料電池2から排出された空気は、第2二方弁V2が「開」で、蒸発器用燃焼器16に導入される。
【0021】
蒸発器用燃焼器16の電気ヒータキャタライザ29が通電され、それが昇温すると、ポンプ27が作動すると共に第4二方弁V4が「開」で、メタノールが電気ヒータキャタライザ29に噴射され、そのメタノールを燃焼器16で燃焼させて蒸発器17の加熱が行われる。
【0022】
第2貯蔵部51の加熱回路56のスイッチ55が閉じて、その第2貯蔵部51がヒータ53により加熱される。この場合、第2貯蔵部51、したがって第2水素吸蔵合金MH2を、水素放出温度である30℃程度まで短時間で昇温することができる。そして、第2貯蔵部51の入口兼出口部分の圧力を検知して、その圧力が0.15MPa程度に達すると、第2貯蔵部51の吸蔵水素が放出されると共に第13、第11二方弁V13、V11および流量制御弁46が「開」で、その放出水素が燃料電池2に供給され、それが運転を開始する。第2貯蔵部51からの水素供給量は流量計52により検知される。燃料電池2における余剰水素は蒸発器用燃焼器16に導入され、そこで燃焼されて蒸発器17の加熱に利用される。
【0023】
改質器始動用燃焼器26において、グロープラグ30を有する加熱回路31のスイッチ33が閉じてそのグロープラグ30が通電される。第3二方弁V3が「開」で、メタノールが燃焼器26に噴射され、そのメタノールの燃焼により改質器3が加熱される。改質器3の供給口部分のガス温度を検知して、それが所定値に達したときを改質器3の加熱完了としてスイッチ33が開き、グロープラグ30への通電が停止される。
【0024】
蒸発器17にメタノールおよび水が噴射されてメタノールおよび水分よりなる混合蒸気が生成され、その混合蒸気が改質器3に供給されて改質が行われる。
【0025】
改質ガスは、かなりのCOを含んでおり、第5二方弁V5が「開」で、CO除去器34に導入され、次いで、第1三方弁3V1が燃焼器16側へ切換えられているので、第1バイパス管路38を経て燃焼器16に導入され、そこで水素等の可燃成分が燃焼される。
【0026】
改質ガスのCO濃度を検知するか、または改質ガス温度と時間との関係からCO濃度を調べ、そのCO濃度が所定値以下になったとき、第1、第2三方弁3V1,3V2が燃料電池2側へ切換えられ、改質ガスが燃料電池2に供給される。
【0027】
暖機中の改質器3からの改質ガス量は燃料電池2を運転するのに十分ではないが、その不足分は第2貯蔵部51の放出水素によって補われ、これにより燃料電池2の出力の安定化が図られる。改質ガス量の増加に伴い水素供給量が漸次、減少制御される。
【0028】
改質器3の供給口部における改質ガスの温度および圧力がそれぞれ200℃、0.16MPa程度に達したとき、その改質器3が定常モードに達した、と判断され、加熱回路56のスイッチ55が開き、また第2貯蔵部51側の第13、第11二方弁V13、V11および流量制御弁46が閉じられ、以後、改質器3による自立運転モードに移行する。
【0029】
改質ガスが、50℃の冷却水を流通させた熱交換器35を経たときには、その温度は80℃程度に、また圧力は0.15MPa程度にそれぞれ降下しており、このような温度および圧力を有する改質ガスが燃料電池2において燃料として用いられている。
【0030】
B.定常走行中における水素吸蔵・水素移動モード
図1、図4に示すように、水素吸蔵モードの開始に伴い第2三方弁3V2が第1貯蔵部44側に切換えられる。
【0031】
第2三方弁3V2における改質ガスの温度は80℃程度、圧力は0.15MPa程度であるが、その改質ガスは、50℃の冷却水を流通させた熱交換器41により温度を60℃程度に下げられ、次いで水分除去器42により水分を除去される。
【0032】
第9二方弁V9が「開」で、60℃、0.15MPa程度の改質ガスが第1貯蔵部44に導入されて、その水素が第1水素吸蔵合金MH1に吸蔵される。この吸蔵によりその合金MH1は80℃程度に昇温し、この温度は60℃程度の改質ガスの冷却作用によって保持される。
【0033】
第1貯蔵部44を通過した改質ガスは、第10、第11二方弁V10、V11および流量制御弁46が「開」で、燃料電池2に供給され、その運転が継続される。
【0034】
第1貯蔵部44の入、出口側に在る両流量計40,45の積算流量の差により第1貯蔵部44の水素吸蔵量が検知される。第1貯蔵部44の水素吸蔵量が満状態に達していない場合は前記吸蔵過程が継続される。
【0035】
第1貯蔵部44の水素吸蔵量が満状態に達すると、水素移動モードへ移行すべく第2三方弁3V2が燃料電池2側へ切換えられる。
【0036】
第9、第11二方弁V9、V11が「閉」で、且つ第10、第13二方弁V10、V13が「開」で、水素の移動が可能となる。また第12二方弁V12が「開」で、且つ第5二方弁V5が「閉」で、200℃程度の高温改質ガスが加熱装置48を流通した後、CO除去器34、熱交換器35等を経て燃料電池2に供給され、その運転が継続される。
【0037】
このように第1貯蔵部44の第1水素吸蔵合金MH1が改質器3の排出熱によって加熱され、その温度が130℃程度に、また圧力が0.8MPa程度に上昇すると吸蔵水素が放出される。
【0038】
第2貯蔵部51の第2水素吸蔵合金MH2は加熱回路56により60℃程度に加熱され、第1貯蔵部44からの放出水素は60℃、0.5MPa程度で第2水素吸蔵合金MH2に吸蔵される。この吸蔵による合金MH2の温度上昇は冷却回路58により抑制されて、その温度は60℃程度に保持される。
【0039】
第1貯蔵部44の出口側に在る流量計45により、第1貯蔵部44の水素放出量が満状態の量の7割を超えたことが検知されたとき、第5二方弁V5が「開」で、且つ第12二方弁V12が「閉」で、第1貯蔵部44の加熱が停止される。第1貯蔵部44からは、その余熱を利用した第1水素吸蔵合金MH1の吸熱反応で水素の放出が続行される。これにより第1貯蔵部44の温度を下げて、次の水素吸蔵モードを再開する際のタイムラグを減少させることができる。
【0040】
第1貯蔵部44の出口側に在る流量計45の積算流量が、その貯蔵部44の満状態の量に達したとき、第13二方弁V13が「閉」で、第2貯蔵部51への水素移動が停止される。この時点で、第2貯蔵部51における水素吸蔵量は満状態とされる。
【0041】
C.加速モード
図1、図5に示すように、アクセル操作量が所定値を超えた場合は加速モードに移行し、改質器3への混合蒸気(メタノールおよび水分)が増量される。
【0042】
第1貯蔵部44における水素吸蔵量が満状態か否かが検知され、それが満状態ではなく、水素吸蔵モードが実行されている場合には、第2三方弁3V2が燃料電池2側へ切換えられ、また第11二方弁V11が「閉」となる。つまり、加速時には改質ガスを全て燃料電池2に供給するようにして水素吸蔵は行わないのである。
【0043】
第1貯蔵部44における水素吸蔵量が満状態であれば、第2三方弁3V2は燃料電池2側へ切換えられた状態にあるので、その状態が保持される。
【0044】
アクセル操作量が所定値以下となったとき加速モードは終了する。
【0045】
D.減速モード
図1、図6に示すように、アクセル操作量が所定値を下回った場合は減速モードに移行し、改質器3への混合蒸気(メタノールおよび水分)が減量される。
【0046】
第2三方弁3V2が第1貯蔵部44側へ切換えられているか否かが判別され、切換えられていない場合には、水素移動モードが実行されているか否かが判別され、水素移動モードが実行されていない場合には第2三方弁3V2が第1貯蔵部44側へ切換えられて余剰水素が第1貯蔵部44に吸蔵される。
【0047】
アクセル操作量が所定値以上になったとき減速モードは終了する。
【0048】
一方、最初から第2三方弁3V2が燃料電池2側へ切換えられていて、水素移動モードが実行されている場合には、その第2三方弁3V2の燃料電池2側への切換え状態が保持される。
【0049】
E.アイドリングモード
図1、図7に示すように、アクセル操作量がゼロの場合はアイドリングモードに移行し、改質器3への混合蒸気(メタノールおよび水分)の量がアイドリング状態に調節される。
【0050】
第2三方弁3V2が第1貯蔵部44側へ切換えられているか否かが判別され、切換えられていない場合には、水素移動モードが実行されているか否かが判別され、水素移動モードが実行されていない場合には改質ガス量が最少必要量か否かが判別され、最少必要量でない場合には第2三方弁3V2が第1貯蔵部44側へ切換えられて余剰水素が第1貯蔵部44に吸蔵される。
【0051】
アクセル操作が行われるとアイドリングモードは終了する。
【0052】
一方、最初から第2三方弁3V2が燃料電池2側へ切換えられていて、水素移動モードが実行されている場合、および改質ガス量が最少必要量である場合には、その第2三方弁3V2の燃料電池2側への切換え状態が保持される。
【0053】
F.停止モード
図1、図8に示すように始動スイッチ59をOFF状態にすると、改質器3への混合蒸気(メタノールおよび水分)の供給が停止される。
【0054】
第2三方弁3V2が第1貯蔵部44側へ切換えられて、混合蒸気供給停止後、改質器3の残存混合蒸気により生成された余剰水素が第1貯蔵部44に吸蔵される。改質ガス流量が所定値以下になると燃料電池2、改質器3等が停止される。
【0055】
なお、水素を燃料とする機器としては燃料電池の外に内燃機関を挙げることができる。
【0056】
【発明の効果】
発明によれば前記のような手段を採用することによって、第1貯蔵部から第2貯蔵部への水素の移動を迅速に、且つ十分に行い、また第2貯蔵部から低い温度で水素の放出を行い得るようにした、車載用として好適な水素供給システムを提供することができる。
【0057】
さらに第1貯蔵部の水素放出用熱源としては改質器の排出熱が用いられるので、第1貯蔵部の水素放出用熱源として別途、熱源を付加する必要がなく、システム全体としての熱効率を向上させることができる。
【図面の簡単な説明】
【図1】 水素供給システムの説明図である。
【図2】 第1および第2水素吸蔵合金の水素吸放出特性図である。
【図3】 始動モードのフローチャートである。
【図4】 水素吸蔵・水素移動モードのフローチャートである。
【図5】 加速モードのフローチャートである。
【図6】 減速モードのフローチャートである。
【図7】 アイドリングモードのフローチャートである。
【図8】 停止モードのフローチャートである。
【符号の説明】
1……………水素供給システム
2……………燃料電池(機器)
3……………改質器
43…………水素貯蔵器
44…………第1貯蔵部
51…………第2貯蔵部
MH1………第1水素吸蔵合金(第1水素吸蔵材)
MH2………第2水素吸蔵合金(第2水素吸蔵材)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen supply system for equipment using hydrogen as a fuel, and in particular, a hydrogen supply system including a reformer that generates hydrogen from raw materials such as alcohol and gasoline in order to supply hydrogen to equipment using hydrogen as a fuel. About.
[0002]
[Related technologies]
The present applicant previously has a hydrogen storage system capable of occluding and releasing hydrogen generated by the reformer as a hydrogen supply system that can cope with the response delay of the reformer, The hydrogen storage device includes a first storage unit including a first hydrogen storage material that easily stores hydrogen, and a second storage unit including a second hydrogen storage material that easily releases hydrogen. First, the hydrogen from the reformer is occluded, and then the hydrogen obtained by releasing the occluded hydrogen is moved to the second storage unit for occlusion, and the occluded hydrogen is released from the second storage unit at the time of starting the equipment. In this case, a device is proposed which is supplied to the device (see Japanese Patent Application No. 11-164939 and drawings). This hydrogen supply system was developed mainly for in-vehicle use.
[0003]
[Problems to be solved by the invention]
However, in the prior art, when transferring hydrogen from the first storage unit to the second storage unit, the first storage unit is heated to about 60 ° C, while the temperature of the second storage unit is kept at 40-50 ° C. However, since the hydrogen discharge pressure of the first storage unit is low and it is difficult to keep the temperature of the second storage unit in the above range during actual vehicle travel, the transfer of hydrogen to the second storage unit is difficult. There is a problem in that it cannot be performed quickly and sufficiently.
[0004]
[Means for Solving the Problems]
The present invention provides the above-described hydrogen supply system capable of quickly and sufficiently transferring hydrogen from the first storage unit to the second storage unit and releasing hydrogen from the second storage unit at a low temperature. The purpose is to do.
[0005]
In order to achieve the above object, according to the present invention, in a hydrogen supply system comprising a reformer that generates hydrogen from a raw material such as alcohol or gasoline in order to supply hydrogen to a device using hydrogen as a fuel, the reforming is performed. A hydrogen storage device capable of storing and releasing hydrogen generated by the vessel, the hydrogen storage device comprising a first storage unit comprising a low-pressure storage / high-temperature release type first hydrogen storage material; A second storage part having a high-pressure storage / low-temperature release type second hydrogen storage material, wherein the hydrogen storage pressure of the first hydrogen storage material is P1, and the hydrogen release temperature is T1, while the first storage 2 When the hydrogen storage pressure of the hydrogen storage material is P2 and the hydrogen release temperature is T2, the relationship P1 <P2 and T1> T2 is established, and the hydrogen from the reformer is supplied to the first storage unit. It is obtained by occluding and then releasing the stored hydrogen. Move the hydrogen to the second storage unit is occluded, during startup of the device to release the occluded hydrogen from said second reservoir, and for supplying to the device, the hydrogen release of the first storage portion As a heat source for use , there is provided a hydrogen supply system for equipment using hydrogen as a fuel, in which the heat discharged from the reformer is used .
[0006]
If comprised as mentioned above, when transferring hydrogen from the 1st storage part to the 2nd storage part, the hydrogen of high discharge pressure from the 1st storage part under high temperature is utilized using the hydrogen release characteristic of the 1st hydrogen storage material. Can be introduced into the second storage section, and the hydrogen can be forcibly and quickly stored in the second hydrogen storage material. On the other hand, hydrogen is released from the second storage unit at a low temperature. Further, the heat discharged from the reformer is used as the heat source for releasing hydrogen in the first storage section, and it is not necessary to add a separate heat source as the heat source for releasing hydrogen in the first storage section. Will improve.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
A hydrogen supply system 1 shown in FIG. 1 is mounted on an electric vehicle using a fuel cell 2 as a power source as a power source.
[0008]
In the hydrogen supply system 1, the reformer 3 generates reformed gas mainly composed of hydrogen from raw materials such as alcohol and gasoline, and the supply side is connected to the reformed gas inlet side of the fuel cell 2. 4 is connected. In the air supply line 5, an air cleaner 6, a supercharger 8 having a motor 7 and an intercooler 9 are installed on the introduction side, and the outlet side is connected to the air inlet side of the fuel cell 2. A first two-way valve V1 is installed near the fuel cell 2 in the supply line 5. A pair of connection terminals of the fuel cell 2 are connected to the vehicle drive motor 11 via a pair of conductors 10, and a pair of connection terminals of a motor driving auxiliary battery 12 are connected to the conductors 10 via a pair of conductors 13. The
[0009]
The reformed gas outlet side and the air outlet side of the fuel cell 2 are connected to the evaporator combustor 16 via the exhaust pipes 14 and 15 respectively, and the second two-way near the combustor 16 of the air exhaust pipe 15. Valve V2 is installed. One outlet side of the methanol tank 18 is connected to one inlet side of the evaporator 17 via a supply line 19, and a pump 20 is installed in the supply line 19. Further, the outlet side of the water tank 21 is connected to the other inlet side of the evaporator 17 through a supply line 22, and a pump 23 is connected to the supply line 22. The outlet side of the evaporator 17 is connected to the introduction side of the reformer 3 through a mixed steam supply pipe 24 made of methanol and moisture. The other outlet side of the methanol tank 18 is connected to a reformer starting combustor 26 via another supply line 25, and the pump 27 and the third second line are sequentially connected to the supply line 25 from the methanol tank 18 side. A direction valve V3 is provided. Further, in the supply line 25, the pump 27 and the third two-way valve V3 are connected to the electric heater catalyzer 29 of the evaporator combustor 16 via another supply line 28, and the electric heater in the supply line 28 is connected. A fourth two-way valve V4 is installed in the vicinity of the catalyzer 29. The reformer starting combustor 26 includes a heating circuit 31 having a glow plug 30, a battery 32 and a switch 33 existing between the glow plug 30 and the battery 32.
[0010]
In order from the reformer 3 side to the reformed gas supply line 4, the fifth two-way valve V5, the CO remover 34, the first three-way valve 3V1, the heat exchanger 35, the second three-way valve 3V2, and the flow meter. 36 is installed. In the air supply line 5, the supply line 37 branched from the upstream side of the first two-way valve V1 in the vicinity of the fuel cell 2 is further branched into three to form a reformer start combustor 26, a reformer 3 and The sixth to eighth two-way valves V6 to V8 are connected to the CO remover 34, in the vicinity of the combustor 26, the reformer 3 and the CO remover 34 in the supply line 37, respectively. Air is used for combustion and temperature control in the combustor 26, and is used for temperature control in the reformer 3. Further, the CO remover 34 converts CO contained in the reformed gas into CO 2. Used to oxidize. The first three-way valve 3 </ b> V <b> 1 existing on the outlet side of the CO remover 34 is connected to the reformed gas discharge conduit 14 of the fuel cell 2 via the first bypass conduit 38.
[0011]
In the reformed gas supply path 4, the second three-way valve 3 </ b> V <b> 2 existing on the downstream side of the heat exchanger 35 and the flow meter 36 and the inlet side of the fuel cell 2 are connected by a second bypass line 39. . In order to the second bypass line 39 from the second three-way valve 3V2 side, a flow meter 40, a heat exchanger 41, a moisture remover 42, a ninth two-way valve V9, a first storage unit 44 of the hydrogen storage 43, A tenth two-way valve V10, a flow meter 45, an eleventh two-way valve V11, and a flow control valve 46 are provided. A heat exchanger 47 is installed between the flow control valve 46 and the eleventh two-way valve V11 to improve the temperature adjustment accuracy as necessary.
[0012]
A heating device 48 is attached to the first storage unit 44. The heating device 48 has a reformed gas distribution pipe 49, and the inlet side of the pipe 49 is connected between the reformer 3 and the fifth two-way valve V 5 in the reformed gas supply pipe 4. The outlet side is connected between the fifth two-way valve V5 and the CO remover 34. A twelfth two-way valve V12 is installed on the inlet side of the pipe line 49.
[0013]
On the downstream side of the first storage unit 44 of the second bypass line 38, the second storage unit 51 of the hydrogen storage unit 43 is connected between the flow meter 45 and the eleventh two-way valve V <b> 11 via the hydrogen supply and discharge line 50. The thirteenth two-way valve V13 and the flow meter 52 are sequentially connected to the supply / discharge conduit 50 from the second storage section 51 side.
[0014]
A heating circuit 56 having a heater 53, a battery 54, and a switch 55, and a cooling circuit 58 having a cooling unit 57 having a radiator, a water pump, a water tank, and the like are attached to the second storage unit 51.
[0015]
The fuel cell 2, the vehicle drive motor 11, the switch 33 of the heating circuit 31 having the glow plug 30, the pumps 20, 23 and 27, the switch 55 of the heating circuit 56 having the heater 53, and the like turn on the start switch 59. Accordingly, the operation is controlled via the ECU 60, while the operation is deactivated by setting the start switch 59 to the OFF state.
[0016]
In the hydrogen storage device 43, it is possible to occlude and release hydrogen generated by the reformer 3. The first storage unit 44 has a so-called through-type tank having an inlet and an outlet. The inlet is on the upstream side of the second bypass conduit 39, and the outlet is on the downstream side of the second bypass conduit 39. The tank is filled with a first hydrogen storage alloy MH1 as a first hydrogen storage material. The 2nd storage part 51 has a normal tank which has an entrance and exit, and the 2nd hydrogen storage alloy MH2 as a 2nd hydrogen storage material is filled in the tank. As shown in FIG. 2, the first hydrogen storage alloy MH1 is a low-pressure storage / high-temperature release type that stores hydrogen at 80 ° C. and 0.15 MPa (P1), while 130 ° C. (T1) and 0.8 MPa. It has the characteristic of releasing hydrogen at As such a hydrogen storage alloy, a LaNi 3.96 Co 0.6 Al 0.44 alloy is used. The second hydrogen storage alloy MH2 is a high pressure storage / low temperature release type that stores hydrogen at 60 ° C. and 0.5 MPa (P2), while releasing hydrogen at 30 ° C. (T2) and 0.15 MPa. Has characteristics. As such a hydrogen storage alloy, MmNi 4.04 Co 0.6 Mn 0.31 Al 0.05 alloy (Mm is Misch metal) is used. Therefore, the relationship of P1 <P2 and T1> T2 is established between the hydrogen storage pressures P1 and P2 and between the hydrogen release temperatures T1 and T2.
[0017]
If comprised as mentioned above, when transferring hydrogen from the 1st storage part 44 to the 2nd storage part 51, it is high at high temperature from the 1st storage part 44 using the hydrogen release characteristic of the 1st hydrogen storage alloy MH1. Hydrogen having a release pressure can be introduced into the second storage unit 51, and the hydrogen can be forcibly and quickly stored in the second hydrogen storage alloy MH2. On the other hand, hydrogen is released from the second storage unit 51 at a low temperature.
[0018]
Next, various modes will be described with reference to FIGS. 1 and 3 to 8.
[0019]
A. Start mode Before the start of this mode, the hydrogen storage amount in the second storage unit 51 of the hydrogen store 43 is in a full state. The first to thirteenth two-way valves V1 to V13 and the flow rate control valve 46 are in the “closed” state, and the first three-way valve 3V1 can supply the reformed gas to the evaporator combustor 16, that is, the combustor. On the other hand, the second three-way valve 3V2 is switched to the first storage unit 44 side so that the reformed gas can be supplied to the first storage unit 44 side.
[0020]
1 and 3, when the start switch 59 is turned on, the supercharger 8 is activated, the air passes through the air cleaner 6, the supercharger 8, and the intercooler 9, and the first two-way valve V1 is "open". The fuel cell 2 is supplied, and the sixth to eighth two-way valves V6 to V8 are “open” and supplied to the combustor 26, the reformer 3 and the CO remover 34 of the reformer 3, respectively. The air discharged from the fuel cell 2 is introduced into the evaporator combustor 16 when the second two-way valve V2 is “open”.
[0021]
When the electric heater catalyzer 29 of the evaporator combustor 16 is energized and its temperature rises, the pump 27 operates and the fourth two-way valve V4 is “open”, and methanol is injected into the electric heater catalyzer 29. Is combusted in the combustor 16 to heat the evaporator 17.
[0022]
The switch 55 of the heating circuit 56 of the second storage unit 51 is closed, and the second storage unit 51 is heated by the heater 53. In this case, it is possible to raise the temperature of the second storage unit 51, and hence the second hydrogen storage alloy MH2, to a hydrogen release temperature of about 30 ° C. in a short time. Then, when the pressure at the inlet / outlet portion of the second storage section 51 is detected and the pressure reaches about 0.15 MPa, the stored hydrogen in the second storage section 51 is released and the thirteenth and eleventh two directions are released. The valves V13 and V11 and the flow control valve 46 are “open”, and the released hydrogen is supplied to the fuel cell 2, which starts operation. The amount of hydrogen supplied from the second storage unit 51 is detected by the flow meter 52. Surplus hydrogen in the fuel cell 2 is introduced into the evaporator combustor 16 where it is burned and used to heat the evaporator 17.
[0023]
In the reformer starting combustor 26, the switch 33 of the heating circuit 31 having the glow plug 30 is closed and the glow plug 30 is energized. When the third two-way valve V3 is “open”, methanol is injected into the combustor 26, and the reformer 3 is heated by the combustion of the methanol. When the gas temperature at the supply port portion of the reformer 3 is detected and reaches a predetermined value, the heating of the reformer 3 is completed, the switch 33 is opened, and the energization to the glow plug 30 is stopped.
[0024]
Methanol and water are injected into the evaporator 17 to generate a mixed steam composed of methanol and moisture, and the mixed steam is supplied to the reformer 3 for reforming.
[0025]
The reformed gas contains a considerable amount of CO, and the fifth two-way valve V5 is “open” and introduced into the CO remover 34, and then the first three-way valve 3V1 is switched to the combustor 16 side. Therefore, it is introduced into the combustor 16 through the first bypass line 38, and combustible components such as hydrogen are combusted there.
[0026]
The CO concentration of the reformed gas is detected, or the CO concentration is checked from the relationship between the reformed gas temperature and the time. When the CO concentration falls below a predetermined value, the first and second three-way valves 3V1, 3V2 It is switched to the fuel cell 2 side, and the reformed gas is supplied to the fuel cell 2.
[0027]
The amount of reformed gas from the reformer 3 during warm-up is not sufficient for operating the fuel cell 2, but the shortage is compensated by the hydrogen released from the second storage unit 51, thereby The output is stabilized. As the reformed gas amount increases, the hydrogen supply amount is gradually controlled to decrease.
[0028]
When the temperature and pressure of the reformed gas at the supply port of the reformer 3 reach about 200 ° C. and about 0.16 MPa, respectively, it is determined that the reformer 3 has reached the steady mode, and the heating circuit 56 The switch 55 is opened, and the thirteenth, eleventh two-way valves V13, V11 and the flow rate control valve 46 on the second storage section 51 side are closed, and thereafter, the operation shifts to the self-sustaining operation mode by the reformer 3.
[0029]
When the reformed gas passes through the heat exchanger 35 in which 50 ° C. cooling water is circulated, the temperature drops to about 80 ° C. and the pressure drops to about 0.15 MPa. Is used as fuel in the fuel cell 2.
[0030]
B. Hydrogen storage / hydrogen transfer mode during steady running As shown in FIGS. 1 and 4, the second three-way valve 3 </ b> V <b> 2 is switched to the first storage unit 44 side with the start of the hydrogen storage mode.
[0031]
The temperature of the reformed gas in the second three-way valve 3V2 is about 80 ° C. and the pressure is about 0.15 MPa. The reformed gas is heated to 60 ° C. by the heat exchanger 41 in which 50 ° C. cooling water is circulated. Then, the moisture is removed by the moisture remover 42.
[0032]
When the ninth two-way valve V9 is “open”, a reformed gas of about 60 ° C. and about 0.15 MPa is introduced into the first storage unit 44, and the hydrogen is stored in the first hydrogen storage alloy MH1. By this occlusion, the alloy MH1 is heated to about 80 ° C., and this temperature is maintained by the cooling action of the reformed gas at about 60 ° C.
[0033]
The reformed gas that has passed through the first storage unit 44 is supplied to the fuel cell 2 with the tenth and eleventh two-way valves V10 and V11 and the flow rate control valve 46 open, and the operation is continued.
[0034]
The amount of hydrogen occluded in the first storage unit 44 is detected based on the difference between the integrated flow rates of the flow meters 40 and 45 on the inlet and outlet sides of the first storage unit 44. If the hydrogen storage amount of the first storage unit 44 has not reached the full state, the storage process is continued.
[0035]
When the hydrogen storage amount of the first storage unit 44 reaches a full state, the second three-way valve 3V2 is switched to the fuel cell 2 side to shift to the hydrogen transfer mode.
[0036]
When the ninth and eleventh two-way valves V9 and V11 are “closed” and the tenth and thirteenth two-way valves V10 and V13 are “open”, hydrogen can be moved. Further, after the twelfth two-way valve V12 is “open” and the fifth two-way valve V5 is “closed” and high-temperature reformed gas of about 200 ° C. flows through the heating device 48, the CO remover 34, heat exchange It is supplied to the fuel cell 2 through the vessel 35 and the like, and its operation is continued.
[0037]
As described above, when the first hydrogen storage alloy MH1 in the first storage unit 44 is heated by the exhaust heat of the reformer 3 and the temperature rises to about 130 ° C. and the pressure rises to about 0.8 MPa, the stored hydrogen is released. The
[0038]
The second hydrogen storage alloy MH2 in the second storage unit 51 is heated to about 60 ° C. by the heating circuit 56, and the hydrogen released from the first storage unit 44 is stored in the second hydrogen storage alloy MH2 at 60 ° C. and about 0.5 MPa. Is done. The temperature rise of the alloy MH2 due to the occlusion is suppressed by the cooling circuit 58, and the temperature is maintained at about 60 ° C.
[0039]
When the flow meter 45 located on the outlet side of the first storage unit 44 detects that the hydrogen release amount of the first storage unit 44 exceeds 70% of the full amount, the fifth two-way valve V5 is When “open” and the twelfth two-way valve V12 is “closed”, the heating of the first storage unit 44 is stopped. From the 1st storage part 44, discharge | release of hydrogen is continued by the endothermic reaction of the 1st hydrogen storage alloy MH1 using the residual heat. Thereby, the temperature of the 1st storage part 44 can be lowered | hung and the time lag at the time of restarting the next hydrogen storage mode can be reduced.
[0040]
When the integrated flow rate of the flow meter 45 on the outlet side of the first storage unit 44 reaches the full amount of the storage unit 44, the thirteenth two-way valve V13 is “closed” and the second storage unit 51 is closed. The hydrogen transfer to is stopped. At this time, the hydrogen storage amount in the second storage unit 51 is full.
[0041]
C. Acceleration mode As shown in FIGS. 1 and 5, when the accelerator operation amount exceeds a predetermined value, the mode is shifted to the acceleration mode, and the mixed steam (methanol and moisture) to the reformer 3 is increased.
[0042]
It is detected whether or not the hydrogen storage amount in the first storage unit 44 is full. If it is not full and the hydrogen storage mode is being executed, the second three-way valve 3V2 is switched to the fuel cell 2 side. In addition, the eleventh two-way valve V11 is “closed”. That is, during acceleration, all the reformed gas is supplied to the fuel cell 2 and hydrogen storage is not performed.
[0043]
If the hydrogen storage amount in the first storage unit 44 is full, the second three-way valve 3V2 is in the state switched to the fuel cell 2 side, so that state is maintained.
[0044]
The acceleration mode ends when the accelerator operation amount becomes equal to or less than a predetermined value.
[0045]
D. Deceleration Mode As shown in FIGS. 1 and 6, when the accelerator operation amount falls below a predetermined value, the mode shifts to the deceleration mode, and the mixed steam (methanol and moisture) to the reformer 3 is reduced.
[0046]
It is determined whether or not the second three-way valve 3V2 is switched to the first storage unit 44 side. If not, it is determined whether or not the hydrogen transfer mode is being executed, and the hydrogen transfer mode is executed. If not, the second three-way valve 3V2 is switched to the first storage unit 44 side, and excess hydrogen is stored in the first storage unit 44.
[0047]
The deceleration mode ends when the accelerator operation amount becomes equal to or greater than a predetermined value.
[0048]
On the other hand, when the second three-way valve 3V2 is switched to the fuel cell 2 side from the beginning and the hydrogen transfer mode is executed, the switching state of the second three-way valve 3V2 to the fuel cell 2 side is maintained. The
[0049]
E. Idling Mode As shown in FIGS. 1 and 7, when the accelerator operation amount is zero, the idling mode is entered, and the amount of mixed steam (methanol and moisture) to the reformer 3 is adjusted to the idling state.
[0050]
It is determined whether or not the second three-way valve 3V2 is switched to the first storage unit 44 side. If not, it is determined whether or not the hydrogen transfer mode is being executed, and the hydrogen transfer mode is executed. If not, it is determined whether or not the reformed gas amount is the minimum required amount. If the reformed gas amount is not the minimum required amount, the second three-way valve 3V2 is switched to the first storage unit 44 side, and the excess hydrogen is stored in the first storage. The portion 44 is occluded.
[0051]
When the accelerator operation is performed, the idling mode ends.
[0052]
On the other hand, when the second three-way valve 3V2 is switched from the beginning to the fuel cell 2 side and the hydrogen transfer mode is executed, and when the amount of reformed gas is the minimum necessary amount, the second three-way valve The state of switching to the 3V2 fuel cell 2 side is maintained.
[0053]
F. Stop Mode When the start switch 59 is turned off as shown in FIGS. 1 and 8, the supply of the mixed steam (methanol and moisture) to the reformer 3 is stopped.
[0054]
After the second three-way valve 3V2 is switched to the first storage unit 44 side and the mixed steam supply is stopped, surplus hydrogen generated by the residual mixed steam of the reformer 3 is occluded in the first storage unit 44. When the reformed gas flow rate becomes a predetermined value or less, the fuel cell 2, the reformer 3, and the like are stopped.
[0055]
An example of the device using hydrogen as a fuel is an internal combustion engine in addition to the fuel cell.
[0056]
【The invention's effect】
According to the present invention, by adopting the above-described means, the transfer of hydrogen from the first storage unit to the second storage unit is performed quickly and sufficiently, and the hydrogen is transferred from the second storage unit at a low temperature. It is possible to provide a hydrogen supply system suitable for in-vehicle use that can be released.
[0057]
Furthermore, since the exhaust heat of the reformer is used as the heat source for releasing hydrogen in the first storage unit, it is not necessary to add a separate heat source as the heat source for releasing hydrogen in the first storage unit, improving the thermal efficiency of the entire system. Can be made.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a hydrogen supply system.
FIG. 2 is a hydrogen absorption / release characteristic diagram of the first and second hydrogen storage alloys.
FIG. 3 is a flowchart of a start mode.
FIG. 4 is a flowchart of a hydrogen storage / hydrogen transfer mode.
FIG. 5 is a flowchart of an acceleration mode.
FIG. 6 is a flowchart of a deceleration mode.
FIG. 7 is a flowchart of an idling mode.
FIG. 8 is a flowchart of a stop mode.
[Explanation of symbols]
1 …………… Hydrogen supply system 2 …………… Fuel cell (equipment)
3 ………… Reformer 43 ………… Hydrogen storage 44 ………… First storage part 51 ………… Second storage part MH1 ………… First hydrogen storage alloy (first hydrogen storage material) )
MH2 ......... Second hydrogen storage alloy (second hydrogen storage material)

Claims (1)

水素を燃料とする機器(2)に水素を供給すべく、アルコール、ガソリン等の原料から水素を生成する改質器(3)を備えた水素供給システムにおいて、
前記改質器(3)により生成された水素を吸蔵し、且つ放出することが可能な水素貯蔵器(43)を有し、その水素貯蔵器(43)は、低圧吸蔵・高温放出型第1水素吸蔵材(MH1)を備えた第1貯蔵部(44)と、高圧吸蔵・低温放出型第2水素吸蔵材(MH2)を備えた第2貯蔵部(51)とを有し、前記第1水素吸蔵材(MH1)の水素吸蔵圧をP1とし、またその水素放出温度をT1とし、一方、前記第2水素吸蔵材(MH2)の水素吸蔵圧をP2とし、またその水素放出温度をT2としたとき、P1<P2およびT1>T2の関係が成立し、前記第1貯蔵部(44)に前記改質器(3)からの水素を一旦吸蔵させ、次いでその吸蔵水素を放出して得られた水素を前記第2貯蔵部(51)に移動して吸蔵させ、前記機器(2)の始動時には前記第2貯蔵部(51)より吸蔵水素を放出して、その機器(2)に供給するようにし、前記第1貯蔵部(44)の水素放出用熱源としては前記改質器(3)の排出熱が用いられることを特徴とする、水素を燃料とする機器への水素供給システム。
In a hydrogen supply system equipped with a reformer (3) for generating hydrogen from raw materials such as alcohol and gasoline in order to supply hydrogen to a device (2) using hydrogen as a fuel,
It has a hydrogen reservoir (43) capable of occluding and releasing hydrogen produced by the reformer (3), and the hydrogen reservoir (43) is a low-pressure occlusion / high temperature desorption type first A first storage part (44) provided with a hydrogen storage material (MH1) and a second storage part (51) provided with a high-pressure storage / low-temperature release type second hydrogen storage material (MH2); The hydrogen storage pressure of the hydrogen storage material (MH1) is P1, and its hydrogen release temperature is T1, while the hydrogen storage pressure of the second hydrogen storage material (MH2) is P2, and its hydrogen release temperature is T2. Then, the relationship of P1 <P2 and T1> T2 is established, and the first storage section (44) temporarily stores hydrogen from the reformer (3) and then releases the stored hydrogen. The stored hydrogen is moved to the second storage part (51) to be occluded, and the device (2) is started. Sometimes by releasing from occluded hydrogen the second reservoir (51), and for supplying to the device (2), said reformer as a hydrogen releasing heat source of the first reservoir (44) (3) discharge heat is characterized in that it is used in the hydrogen supply system to the equipment using hydrogen as fuel.
JP2000024817A 2000-01-28 2000-01-28 Hydrogen supply system for equipment using hydrogen as fuel Expired - Fee Related JP4346055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000024817A JP4346055B2 (en) 2000-01-28 2000-01-28 Hydrogen supply system for equipment using hydrogen as fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000024817A JP4346055B2 (en) 2000-01-28 2000-01-28 Hydrogen supply system for equipment using hydrogen as fuel

Publications (2)

Publication Number Publication Date
JP2001213602A JP2001213602A (en) 2001-08-07
JP4346055B2 true JP4346055B2 (en) 2009-10-14

Family

ID=18550747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000024817A Expired - Fee Related JP4346055B2 (en) 2000-01-28 2000-01-28 Hydrogen supply system for equipment using hydrogen as fuel

Country Status (1)

Country Link
JP (1) JP4346055B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200142306A (en) 2019-06-12 2020-12-22 국방과학연구소 Hydrogen storage and supply system for submarines

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700161B2 (en) * 2000-03-17 2011-06-15 本田技研工業株式会社 Hydrogen storage alloy regeneration system for fuel cell operation
JP3431021B2 (en) * 2001-05-24 2003-07-28 日産自動車株式会社 Vehicle fuel cell system
CN108736045A (en) * 2017-04-20 2018-11-02 徐煜 A kind of fuel cell
CN108736044A (en) * 2017-04-20 2018-11-02 徐煜 A kind of fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200142306A (en) 2019-06-12 2020-12-22 국방과학연구소 Hydrogen storage and supply system for submarines

Also Published As

Publication number Publication date
JP2001213602A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
JP3229023B2 (en) Hydrogen gas supply system for hydrogen engine
US7195830B2 (en) Apparatus, mechanism and process for warming-up fuel cell
JP4700161B2 (en) Hydrogen storage alloy regeneration system for fuel cell operation
WO2011151560A1 (en) Internal combustion engine supplied with fuel and equipped with a low-pressure exhaust gas recirculation circuit and with an additional system for producing hydrogen
WO2005093230A1 (en) Warm-up method and warm-up system for internal combustion engine
US20040101722A1 (en) Fuel cell system with heat exchanger for heating a reformer and vehicle containing same
JP4346055B2 (en) Hydrogen supply system for equipment using hydrogen as fuel
JP2001213603A (en) Hydrogen supply system for device using hydrogen as fuel
JP4384773B2 (en) Hydrogen supply system for equipment using hydrogen as fuel
JP4474011B2 (en) Hydrogen supply device for vehicles equipped with fuel cells
JP2001213605A (en) Hydrogen supply system for device using hydrogen as fuel
JP2001213606A (en) Hydrogen supply system for device using hydrogen as fuel
JP4423727B2 (en) Internal combustion engine with fuel reformer
JP2004234863A (en) Fuel cell system
JP2001213607A (en) Hydrogen supply system for device using hydrogen as fuel
JP4575766B2 (en) Fuel cell system
JP2002373690A (en) Fuel cell system
JP4673617B2 (en) Fuel cell system and control method thereof
JP4229525B2 (en) Hydrogen supply system for equipment using hydrogen as fuel
CN219548990U (en) Vaporizer heating system and vehicle using same
JP7249813B2 (en) FUEL CELL SYSTEM AND METHOD FOR STARTING FUEL CELL SYSTEM
JP7256991B2 (en) VEHICLE CONTROL DEVICE AND VEHICLE CONTROL METHOD
JPH03961A (en) Automobile using hydrogenated metal as fuel
JP4673618B2 (en) Fuel cell system
JPH0882251A (en) Liquefied gas fuel supplying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees