JP4120994B2 - Temperature control method for reaction vessel and temperature adjustment device for reaction vessel - Google Patents

Temperature control method for reaction vessel and temperature adjustment device for reaction vessel Download PDF

Info

Publication number
JP4120994B2
JP4120994B2 JP10220198A JP10220198A JP4120994B2 JP 4120994 B2 JP4120994 B2 JP 4120994B2 JP 10220198 A JP10220198 A JP 10220198A JP 10220198 A JP10220198 A JP 10220198A JP 4120994 B2 JP4120994 B2 JP 4120994B2
Authority
JP
Japan
Prior art keywords
reaction vessel
heat medium
pipe
hydrogen
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10220198A
Other languages
Japanese (ja)
Other versions
JPH11281192A (en
Inventor
幸雄 佐藤
晴信 竹田
裕一 脇坂
竜 小林
淳志 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP10220198A priority Critical patent/JP4120994B2/en
Publication of JPH11281192A publication Critical patent/JPH11281192A/en
Application granted granted Critical
Publication of JP4120994B2 publication Critical patent/JP4120994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Description

【0001】
【発明の属する技術分野】
本発明は、反応容器の温度調節方法及び反応容器の温度調節装置に関するものである。
【0002】
【従来の技術及びその課題】
従来の反応容器の温度調節方法及びその装置として、例えば特開平4−6357号公報に記載される水素吸蔵合金を利用した熱利用システムの運転方法が知られている。これは、温度レベルの異なる2種類の外部熱源からの熱媒体が切り替え可能に供給される熱交換器と第1の水素吸蔵合金とをそれぞれ収容した第1及び第3の水素吸蔵合金容器と、第3の外部熱源からの熱媒体及び熱負荷に利用される熱回収用熱媒体が切り替え可能に供給される熱交換器と第2の水素吸蔵合金とをそれぞれ収容した第2及び第4の水素吸蔵合金容器と、第1と第2及び第3と第4の水素吸蔵合金容器が連結される水素配管と、第1と第3の水素吸蔵合金容器と前記2種類の外部熱源とをそれぞれ切り替え可能に連結する熱媒体配管と、第2と第4の水素吸蔵合金容器と第3の外部熱源及び熱負荷とをそれぞれ切り替え可能に連結する熱媒体配管とより構成され、第1と第2の水素吸蔵合金容器間および第3と第4の水素吸蔵合金容器間で行なわれる水素移動の方向を互いに逆とする第1と第2の過程を交互に行い、この両過程の切り替えを前記熱媒体配管の切り替えにより行なうと共に、この切り替え時、各水素吸蔵合金容器に対して、その熱媒体入口側の熱媒体配管を先に切り替えて、顕熱回収用の熱媒体循環路を形成し、その後、熱媒体出口側の熱媒体配管を切り替えることにより熱利用システム内の顕熱回収を行なうようにした熱利用システムである。
【0003】
しかしながら、このような従来の反応容器の温度調節方法及びその装置にあつては、反応容器の入口側の入口バルブの切り替えを出口側の入口バルブよりも10〜30秒先に行なうことにより、切り替え直後の入口バルブと出口バルブとの間の機器及び熱媒体の顕熱を回収しようとするものであるため、入口バルブと出口バルブとの間の熱媒体を正確に過不足なく回収することができないという技術的課題を有している。加えて、少なくとも4基の反応容器としての水素吸蔵合金容器の使用を前提としているため、簡素な構造の反応容器の温度調節装置を構成することができない。
【0004】
また、熱媒体は、それぞれポンプを駆動することにより、水素吸蔵合金容器の熱交換器に供給しているが、ポンプ(ポンプモータ)を精緻に回転駆動させて水素吸蔵合金による水素の吸蔵・放出を精緻に制御することができないという技術的課題を有している。
【0005】
具体的には、上記従来例(特開平4−6357号公報)にあつては、水素吸蔵合金の温度を検出する温度検出手段を水素吸蔵合金容器に配置するので、水素吸蔵合金の温度を温度検出手段によつて検出し、熱媒体を循環させるポンプの運転・停止を制御することになる。これにより、冷凍倉庫等の熱負荷に高温熱が流入することを防ぎ、効率良く運転することができ、高効率、高出力のシステムが提供されるとしている。
【0006】
このように、従来の反応容器の温度調節方法及びその装置にあつては、水素吸蔵合金の水素放出工程において、温度検出手段によつて検出する水素吸蔵合金の温度から熱媒体の温度を推定し、熱媒体の温度が設定温度以下として検出された時にポンプを停止し、それ以上の温度にある時は運転を継続するように制御するとしている。しかしながら、ポンプの運転・停止と水素吸蔵合金の温度との間には過度の時間遅れがあるため、これを水素吸蔵合金の水素放出工程における水素量の制御にそのまま適用するのでは、水素吸蔵合金の温度が乱高下して水素量の安定かつ精緻な制御が不可能であるのみならず、ポンプの頻繁な運転・停止の繰り返しによつてポンプ(ポンプモータ)の寿命も短くなるという技術的課題を有している。
【0007】
加えて、放熱反応が起こる水素吸蔵合金の水素吸蔵工程では、温度検出手段によつて水素吸蔵合金の温度を検出してポンプをON・OFF制御し、水素吸蔵合金の水素吸蔵工程における水素量を制御するのでは、低温状態の熱媒体の供給量の一時的な過多を生じ、吸蔵される水素の圧力が下がつて水素吸蔵合金容器内が負圧になり、外気が侵入する恐れを生ずる。また、水素吸蔵合金の水素放出工程では吸熱反応が起こるので、温度検出手段によつて水素吸蔵合金の温度を検出してポンプをON・OFF制御し、水素吸蔵合金の水素放出工程における水素放出量を制御するのでは、高温状態の熱媒体の供給量の一時的な多過ぎを生じ、水素吸蔵合金から放出される水素の圧力が上がり過ぎて水素吸蔵合金容器内が高圧になり、気密性が失われて水素漏れが起こる恐れを生ずる。このように、従来の反応容器の温度調節方法及びその装置は、温度検出手段の検出値に応じてポンプをON・OFFさせることにより、熱媒体の温度を所定範囲に維持するように機能するものであり、温度検出手段の検出値に応じて水素吸蔵合金容器内の水素量を増減制御し、水素量の過多又は過小に起因する上記技術的課題を解決する機能を有していない。
【0008】
【課題を解決するための手段】
本発明は、このような従来の技術的課題に鑑みてなされたものであり、その構成は次の通りである。
請求項1の発明は、反応容器1の熱媒体流路13に、加熱装置2によつて加熱された熱媒体と冷却装置3によつて冷却された熱媒体とを交互に導入して、反応容器1内で高温状態及び低温状態での反応を繰り返し行なわせる反応容器の温度調節装置であつて、
加熱装置2と反応容器1の入口側とを接続する第1配管30と、
冷却装置3と反応容器1の入口側とを接続する第2配管31と、
加熱装置2と反応容器1の出口側とを接続する第3配管32と、
冷却装置3と反応容器1の出口側とを接続する第4配管33と、
第1配管30及び第2配管31の開閉状態を切り替えさせる入口側バルブ装置HV−1,CV−1と、
第3配管32及び第4配管33の開閉状態を切り替えさせる出口側バルブ装置HV−2,CV−2と、
第4配管33に設けられ、冷却された熱媒体を熱媒体流路13に導入して反応容器1内に低温状態を与えた後、加熱された熱媒体を熱媒体流路13に導入して反応容器1内に高温状態を与える切り替えに際し、反応容器1から流出する低温の熱媒体を受け入れる冷却媒体タンク6とを有し、
反応容器1の出口側に、反応容器1から流出する熱媒体の流量を積算して計測する流量計測手段22を設け、反応容器1内に低温状態と高温状態との切り替えを与えるに際し、入口側バルブ装置HV−1,CV−1を操作して開閉切り替えを与えた後に反応容器1側から流出する低温の熱媒体の流量を積算して計測し、反応容器1側に残る切り替え前の熱媒体がほぼ流出し終えたことを検出し、その後に出口側バルブ装置HV−2,CV−2を開閉切り替えることを特徴とする反応容器の温度調節装置である。
請求項2の発明は、反応容器1の熱媒体流路13に、加熱装置2によつて加熱された熱媒体と冷却装置3によつて冷却された熱媒体とを交互に導入して、反応容器1内で高温状態及び低温状態での反応を繰り返し行なわせる反応容器の温度調節装置であつて、
加熱装置2と反応容器1の入口側とを接続する第1配管30と、
冷却装置3と反応容器1の入口側とを接続する第2配管31と、
加熱装置2と反応容器1の出口側とを接続する第3配管32と、
冷却装置3と反応容器1の出口側とを接続する第4配管33と、
第1配管30及び第2配管31の開閉状態を切り替えさせる入口側バルブ装置HV−1,CV−1と、
第3配管32及び第4配管33の開閉状態を切り替えさせる出口側バルブ装置HV−2,CV−2と、
第3配管32に設けられ、加熱された熱媒体を熱媒体流路13に導入して反応容器1内に高温状態を与えた後、冷却された熱媒体を熱媒体流路13に導入して反応容器1内に低温状態を与える切り替えに際し、反応容器1から流出する高温の熱媒体を受け入れる加熱媒体タンク7とを有し、
反応容器1の出口側に、反応容器1から流出する熱媒体の流量を積算して計測する流量計測手段22を設け、反応容器1内に低温状態と高温状態との切り替えを与えるに際し、入口側バルブ装置HV−1,CV−1を操作して開閉切り替えを与えた後に反応容器1側から流出する高温の熱媒体の流量を積算して計測し、反応容器1側に残る切り替え前の熱媒体がほぼ流出し終えたことを検出し、その後に出口側バルブ装置HV−2,CV−2を開閉切り替えることを特徴とする反応容器の温度調節装置である。
請求項3の発明は、反応容器1の熱媒体流路13に、加熱装置2によつて加熱された熱媒体と冷却装置3によつて冷却された熱媒体とを交互に導入して、反応容器1内で高温状態及び低温状態での反応を繰り返し行なわせる反応容器の温度調節装置であつて、
加熱装置2と反応容器1の入口側とを接続する第1配管30と、
冷却装置3と反応容器1の入口側とを接続する第2配管31と、
加熱装置2と反応容器1の出口側とを接続する第3配管32と、
冷却装置3と反応容器1の出口側とを接続する第4配管33と、
第1配管30及び第2配管31の開閉状態を切り替えさせる入口側バルブ装置HV−1,CV−1と、
第3配管32及び第4配管33の開閉状態を切り替えさせる出口側バルブ装置HV−2,CV−2と、
第4配管33に設けられ、冷却された熱媒体を熱媒体流路13に導入して反応容器1内に低温状態を与えた後、加熱された熱媒体を熱媒体流路13に導入して反応容器1内に高温状態を与える切り替えに際し、反応容器1から流出する低温の熱媒体を受け入れる冷却媒体タンク6とを有し、
反応容器1の出口側に、反応容器1から流出する熱媒体の温度を計測する温度計測手段25を設け、反応容器1内に低温状態と高温状態との切り替えを与えるに際し、入口側バルブ装置HV−1,CV−1を操作して開閉切り替えを与えた後に反応容器1側から流出する低温の熱媒体の温度を計測し、反応容器1側に残る切り替え前の熱媒体がほぼ流出し終えたことを検出し、その後に出口側バルブ装置HV−2,CV−2を開閉切り替えることを特徴とする反応容器の温度調節装置である。
請求項4の発明は、反応容器1の熱媒体流路13に、加熱装置2によつて加熱された熱媒体と冷却装置3によつて冷却された熱媒体とを交互に導入して、反応容器1内で高温状態及び低温状態での反応を繰り返し行なわせる反応容器の温度調節装置であつて、
加熱装置2と反応容器1の入口側とを接続する第1配管30と、
冷却装置3と反応容器1の入口側とを接続する第2配管31と、
加熱装置2と反応容器1の出口側とを接続する第3配管32と、
冷却装置3と反応容器1の出口側とを接続する第4配管33と、
第1配管30及び第2配管31の開閉状態を切り替えさせる入口側バルブ装置HV−1,CV−1と、
第3配管32及び第4配管33の開閉状態を切り替えさせる出口側バルブ装置HV−2,CV−2と、
第3配管32に設けられ、加熱された熱媒体を熱媒体流路13に導入して反応容器1内に高温状態を与えた後、冷却された熱媒体を熱媒体流路13に導入して反応容器1内に低温状態を与える切り替えに際し、反応容器1から流出する高温の熱媒体を受け入れる加熱媒体タンク7とを有し、
反応容器1の出口側に、反応容器1から流出する熱媒体の温度を計測する温度計測手段25を設け、反応容器1内に低温状態と高温状態との切り替えを与えるに際し、入口側バルブ装置HV−1,CV−1を操作して開閉切り替えを与えた後に反応容器1側から流出する高温の熱媒体の温度を計測し、反応容器1側に残る切り替え前の熱媒体がほぼ流出し終えたことを検出し、その後に出口側バルブ装置HV−2,CV−2を開閉切り替えることを特徴とする反応容器の温度調節装置である。
請求項5の発明は、反応容器1の熱媒体流路13に、加熱装置2によつて加熱された熱媒体と冷却装置3によつて冷却された熱媒体とを交互に導入して、反応容器1内で高温状態及び低温状態での反応を繰り返し行なわせる反応容器の温度調節装置であつて、
加熱装置2と反応容器1の入口側とを接続する第1配管30と、
冷却装置3と反応容器1の入口側とを接続する第2配管31と、
加熱装置2と反応容器1の出口側とを接続する第3配管32と、
冷却装置3と反応容器1の出口側とを接続する第4配管33と、
第1配管30及び第2配管31の開閉状態を切り替えさせる入口側バルブ装置HV−1,CV−1と、
第3配管32及び第4配管33の開閉状態を切り替えさせる出口側バルブ装置HV−2,CV−2と、
第4配管33に設けられ、冷却された熱媒体を熱媒体流路13に導入して反応容器1内に 低温状態を与えた後、加熱された熱媒体を熱媒体流路13に導入して反応容器1内に高温状態を与える切り替えに際し、反応容器1から流出する低温の熱媒体を受け入れる冷却媒体タンク6とを有し、
反応容器1の出口側に、熱媒体の水頭圧を計測する圧力計測手段26を設け、反応容器1内に低温状態と高温状態との切り替えを与えるに際し、入口側バルブ装置HV−1,CV−1を操作して開閉切り替えを与えた後に反応容器1側から流出して前記タンク6内に貯留される熱媒体の水頭圧を計測し、反応容器1側に残る切り替え前の熱媒体がほぼ流出し終えたことを検出し、その後に出口側バルブ装置HV−2,CV−2を開閉切り替えることを特徴とする反応容器の温度調節装置である。
請求項6の発明は、反応容器1の熱媒体流路13に、加熱装置2によつて加熱された熱媒体と冷却装置3によつて冷却された熱媒体とを交互に導入して、反応容器1内で高温状態及び低温状態での反応を繰り返し行なわせる反応容器の温度調節装置であつて、
加熱装置2と反応容器1の入口側とを接続する第1配管30と、
冷却装置3と反応容器1の入口側とを接続する第2配管31と、
加熱装置2と反応容器1の出口側とを接続する第3配管32と、
冷却装置3と反応容器1の出口側とを接続する第4配管33と、
第1配管30及び第2配管31の開閉状態を切り替えさせる入口側バルブ装置HV−1,CV−1と、
第3配管32及び第4配管33の開閉状態を切り替えさせる出口側バルブ装置HV−2,CV−2と、
第3配管32に設けられ、加熱された熱媒体を熱媒体流路13に導入して反応容器1内に高温状態を与えた後、冷却された熱媒体を熱媒体流路13に導入して反応容器1内に低温状態を与える切り替えに際し、反応容器1から流出する高温の熱媒体を受け入れる加熱媒体タンク7とを有し、
反応容器1の出口側に、熱媒体の水頭圧を計測する圧力計測手段26を設け、反応容器1内に低温状態と高温状態との切り替えを与えるに際し、入口側バルブ装置HV−1,CV−1を操作して開閉切り替えを与えた後に反応容器1側から流出して前記タンク7内に貯留される熱媒体の水頭圧を計測し、反応容器1側に残る切り替え前の熱媒体がほぼ流出し終えたことを検出し、その後に出口側バルブ装置HV−2,CV−2を開閉切り替えることを特徴とする反応容器の温度調節装置である。
請求項7の発明は、水素吸蔵合金Mを収容する反応容器1の熱媒体流路13に、加熱装置2によつて加熱された熱媒体と冷却装置3によつて冷却された熱媒体とを交互にポンプ65,66によつて送つて導入し、反応容器1内を高温状態として水素吸蔵合金Mから水素を放出させる加熱工程、及び反応容器1内を低温状態として水素吸蔵合金Mに水素を吸蔵させる冷却工程を繰り返し行なわせる反応容器の温度調節方法であつて、
冷却された熱媒体を熱媒体流路13に導入して反応容器1内の水素吸蔵合金Mに低温状態を与える場合に、水素吸蔵合金Mに向けて流れる水素ガスの圧力、流量、温度等の状態量を検出手段51,70によつて検出し、該水素吸蔵合金Mによる水素吸蔵速度が遅過ぎるときには、冷却装置3によつて冷却された熱媒体を送るポンプ66の回転数を増加させ、該水素吸蔵合金Mによる水素吸蔵速度が早過ぎるときには、冷却装置3によつて冷却された熱媒体を送るポンプ66の回転数を減少させるように制御することを特徴とする反応容器の温度調節方法である。
請求項8の発明は、水素吸蔵合金Mを収容する反応容器1の熱媒体流路13に、加熱装置2によつて加熱された熱媒体と冷却装置3によつて冷却された熱媒体とを交互にポンプ65,66によつて送つて導入し、反応容器1内を高温状態として水素吸蔵合金Mから水素を放出させる加熱工程、及び反応容器1内を低温状態として水素吸蔵合金Mに水素を吸蔵させる冷却工程を繰り返し行なわせる反応容器の温度調節装置であつて、
冷却された熱媒体を熱媒体流路13に導入して反応容器1内の水素吸蔵合金Mに低温状態を与える場合に、水素吸蔵合金Mに向けて流れる水素ガスの圧力、流量、温度等の状態量を検出する検出手段51,70と、
冷却装置3によつて冷却された熱媒体を送るポンプ66の回転数を制御する基本制御値b,hを設定する基本制御値設定手段60b,67bと、
該検出手段51,70による検出値d,fと基本制御値b,hとを比較する比較手段61b,63bとを備え、
該比較手段61b,63bによる比較結果に基づき、該水素吸蔵合金Mによる水素吸蔵速度が遅過ぎるときには、冷却装置3によつて冷却された熱媒体を送るポンプ66の回転数を増加させ、該水素吸蔵合金Mによる水素吸蔵速度が早過ぎるときには、冷却装置3によつて冷却された熱媒体を送るポンプ66の回転数を減少させるように制御することを特徴とする反応容器の温度調節装置である。
請求項9の発明は、水素吸蔵合金Mを収容する反応容器1の熱媒体流路13に、加熱装置2によつて加熱された熱媒体と冷却装置3によつて冷却された熱媒体とを交互にポンプ65,66によつて送つて導入し、反応容器1内を高温状態として水素吸蔵合金Mから水素を放出させる加熱工程、及び反応容器1内を低温状態として水素吸蔵合金Mに水素を吸蔵させる冷却工程を繰り返し行なわせる反応容器の温度調節装置であつて、
冷却された熱媒体を熱媒体流路13に導入して反応容器1内の水素吸蔵合金Mに低温状態を与える場合に、反応容器1の温度を検出する温度検出手段70と、
冷却装置3によつて冷却された熱媒体を送るポンプ66の回転数を制御する基本制御値hを設定する基本制御値設定手段67bと、
該温度検出手段70による検出値fと基本制御値hとを比較する比較手段63bとを備え、
該比較手段63bによる比較結果に基づき、該水素吸蔵合金Mによる水素吸蔵速度が遅過ぎるときには、冷却装置3によつて冷却された熱媒体を送るポンプ66の回転数を増加させ、該水素吸蔵合金Mによる水素吸蔵速度が早過ぎるときには、冷却装置3によつて冷却された熱媒体を送るポンプ66の回転数を減少させるように制御することを特徴とする反応容器の温度調節装置である。
請求項10の発明は、水素吸蔵合金Mを収容する反応容器1の熱媒体流路13に、加熱装置2によつて加熱された熱媒体と冷却装置3によつて冷却された熱媒体とを交互にポンプ65,66によつて送つて導入し、反応容器1内を高温状態として水素吸蔵合金Mから水素を放出させる加熱工程、及び反応容器1内を低温状態として水素吸蔵合金Mに水素を吸蔵させる冷却工程を繰り返し行なわせる反応容器の温度調節装置であつて、
加熱された熱媒体を熱媒体流路13に導入して反応容器1内の水素吸蔵合金Mに高温状態を与える場合に、水素吸蔵合金Mから放出される水素ガスの圧力、流量、温度等の状態量を検出する検出手段50,70と、
加熱装置2によつて加熱された熱媒体を送るポンプ65の回転数を制御する基本制御値a,gを設定する基本制御値設定手段60a,67aと、
該検出手段50,70による検出値と基本制御値a,gとを比較する比較手段61a,63aとを備え、
該比較手段61a,63aによる比較結果に基づき、該水素吸蔵合金Mによる水素放出速度が早過ぎるときには、加熱装置2によつて加熱された熱媒体を送るポンプ65の回転数を減少させ、該水素吸蔵合金Mによる水素放出速度が遅過ぎるときには、加熱装置2によつて加熱された熱媒体を送るポンプ66の回転数を増加させるように制御することを特徴とする反応容器の温度調節装置である。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
図1は、本発明の第1実施の形態に係る反応容器の温度調節装置を示し、符号1は反応容器としての水素吸蔵合金収容容器を示す。水素吸蔵合金収容容器1は、容器本体10と、容器本体10の一端部を閉塞する第1壁11と、容器本体10の他端部を閉塞する第2壁12とを有してシェル状をなし、適宜の箇所に形成した水素入口1a及び水素出口1bによつて外部と連通する収容空間15を区画している。この収容空間15内に水素吸蔵合金Mが収容されている。
【0010】
熱媒体流路13は、一端部が第1壁11に接続され、他端部が第2壁12に接続され、第1壁11と第2壁12との間には、複数本(図上では3本)のチューブ部材からなる熱媒体流路13が架設されている。第1壁11の外面には、内部空間9aを区画する鏡部材9が固着され、鏡部材9に入口管20が接続されている。第2壁12の外面には、内部空間8aを区画する鏡部材8が固着され、鏡部材8に出口管21が接続されている。水素入口1aには吸収用配管40の一端部が接続され、水素出口1bには放出用配管41の一端部が接続され、吸収用配管40及び放出用配管41の他端部には、例えば、水素ガスを使用する水素利用装置(図示せず)が接続されている。
【0011】
しかして、入口管20の他端部が、内部空間9aを介して複数本の熱媒体流路13の一端部に連通し、熱媒体流路13の他端部が内部空間8aを介して出口管21に連通している。この水素吸蔵合金収容容器1の内部空間9a、熱媒体流路13及び内部空間8aは、液状をなす高温の熱媒体及び低温の熱媒体が共通して流れる部分である。
【0012】
入口管20の一端部には、開閉機能を有する第1バルブHV−1を有する第1配管30を介して加熱装置2が接続されていると共に、開閉機能を有する第2バルブCV−1を有する第2配管31を介して冷却装置3が接続されている。しかして、第1,第2バルブHV−1,CV−1の開閉切り替えにより、容器本体10の熱媒体流路13に入口管20を介して加熱装置2又は冷却装置3からの熱媒体を選択的に導入させることができる。第1バルブHV−1及び第2バルブCV−1は、第1配管30及び第2配管31の開閉状態を切り替えさせる入口側バルブ装置を構成している。
【0013】
また、出口管21に流量が積算される流量計22及びポンプ24が設けられると共に、出口管21の他端部には、開閉機能を有する第3バルブHV−2及び加熱媒体タンク7を有する第3配管32を介して加熱装置2が接続されていると共に、開閉機能を有する第4バルブCV−2及び冷却媒体タンク6を有する第4配管33を介して冷却装置3が接続されている。加熱媒体タンク7は、第3配管32の一部つまり熱媒体の流路の一部を形成するように配置され、冷却媒体タンク6は、第4配管33の一部つまり熱媒体の流路の一部を形成するように配置されている。第3バルブHV−2及び第4バルブCV−2は、第3配管32及び第4配管33の開閉状態を切り替えさせる出口側バルブ装置を構成している。従つて、加熱媒体タンク7及び冷却媒体タンク6は、それぞれ別個のタンクを構成している。
【0014】
しかして、第3,第4バルブHV−2,CV−2の切り替えにより、容器本体10の熱媒体流路13から流出する熱媒体を出口管21及び第3配管32又は第4配管33を介して、加熱装置2又は冷却装置3に選択的に還流させることができる。なお、ポンプ24は、熱媒体流路13内の熱媒体を流動させることができればよく、入口管20に設けることも可能であり、また、第3配管32及び第4配管33に個別に設けることも可能である。
【0015】
電磁弁からなる第1〜第4バルブHV−1,CV−1,HV−2,CV−2、流量計22及びポンプ24(ポンプモータ)は、マイクロコンピュータからなる制御装置35に電気的に個別に接続され、工程の切り替えに際して適宜に制御される。制御装置35は、流量計22からの信号に基づいて、出口管21の流量を積算する機能も有する。
【0016】
次に、作用について説明する。
いま、水素吸蔵合金収容容器1内の水素吸蔵合金Mに水素が吸蔵され、第1,第3バルブHV−1,HV−2が開かれ、第2,第4バルブCV−1,CV−2が閉じられており、加熱工程が行なわれるものとする。ポンプ24を駆動し、加熱装置2で加熱した比較的高温の熱媒体を第1配管30及び入口管20を通じて水素吸蔵合金収容容器1内に供給する。入口管20を流れる熱媒体は、内部空間9aに入り、複数本の熱媒体流路13を通つて内部空間8aに流出し、出口管21及び第3配管32を通つて加熱媒体タンク7に入る。加熱媒体タンク7に入つたと同量の熱媒体が加熱媒体タンク7から押し出され、加熱装置2によつて加熱を受けた後に同様に循環する。
【0017】
高温の熱媒体が熱媒体流路13を通つて水素吸蔵合金Mが加熱されることにより、水素吸蔵合金Mから放出される水素ガスが放出用配管41から外部に流出する。水素吸蔵合金Mから十分に水素ガスが放出されたなら、ポンプ24を停止して加熱工程を終了し、第1の顕熱回収工程を行なつた後に冷却工程に移行する。なお、水素吸蔵合金Mから十分に水素ガスが放出されたことは、収容空間15内の圧力の急激な低下、水素吸蔵合金Mの急激な温度上昇等によつて検知することができる。
【0018】
第1の顕熱回収工程は、入口側バルブ装置(HV−1、CV−1)を出口側バルブ装置(HV−2、CV−2)よりも先に切り替えて行なう。すなわち、第3バルブHV−2を開き、第4バルブCV−2を閉じたままで、第1バルブHV−1を閉じ、第2バルブCV−1を開く。次いで、ポンプ24の駆動により、冷却装置3によつて冷却された比較的低温の熱媒体が第2配管31及び入口管20を通つて内部空間9aに向けて流れる。これにより、加熱工程終了時に入口管20、熱媒体流路13を含む水素吸蔵合金収容容器1内及び出口管21に残存する比較的高温の熱媒体が第3配管32に導かれ、加熱媒体タンク7に流入する。加熱媒体タンク7に向けて流入する熱媒体により、水素吸蔵合金収容容器1内の顕熱が回収され、加熱媒体タンク7内の熱媒体の液面が上昇する。
【0019】
このようにして加熱工程終了時に入口管20、内部空間9a、熱媒体流路13、内部空間8a及び出口管21に残存する比較的高温の熱媒体が第3配管32に流入したなら、第1の顕熱回収工程を終了し、冷却工程に移行する。この第1の顕熱回収工程の終了時期は、第1の顕熱回収工程の開始後に出口管21を流れる熱媒体の流量を流量計22によつて計測・積算することにより、知ることができる。すなわち、第1の顕熱回収工程の開始後に出口管21を流れる熱媒体の流量が、入口管20、内部空間9a、熱媒体流路13、内部空間8a及び出口管21に残存する比較的高温の熱媒体量にほぼ合致したときに、第1の顕熱回収工程を終了する。しかして、加熱媒体タンク7は、入口管20、内部空間9a、熱媒体流路13、内部空間8a及び出口管21に残存する比較的高温の熱媒体の全量を受け入れ可能な大きさを有していればよい。なお、加熱媒体タンク7を熱媒体の流路の一部を形成するように配置すれば、加熱装置2によつて加熱された熱媒体を次に第1配管30から流出させる際に、加熱媒体タンク7内の熱媒体が必ず流出することになり、加熱媒体タンク7内の熱媒体が長時間放置されて温度低下することが抑制される。
【0020】
冷却工程は、第2バルブCV−1を開いたままで第4バルブCV−2を開くと同時に第3バルブHV−2を閉じ、かつ、ポンプ24を駆動して開始される。ポンプ24の駆動により、冷却装置3によつて冷却された比較的低温の熱媒体が第2配管31及び入口管20を通つて水素吸蔵合金収容容器1内に供給される。入口管20を流れる熱媒体は、内部空間9aに入り、複数本の熱媒体流路13を通つて内部空間8aに流出し、出口管21及び第4配管33を通つて冷却媒体タンク6に入る。冷却媒体タンク6に入つたと同量の熱媒体が冷却媒体タンク6から押し出され、冷却装置3によつて冷却を受けた後に同様に循環する。
【0021】
低温の熱媒体が熱媒体流路13を通つて水素吸蔵合金Mが冷却されることにより、吸収用配管40から流入する水素が水素吸蔵合金Mに吸蔵される。水素吸蔵合金Mに十分に水素が吸蔵されたなら、ポンプ24を停止して冷却工程を終了し、第2の顕熱回収工程を行なつた後に加熱工程に移行する。なお、水素吸蔵合金Mに十分に水素が吸蔵されたことは、収容空間15内の圧力の急激な上昇、水素吸蔵合金Mの急激な温度低下等によつて検知することができる。
【0022】
第2の顕熱回収工程は、第2バルブCV−1を閉じ、第4バルブCV−2を開いたままで、第1バルブHV−1を開くと共に、ポンプ24を駆動して行なう。ポンプ24の駆動により、加熱装置2によつて加熱された比較的高温の熱媒体が第1配管30及び入口管20を通つて内部空間9aに向けて流れる。これにより、冷却工程終了時に入口管20、熱媒体流路13を含む水素吸蔵合金収容容器1内及び出口管21に残存する比較的低温の熱媒体が第4配管33に導かれ、冷却媒体タンク6に流入し、切り替わつた比較的高温の熱媒体が出口管21に次第に近づくことになる。冷却媒体タンク6に向けて流入する熱媒体により、水素吸蔵合金収容容器1内の顕熱が回収され、冷却媒体タンク6内の熱媒体の液面が上昇する。
【0023】
このようにして冷却工程終了時に入口管20、内部空間9a、熱媒体流路13、内部空間8a及び出口管21に残存する比較的低温の熱媒体が第4配管33に流入したなら、第2の顕熱回収工程を終了し、加熱工程に移行する。この第2の顕熱回収工程の終了時期は、第2の顕熱回収工程の開始後に出口管21を流れる熱媒体の流量を流量計22によつて計測・積算することにより、知ることができる。すなわち、第2の顕熱回収工程の開始後に出口管21を流れる熱媒体の流量が、入口管20、内部空間9a、熱媒体流路13、内部空間8a及び出口管21に残存する比較的低温の熱媒体量にほぼ合致したときに、第2の顕熱回収工程を終了する。しかして、冷却媒体タンク6は、入口管20、内部空間9a、熱媒体流路13、内部空間8a及び出口管21に残存する比較的低温の熱媒体量を受け入れ可能な大きさを有していればよい。なお、冷却媒体タンク6を熱媒体の流路の一部を形成するように配置すれば、冷却装置3によつて冷却された熱媒体を次に第2配管31から流出させる際に、冷却媒体タンク6内の熱媒体が必ず流出することになり、冷却媒体タンク6内の熱媒体が長時間放置されて温度上昇することが抑制される。
【0024】
しかして、このような第1,第2顕熱回収工程は、理想的には、高温の熱媒体及び低温の熱媒体が共通して流れる部分、つまり入口管20、内部空間9a、熱媒体流路13、内部空間8a及び出口管21の熱媒体容量に併せて行なうことになる。そして、顕熱回収工程の開始後に出口管21を流れる熱媒体の流量を流量計22によつて計測・積算することにより、第1,第2顕熱回収工程の終了時期が検知されるので、熱媒体を正確に過不足なく回収することができる。
【0025】
図2は、本発明の第2実施の形態に係る反応容器の温度調節装置を示し、第1実施の形態と同一符号は同一機能部分を示し、それらの説明は省略する。第2実施の形態にあつては、第1実施の形態の流量計22に代えて、出口管21に温度計25を設けてある。従つて、流量計22に代えて温度計25が制御装置35に電気的に接続されている。なお、温度計25は、高温の熱媒体及び低温の熱媒体が共通して流れる部分、つまり入口管20、内部空間9a、熱媒体流路13、内部空間8a及び出口管21の熱媒体が、高温と低温との間で入れ替わりを生じたことを検出する目的で設けるものであるから、出口管21の下流部分に配置することが望まれる。
【0026】
第2実施の形態によれば、第1実施の形態と同様にして加熱工程及び冷却工程を行なうことができると共に、第1の顕熱回収工程及び第2の顕熱回収工程の終了時期を次のようして知ることができる。すなわち、第1の顕熱回収工程を行い、入口管20、内部空間9a、熱媒体流路13、内部空間8a及び出口管21に残存する比較的高温の熱媒体がほぼ出口管21から流出した際に出口管21を流れる熱媒体の温度が低下するので、この温度低下を温度計25によつて検出し、第1の顕熱回収工程を終了する。また、第2の顕熱回収工程を行い、入口管20、内部空間9a、熱媒体流路13、内部空間8a及び出口管21に残存する比較的低温の熱媒体がほぼ出口管21から流出した際に出口管21を流れる熱媒体の温度が上昇するので、この温度上昇を温度計25によつて検出し、第2の顕熱回収工程を終了する。
【0027】
図3は、本発明の第3実施の形態に係る反応容器の温度調節装置を示し、第1実施の形態と同一符号は同一機能部分を示し、それらの説明は省略する。第3実施の形態にあつては、第1実施の形態の流量計22に代えて、出口管21にポンプ24よりも下流位置として圧力計26を設けると共に、加熱媒体タンク7内の水頭圧が圧力計26に作用するように第3配管32を加熱媒体タンク7の下部に接続させ、かつ、冷却媒体タンク6内の水頭圧が圧力計26に作用するように第4配管33を冷却媒体タンク6の下部に接続させてある。従つて、流量計22に代えて圧力計26が制御装置35に電気的に接続されている。なお、圧力計26は、冷却媒体タンク6又は加熱媒体タンク7内に貯留される熱媒体の水頭圧を計測し、反応容器1側に残る切り替え前の熱媒体がほぼ流出し終えたことを検出するものであり、冷却媒体タンク6内又は加熱媒体タンク7内に配置することも可能である。
【0028】
第3実施の形態によれば、第1実施の形態と同様にして加熱工程及び冷却工程を行なうことができると共に、第1の顕熱回収工程及び第2の顕熱回収工程の終了時期を次のようして知ることができる。すなわち、第1の顕熱回収工程を行えば、第3バルブHV−2が開いた状態で、入口管20、内部空間9a、熱媒体流路13、内部空間8a及び出口管21に残存する比較的高温の熱媒体がほぼ出口管21から流出することにより、出口管21を流れる熱媒体が加熱媒体タンク7に流入し、加熱媒体タンク7内の熱媒体の液面が上昇するので、この水頭圧の十分な上昇を圧力計26によつて検出し、第1の顕熱回収工程を終了する。また、第2の顕熱回収工程を行えば、第4バルブCV−2が開いた状態で、入口管20、内部空間9a、熱媒体流路13、内部空間8a及び出口管21に残存する比較的低温の熱媒体がほぼ出口管21から流出することにより、出口管21を流れる熱媒体が冷却媒体タンク6に流入し、冷却媒体タンク6内の熱媒体の液面が上昇するので、この水頭圧の十分な上昇を圧力計26によつて検出し、第2の顕熱回収工程を終了する。
【0029】
ところで、上記第1〜3実施の形態にあつては、水素吸蔵合金収容容器1に適用したが、本発明は高温及び低温の熱媒体を反応容器に交互に送り込み、反応容器の内容物に処理を含む反応を行なわせる反応容器の温度調節方法及びその装置に広く適用することが可能である。
【0030】
図4,図5は、本発明の第4実施の形態に係る反応容器の温度調節装置を示し、第1実施の形態と同一符号は同一機能部分を示し、それらの説明は省略する。第4実施の形態にあつては、第1実施の形態の流量計22を省略すると共に、水素吸蔵合金収容容器1内の水素の状態量としての圧力、つまり水素吸蔵合金収容容器1に向けて流入する水素の圧力及び水素吸蔵合金収容容器1から流出する水素の圧力を検出する第1,第2圧力検出手段50,51を設けてある。実際には、水素出口1bに接続される放出用配管41内の圧力を検出する第1圧力検出手段50、及び水素入口1aに接続される吸収用配管40内の圧力を検出する第2圧力検出手段51を設けると共に、第1,第2圧力検出手段50,51を制御装置35に電気的に接続させてある。
【0031】
制御装置35は、マイクロコンピュータによつて構成され、第1,第2基本制御値設定手段60a,60b、第1,第2比較手段61a,61b、及び第1,第2補正手段62a,62bとして機能する。更に、第4実施の形態にあつては、第1実施の形態のポンプ24に代えて、第1配管30及び第2配管31にそれぞれポンプ65,66を設けてある。なお、冷却媒体タンク6及び加熱媒体タンク7は、省略してある。
【0032】
第1基本制御値設定手段60aは、加熱装置2によつて加熱された熱媒体を送るポンプ65(ポンプモータ)を目標となる所定回転数で回転駆動するための電気的諸量である基本制御値aを設定する。第1比較手段61aは、基本制御値aと第1圧力検出手段50による検出値cとを比較し、比較結果mを出力する。第1補正手段62aは、比較結果mに基づいて基本制御値aを補正し、補正制御値wを出力する。ポンプ65(ポンプモータ)は、この補正制御値wによつて回転駆動される。
【0033】
同様に、第2基本制御値設定手段60bは、冷却装置3によつて冷却された熱媒体を送るポンプ66(ポンプモータ)を目標となる所定回転数で回転駆動するための電気的諸量である基本制御値bを設定する。第2比較手段61bは、基本制御値bと第2圧力検出手段51による検出値dとを比較し、比較結果nを出力する。第2補正手段62bは、比較結果nに基づいて基本制御値bを補正し、補正制御値xを出力する。ポンプ66(ポンプモータ)は、この補正制御値xによつて回転駆動される。
【0034】
第4実施の形態によれば、各ポンプ65,66の個別の駆動により、加熱装置2によつて加熱された熱媒体と冷却装置3によつて冷却された熱媒体とを、交互に水素吸蔵合金収容容器1の熱媒体流路13に送り込むことができる。これに伴つて水素吸蔵合金収容容器1内では水素吸蔵合金Mが水素を放出し、又は吸蔵するので、吸収用配管40又は放出用配管41内の圧力を第1,第2圧力検出手段50,51によつて検出する。第1,第2圧力検出手段50,51による検出値c,dは、第1,第2比較手段61a,61bにおいて基本制御値a,bと比較される。基本制御値a,bは、一定値又は所定のパターンで変化する。そして、第1,第2比較手段61a,61bにおける比較結果m,nに基づいて基本制御値a,bを第1,第2補正手段62a,62bにおいて補正し、補正制御値w,xを出力する。ポンプ65,66(ポンプモータ)は、この補正制御値w,xによつて回転駆動される。
【0035】
例えば、第1,第3バルブHV−1,HV−2を開いて加熱装置2によつて加熱された熱媒体を熱媒体流路13に導入する水素吸蔵合金Mの水素放出工程では吸熱反応が起こるので、放出される水素圧力の制御パターンを基本制御値aとして設定しておくことにより、水素の放出圧力が低く水素の放出量が不足している場合にはポンプ65の回転数を上げて高温状態の熱媒体の供給量を増やし、水素吸蔵合金Mからの水素放出を促すことができる。また、水素の放出圧力が高く水素の放出量が多過ぎる場合には、水素吸蔵合金容器1内が高圧になり、気密性が失われて水素漏れの恐れを生ずるので、ポンプ65の回転数を下げて高温状態の熱媒体の供給量を減らし、水素吸蔵合金Mからの水素放出を抑制させることができる。
【0036】
一方、第2,第4バルブCV−1,CV−2を開いて冷却装置3によつて冷却された熱媒体を熱媒体流路13に導入する水素吸蔵合金Mの水素吸蔵工程では放熱反応が起こるので、吸蔵される水素圧力の制御パターンを基本制御値bとして設定しておくことにより、水素の吸蔵速度が早過ぎる場合にはポンプ66の回転数を下げて低温状態の熱媒体の供給量を減らし、水素吸蔵合金Mによる水素吸蔵を抑制させる。これにより、水素吸蔵合金収容容器1内の水素の圧力が下がつて負圧になり、外気が侵入する危険性が生じることを未然に防止できる。逆に、水素の吸蔵速度が遅過ぎる場合には、ポンプ66の回転数を上げて低温状態の熱媒体の供給量を増やし、水素吸蔵合金Mによる水素吸蔵を促すことができる。
【0037】
このようにしてフィードバック制御がなされ、冷却された熱媒体を熱媒体流路13に適正量だけ導入して水素吸蔵合金収容容器1内に所定の圧力状態ひいては低温状態を正確に与えることが可能になると共に、加熱された熱媒体を熱媒体流路13に適正量だけ導入して水素吸蔵合金収容容器1内に所定の圧力状態ひいては高温状態を正確に与えることが可能になる。これにより、所定速度で水素吸蔵合金Mに水素を吸蔵させ、また、所定速度で水素吸蔵合金Mから水素を放出させることができ、吸収用配管40及び放出用配管41に接続する水素利用装置(図示せず)の水素量を正確に増減変化させることができる。
【0038】
なお、第1,第2圧力検出手段50,51による検出値c,dは、厳密には、基本制御値a,b自体によつてポンプ65,66を回転駆動させた後に時間遅れを有して所定値として検出されるものであるから、基本制御値a,bが増減変化するパターンである場合には、第1,第2比較手段61a,61bでの比較対象となる第1,第2基本制御値設定手段60a,60bからの基本制御値a,bは、第1,第2補正手段62a,62bに与える基本制御値a,bよりも所定時間前の値にする。
【0039】
また、第1圧力検出手段50が、水素吸蔵合金Mから流出する水素ガスの圧力を検出する機能を有し、第2圧力検出手段51が、水素吸蔵合金Mに向けて流れる水素ガスの圧力を検出する機能を有すればよく、第1,第2圧力検出手段50,51を単一の圧力検出手段によつて構成することも可能である。勿論、第1圧力検出手段50によつて放出用配管41内の圧力を検出し、また、第2圧力検出手段51によつて吸収用配管40内の圧力を検出することにより、上記水素ガス圧力の検出が正確になされる。
【0040】
更に、この第1,第2圧力検出手段50,51を使用して、水素吸蔵合金Mによる水素吸蔵又は水素放出の終了を検出することも可能である。すなわち、水素吸蔵合金Mによる水素吸蔵が飽和に達する水素吸蔵の終了時には、水素吸蔵合金収容容器1内の圧力が急激に上昇するので、これを第1,第2圧力検出手段50,51のいずれかによつて検出する。また、水素吸蔵合金Mによる水素放出の終了時には、水素が十分に放出されることによつて水素吸蔵合金収容容器1内の圧力が急激に低下するので、これを第1,第2圧力検出手段50,51のいずれかによつて検出する。
【0041】
ところで、上記第4実施の形態にあつては、第1,第2圧力検出手段50,51によつて水素吸蔵合金収容容器1内に流入する水素ガスの圧力又は水素吸蔵合金収容容器1から流出する水素ガスの圧力を検出したが、この第1,第2圧力検出手段50,51に代えて、水素吸蔵合金収容容器1内の水素の状態量としての流量、つまり水素吸蔵合金収容容器1内に流入する水素ガスの流量又は水素吸蔵合金収容容器1から流出する水素ガスの流量を検出する第1,第2流量検出手段を設け、同様の作用を得ることも可能である。この第1,第2流量検出手段は、吸収用配管40及び放出用配管41に第1,第2圧力検出手段50,51と同様の位置として設ければよい。
【0042】
この場合、ポンプ65,66の駆動により、加熱装置2によつて加熱された熱媒体と冷却装置3によつて冷却された熱媒体とが交互に水素吸蔵合金収容容器1の熱媒体流路13に送り込まれる。これに伴つて水素吸蔵合金収容容器1内では水素吸蔵合金Mが水素を放出し、又は吸蔵するので、水素吸蔵合金収容容器1内から流出する水素の流量又は水素吸蔵合金収容容器1内に向けて流入する水素の流量を、第1,第2流量検出手段(50,51)によつて検出する。第1,第2流量検出手段による検出値を第4実施の形態と同様に制御装置35において処理し、制御装置35から出力される補正制御値(w,x)によつてポンプ65,66(ポンプモータ)を回転駆動させることにより、水素吸蔵合金収容容器1内の圧力状態に関し、第4実施の形態と同様の作用を得ることができる。
【0043】
具体的には、放出用配管41からの水素ガスの流量が多過ぎる場合には、加熱装置2によつて加熱された熱媒体を送るポンプ65の回転数を下げ、また、放出用配管41からの水素ガスの流量が少な過ぎる場合には、ポンプ65の回転数を上げる。一方、吸収用配管40からの水素ガスの流量が多過ぎる場合には、冷却装置3によつて冷却された熱媒体を送るポンプ66の回転数を下げ、また、吸収用配管40からの水素ガスの流量が少な過ぎる場合には、ポンプ66の回転数を上げる。これにより、所定速度で水素吸蔵合金Mに水素を吸蔵させ、また、所定速度で水素吸蔵合金Mから水素を放出させることができ、吸収用配管40及び放出用配管41に接続する水素利用装置(図示せず)の水素量を正確に増減変化させることができる。
【0044】
図6,図7は、本発明の第5実施の形態に係る反応容器の温度調節装置を示し、第4実施の形態と同一符号は同一機能部分を示し、それらの説明は省略する。第5実施の形態にあつては、第4実施の形態の第1,第2圧力検出手段50,51に代えて、水素吸蔵合金収容容器1内の水素の状態量としての温度を検出する温度検出手段70を設けると共に、温度検出手段70を制御装置35に電気的に接続させてある。
【0045】
第3,第4比較手段63a,63bは、第3,第4基本制御値設定手段67a,67bからの基本制御値g,hと温度検出手段70による検出値e,fとを比較し、比較結果o,pを出力する。第3,第4補正手段64a,64bは、各比較結果o,pに基づいて基本制御値g,hを補正し、補正制御値y,zを出力する。ポンプ65,66(ポンプモータ)は、この補正制御値y,zによつて回転駆動される。
【0046】
すなわち、ポンプ65,66の適宜の駆動により、加熱装置2によつて加熱された熱媒体と冷却装置3によつて冷却された熱媒体とが交互に水素吸蔵合金収容容器1の熱媒体流路13に送り込まれる。これに伴つて水素吸蔵合金収容容器1内では水素吸蔵合金Mが水素を放出し、又は吸蔵するので、水素吸蔵合金Mの周囲に存在して水素吸蔵合金収容容器1内から流出しようとする水素の温度又は水素吸蔵合金収容容器1内に向けて流入した水素の温度を温度検出手段70によつて検出する。温度検出手段70による検出値e,fは、比較手段61a,61bにおいて基本制御値g,hと比較される。基本制御値g,hは、一定値又は所定のパターンで変化する値である。そして、比較手段61a,61bにおける比較結果o,pに基づいて、基本制御値g,hを補正手段62a,62bにおいて補正し、ポンプ65,66(ポンプモータ)を回転駆動する補正制御値y,zを出力する。
【0047】
例えば、吸熱反応が起こる水素吸蔵合金Mの水素放出工程では、放出される水素温度の制御パターンを第3基本制御値設定手段67aに基本制御値gとして設定しておくことにより、水素吸蔵合金Mから放出された後の水素の温度が低下している場合には水素の放出速度が遅過ぎて高温状態の熱媒体の供給量の不足とみなしてポンプ65の回転数を上げて高温状態の熱媒体の供給量を増やし、水素吸蔵合金Mからの水素放出を促すことができる。また、水素吸蔵合金Mから放出された後の水素の温度が高い場合には、高温状態の熱媒体の供給量の過多の状態にあつて水素の放出速度が早過ぎるとみなし、ポンプ65の回転数を下げて高温状態の熱媒体の供給量を減らし、水素吸蔵合金Mからの水素放出を抑制させ、放出される水素の圧力が上がつて水素吸蔵合金容器内が高圧になり、気密性が失われて水素漏れが起こることを未然に防止する。
【0048】
一方、水素吸蔵合金Mの水素吸蔵工程では放熱反応が起こるので、吸蔵される水素温度の制御パターンを第4基本制御値設定手段67bに基本制御値hとして設定しておくことにより、水素の温度ひいては圧力が下がり過ぎた場合には、水素の吸蔵速度が早過ぎ状態にあるため、ポンプ66の回転数を下げて低温状態の熱媒体の供給量を減らし、水素吸蔵合金Mによる水素吸蔵を抑制させることができる。これにより、水素吸蔵合金収容容器1内の水素の温度ひいては圧力が下がつて負圧になり、外気が侵入する危険性が生じることを未然に防止することができる。逆に、水素の温度が高過ぎて水素の吸蔵速度が遅過ぎるとみなされる場合には、ポンプ66の回転数を上げて低温状態の熱媒体の供給量を増やし、水素吸蔵合金Mによる水素吸蔵を促すことができる。
【0049】
このようにしてフィードバック制御がなされ、冷却された熱媒体を熱媒体流路13に適正量だけ導入して水素吸蔵合金収容容器1内に所定の低温状態を正確に与えることが可能になると共に、加熱された熱媒体を熱媒体流路13に適正量だけ導入して水素吸蔵合金収容容器1内に所定の高温状態を正確に与えることが可能になる。これにより、所定速度で水素吸蔵合金Mに水素を吸蔵させ、また、所定速度で水素吸蔵合金Mから水素を放出させることができ、吸収用配管40及び放出用配管41に接続する水素利用装置(図示せず)の水素量を正確に増減変化させることができる。
【0050】
ところで、上記第5実施の形態にあつては、温度検出手段70により、水素吸蔵合金Mの周囲に存在して水素吸蔵合金収容容器1内から流出する水素の温度又は水素吸蔵合金収容容器1内に向けて流入する水素の温度を検出したが、これに代えて、温度検出手段70により、水素吸蔵合金Mを含む水素吸蔵合金収容容器1の温度を検出し、同様の作用を得ることができることは勿論である。特に、水素吸蔵合金Mの温度は水素の吸蔵・放出に直接関与するため、水素吸蔵合金Mの温度を検出することにより、水素の吸蔵・放出速度を更に良好に制御することができる。
【0051】
【発明の効果】
以上の説明によつて理解されるように、本発明に係る反応容器の温度調節方法及び反応容器の温度調節装置によれば、次の効果を奏することができる。
(1)請求項1,3,5によれば、冷却された熱媒体を熱媒体流路に導入して反応容器内に低温状態を与えた後、加熱された熱媒体を熱媒体流路に導入して反応容器内に高温状態を与える切り替えに際し、反応容器から流出する低温の熱媒体を冷却媒体タンクに受け入れるので、反応容器内の顕熱が回収でき、エネルギー効率を向上させることができる。加えて、単一の反応容器に加熱装置及び冷却装置を切り替え可能に接続させた反応容器の温度調節装置において、反応容器から冷却装置に向けて熱媒体を流す配管に冷却媒体タンクを設けるという簡素な構造により、該配管を流れる熱媒体を正確に過不足なく回収することが可能になる。
【0052】
(2)請求項2,4,6によれば、加熱された熱媒体を熱媒体流路に導入して反応容器内に高温状態を与えた後、冷却された熱媒体を熱媒体流路に導入して反応容器内に低温状態を与える切り替えに際し、反応容器から流出する高温の熱媒体を加熱媒体タンクに受け入れるので、反応容器内の顕熱が回収でき、エネルギー効率を向上させることができる。加えて、単一の反応容器に加熱装置及び冷却装置を切り替え可能に接続させた反応容器の温度調節装置において、反応容器から加熱装置に向けて熱媒体を流す配管に加熱媒体タンクを設けるという簡素な構造により、熱媒体を正確に過不足なく回収することが可能になる。
【0053】
(3)請求項7〜9によれば、冷却された熱媒体を熱媒体流路に導入して反応容器内の水素吸蔵合金に低温状態を与える際、水素吸蔵合金に吸蔵される水素の速度が適正に維持されるので、水素が吸蔵され過ぎて反応容器内の圧力が下がつて負圧になり、外気が侵入することが防止されると共に、水素の吸蔵不足によつて反応容器内の圧力が上昇して水素漏れを生ずることが防止される。加えて、ポンプの回転数の増減によつて対応するので、ポンプの運転・停止を行なう場合のようなポンプの制御と水素吸蔵合金の温度との間に過度の時間遅れを生ずることが抑制され、水素吸蔵合金の温度の安定かつ精緻な制御が可能になつて水素の吸蔵速度が安定かつ滑らかに変化すると共に、ポンプの耐久性も向上させることができる。
【0054】
(4)請求項10によれば、加熱された熱媒体を熱媒体流路13に導入して反応容器1内の水素吸蔵合金Mに高温状態を与える際、水素吸蔵合金から放出される水素量が適正に維持されるので、反応容器内の水素量が過多となつて水素漏れを生ずることが防止される。加えて、ポンプの回転数の増減によつて対応するので、ポンプの運転・停止を行なう場合のようなポンプの制御と水素吸蔵合金の温度との間に過度の時間遅れを生ずることが抑制され、水素吸蔵合金の温度の安定かつ精緻な制御が可能になつて水素の放出速度が安定かつ滑らかに変化すると共に、ポンプの耐久性を向上させることが可能になる。
【図面の簡単な説明】
【図1】 本発明の第1実施の形態に係る反応容器の温度調節装置を示す概略図。
【図2】 本発明の第2実施の形態に係る反応容器の温度調節装置を示す概略図。
【図3】 本発明の第3実施の形態に係る反応容器の温度調節装置を示す概略図。
【図4】 本発明の第4実施の形態に係る反応容器の温度調節装置の構成要素の配置を示す概略図。
【図5】 同じく第4実施の形態に係る反応容器の温度調節装置を示すクレーム対応図。
【図6】 本発明の第5実施の形態に係る反応容器の温度調節装置の構成要素の配置を示す概略図。
【図7】 同じく第5実施の形態に係る反応容器の温度調節装置を示すクレーム対応図。
【符号の説明】
1:水素吸蔵合金収容容器(反応容器)、2:加熱装置、3:冷却装置、6:冷却媒体タンク、7:加熱媒体タンク、13:熱媒体流路、22:流量計測手段、25:温度計測手段、26:圧力計測手段、30:第1配管、31:第2配管、32:第3配管、33:第4配管、50:第1圧力検出手段(検出手段)、51:第2圧力検出手段(検出手段)、60a,60b,67a,67b:基本制御値設定手段、61a:第1比較手段、61b:第2比較手段、62a:第1補正手段、62b:第2補正手段、63a:第3比較手段、63b:第4比較手段、64a:第3補正手段、64b:第4補正手段、65,66:ポンプ、70:温度検出手段(検出手段)、M:水素吸蔵合金、HV−1:第1バルブ(入口側バルブ装置)、CV−1:第2バルブ(入口側バルブ装置)、HV−2:第3バルブ(出口側バルブ装置)、CV−2:第4バルブ(出口側バルブ装置)、a,b,g,h:基本制御値、c,d,e,f:検出値、m,n,o,p:比較結果、w,x,y,z:補正制御値。
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a method for adjusting the temperature of a reaction vessel andTemperature control of reaction vesselIt relates to the device.
[0002]
[Prior art and problems]
As a conventional method for adjusting the temperature of a reaction vessel and its apparatus, for example, an operation method of a heat utilization system using a hydrogen storage alloy described in JP-A-4-6357 is known. The first and third hydrogen storage alloy containers respectively containing a heat exchanger supplied with switchable heat medium from two types of external heat sources having different temperature levels and a first hydrogen storage alloy, Second and fourth hydrogens containing a heat exchanger from a third external heat source and a heat exchanger supplied in a switchable manner for a heat recovery heat medium used for heat load and a second hydrogen storage alloy, respectively. Switching between the storage alloy container, the hydrogen pipe to which the first, second and third and fourth hydrogen storage alloy containers are connected, the first and third hydrogen storage alloy containers and the two types of external heat sources, respectively. A heat medium pipe that can be connected, a heat medium pipe that connects the second and fourth hydrogen storage alloy containers, a third external heat source, and a heat load in a switchable manner. Between hydrogen storage alloy containers and third and fourth hydrogen storage The first and second processes in which the directions of hydrogen movement performed between the gold containers are opposite to each other are alternately performed, and the two processes are switched by switching the heat medium pipe. For the alloy container, the heat medium pipe on the heat medium inlet side is switched first to form a heat medium circulation path for sensible heat recovery, and then heat utilization is performed by switching the heat medium pipe on the heat medium outlet side. This heat utilization system is designed to recover the sensible heat in the system.
[0003]
However, in such a conventional method and apparatus for adjusting the temperature of the reaction vessel, switching is performed by switching the inlet valve on the inlet side of the reaction vessel 10 to 30 seconds ahead of the inlet valve on the outlet side. Because it is intended to recover the sensible heat of the equipment and the heat medium between the inlet valve and the outlet valve immediately after it, the heat medium between the inlet valve and the outlet valve cannot be recovered accurately without excess or deficiency. It has a technical problem. In addition, since it is premised on the use of a hydrogen storage alloy container as at least four reaction containers, a temperature controller for a reaction container having a simple structure cannot be configured.
[0004]
The heat medium is supplied to the heat exchanger of the hydrogen storage alloy container by driving the pump, but the pump (pump motor) is precisely rotated to store and release hydrogen by the hydrogen storage alloy. Has a technical problem that it cannot be precisely controlled.
[0005]
Specifically, in the above-mentioned conventional example (Japanese Patent Laid-Open No. 4-6357), since the temperature detecting means for detecting the temperature of the hydrogen storage alloy is disposed in the hydrogen storage alloy container, the temperature of the hydrogen storage alloy is set to the temperature. The detection means controls the operation / stop of the pump that circulates the heat medium. This prevents high-temperature heat from flowing into a heat load such as a freezer warehouse, and enables efficient operation, thereby providing a high-efficiency, high-output system.
[0006]
Thus, in the conventional method and apparatus for adjusting the temperature of the reaction vessel, the temperature of the heat medium is estimated from the temperature of the hydrogen storage alloy detected by the temperature detection means in the hydrogen release process of the hydrogen storage alloy. The pump is stopped when the temperature of the heat medium is detected as being lower than the set temperature, and the operation is controlled to continue when the temperature is higher than that. However, since there is an excessive time delay between the operation / stop of the pump and the temperature of the hydrogen storage alloy, if this is applied directly to the control of the amount of hydrogen in the hydrogen release process of the hydrogen storage alloy, the hydrogen storage alloy The technical problem is that not only stable and precise control of the hydrogen amount is impossible due to the fluctuation of the temperature of the pump, but also the life of the pump (pump motor) is shortened by repeated operation and stoppage of the pump. Have.
[0007]
In addition, in the hydrogen storage process of the hydrogen storage alloy in which the heat dissipation reaction occurs, the temperature of the hydrogen storage alloy is detected by the temperature detection means, and the pump is turned on and off to control the amount of hydrogen in the hydrogen storage process of the hydrogen storage alloy. The control causes a temporary excess of the supply amount of the heat medium in the low temperature state, the pressure of the stored hydrogen is lowered, the inside of the hydrogen storage alloy container becomes negative, and the outside air may enter. In addition, since an endothermic reaction occurs in the hydrogen release process of the hydrogen storage alloy, the temperature detection means detects the temperature of the hydrogen storage alloy and controls the pump ON / OFF, and the hydrogen release amount in the hydrogen storage process of the hydrogen storage alloy In this case, the supply amount of the heat medium in the high temperature state is temporarily excessively large, the pressure of hydrogen released from the hydrogen storage alloy is excessively increased, the pressure in the hydrogen storage alloy container is increased, and the airtightness is increased. This can cause loss of hydrogen. As described above, the conventional method and apparatus for adjusting the temperature of the reaction vessel function to maintain the temperature of the heat medium within a predetermined range by turning the pump on and off according to the detection value of the temperature detection means. The hydrogen amount in the hydrogen storage alloy container is controlled to increase or decrease in accordance with the detection value of the temperature detection means, and does not have a function to solve the above technical problem caused by excessive or insufficient hydrogen amount.
[0008]
[Means for Solving the Problems]
  The present invention has been made in view of such a conventional technical problem, and its configuration is as follows.
  In the first aspect of the present invention, the heat medium heated by the heating device 2 and the heat medium cooled by the cooling device 3 are alternately introduced into the heat medium flow path 13 of the reaction vessel 1 to react. A reaction container temperature control device for repeatedly performing a reaction in a high temperature state and a low temperature state in the container 1,
A first pipe 30 connecting the heating device 2 and the inlet side of the reaction vessel 1,
A second pipe 31 connecting the cooling device 3 and the inlet side of the reaction vessel 1,
A third pipe 32 connecting the heating device 2 and the outlet side of the reaction vessel 1,
A fourth pipe 33 connecting the cooling device 3 and the outlet side of the reaction vessel 1,
Inlet-side valve devices HV-1 and CV-1 for switching the open / close state of the first pipe 30 and the second pipe 31;
Outlet side valve devices HV-2 and CV-2 for switching the open / close state of the third pipe 32 and the fourth pipe 33;
Provided in the fourth pipe 33, the cooled heat medium is introduced into the heat medium flow path 13 to give a low temperature state to the reaction vessel 1, and then the heated heat medium is introduced into the heat medium flow path 13 A cooling medium tank 6 for receiving a low-temperature heat medium flowing out from the reaction container 1 when switching to give a high temperature state in the reaction container 1;
On the outlet side of the reaction vessel 1, a flow rate measuring means 22 that integrates and measures the flow rate of the heat medium flowing out from the reaction vessel 1 is provided, and when the reaction vessel 1 is switched between a low temperature state and a high temperature state, the inlet side After switching the valve devices HV-1 and CV-1 to open / close switching, the flow rate of the low-temperature heat medium flowing out from the reaction vessel 1 side is integrated and measured, and the heat medium before switching remains on the reaction vessel 1 side. Is detected to have almost flowed out, and then the outlet side valve devices HV-2 and CV-2 are switched to open / closeA temperature control device for a reaction vessel.
  According to the second aspect of the present invention, the heat medium heated by the heating device 2 and the heat medium cooled by the cooling device 3 are alternately introduced into the heat medium flow path 13 of the reaction vessel 1 to react. A reaction container temperature control device for repeatedly performing a reaction in a high temperature state and a low temperature state in the container 1,
A first pipe 30 connecting the heating device 2 and the inlet side of the reaction vessel 1,
A second pipe 31 connecting the cooling device 3 and the inlet side of the reaction vessel 1,
A third pipe 32 connecting the heating device 2 and the outlet side of the reaction vessel 1,
A fourth pipe 33 connecting the cooling device 3 and the outlet side of the reaction vessel 1,
Inlet-side valve devices HV-1 and CV-1 for switching the open / close state of the first pipe 30 and the second pipe 31;
Outlet side valve devices HV-2 and CV-2 for switching the open / close state of the third pipe 32 and the fourth pipe 33;
Provided in the third pipe 32, the heated heat medium is introduced into the heat medium flow path 13 to give a high temperature state in the reaction vessel 1, and then the cooled heat medium is introduced into the heat medium flow path 13. A heating medium tank 7 for receiving a high-temperature heat medium flowing out from the reaction container 1 when switching to give a low temperature state in the reaction container 1;
On the outlet side of the reaction vessel 1, a flow rate measuring means 22 that integrates and measures the flow rate of the heat medium flowing out from the reaction vessel 1 is provided, and when the reaction vessel 1 is switched between a low temperature state and a high temperature state, the inlet side After switching the valve devices HV-1 and CV-1 to open / close switching, the flow rate of the high-temperature heat medium flowing out from the reaction vessel 1 side is integrated and measured, and the heat medium before switching remains on the reaction vessel 1 side. Is detected to have almost flowed out, and then the outlet side valve devices HV-2 and CV-2 are switched to open / closeA temperature control device for a reaction vessel.
  According to the third aspect of the present invention, the heat medium heated by the heating device 2 and the heat medium cooled by the cooling device 3 are alternately introduced into the heat medium flow path 13 of the reaction vessel 1 to react. A reaction container temperature control device for repeatedly performing a reaction in a high temperature state and a low temperature state in the container 1,
A first pipe 30 connecting the heating device 2 and the inlet side of the reaction vessel 1,
A second pipe 31 connecting the cooling device 3 and the inlet side of the reaction vessel 1,
A third pipe 32 connecting the heating device 2 and the outlet side of the reaction vessel 1,
A fourth pipe 33 connecting the cooling device 3 and the outlet side of the reaction vessel 1,
Inlet-side valve devices HV-1 and CV-1 for switching the open / close state of the first pipe 30 and the second pipe 31;
Outlet side valve devices HV-2 and CV-2 for switching the open / close state of the third pipe 32 and the fourth pipe 33;
Provided in the fourth pipe 33, the cooled heat medium is introduced into the heat medium flow path 13 to give a low temperature state to the reaction vessel 1, and then the heated heat medium is introduced into the heat medium flow path 13 A cooling medium tank 6 for receiving a low-temperature heat medium flowing out from the reaction container 1 when switching to give a high temperature state in the reaction container 1;
A temperature measuring means 25 for measuring the temperature of the heat medium flowing out from the reaction vessel 1 is provided on the outlet side of the reaction vessel 1, and when the reaction vessel 1 is switched between a low temperature state and a high temperature state, the inlet side valve device HV The temperature of the low-temperature heat medium flowing out from the reaction vessel 1 side was measured after operating -1, CV-1 to switch between open and close, and the heat medium before switching remaining on the reaction vessel 1 side almost finished flowing out. This is a reaction vessel temperature control device characterized in that the outlet side valve devices HV-2 and CV-2 are opened and closed thereafter.
  The invention of claim 4The heat medium heated by the heating device 2 and the heat medium cooled by the cooling device 3 are alternately introduced into the heat medium flow path 13 of the reaction vessel 1 so that a high temperature state and A temperature control device for a reaction vessel that repeatedly performs a reaction in a low temperature state,
A first pipe 30 connecting the heating device 2 and the inlet side of the reaction vessel 1,
A second pipe 31 connecting the cooling device 3 and the inlet side of the reaction vessel 1,
A third pipe 32 connecting the heating device 2 and the outlet side of the reaction vessel 1,
A fourth pipe 33 connecting the cooling device 3 and the outlet side of the reaction vessel 1,
Inlet-side valve devices HV-1 and CV-1 for switching the open / close state of the first pipe 30 and the second pipe 31;
Outlet side valve devices HV-2 and CV-2 for switching the open / close state of the third pipe 32 and the fourth pipe 33;
Provided in the third pipe 32, the heated heat medium is introduced into the heat medium flow path 13 to give a high temperature state in the reaction vessel 1, and then the cooled heat medium is introduced into the heat medium flow path 13. A heating medium tank 7 for receiving a high-temperature heat medium flowing out from the reaction container 1 when switching to give a low temperature state to the reaction container 1;Have
A temperature measuring means 25 for measuring the temperature of the heat medium flowing out from the reaction vessel 1 is provided on the outlet side of the reaction vessel 1, and when the reaction vessel 1 is switched between a low temperature state and a high temperature state, the inlet side valve device HV The temperature of the high-temperature heat medium flowing out from the reaction vessel 1 side was measured after -1 and CV-1 were operated to switch between open and close, and the heat medium before switching remaining on the reaction vessel 1 side almost finished flowing out. Is detected, and then the outlet side valve devices HV-2 and CV-2 are opened and closed.A temperature control device for a reaction vessel.
  The invention of claim 5The heat medium heated by the heating device 2 and the heat medium cooled by the cooling device 3 are alternately introduced into the heat medium flow path 13 of the reaction vessel 1 so that a high temperature state and A temperature control device for a reaction vessel that repeatedly performs a reaction in a low temperature state,
A first pipe 30 connecting the heating device 2 and the inlet side of the reaction vessel 1,
A second pipe 31 connecting the cooling device 3 and the inlet side of the reaction vessel 1,
A third pipe 32 connecting the heating device 2 and the outlet side of the reaction vessel 1,
A fourth pipe 33 connecting the cooling device 3 and the outlet side of the reaction vessel 1,
Inlet-side valve devices HV-1 and CV-1 for switching the open / close state of the first pipe 30 and the second pipe 31;
Outlet side valve devices HV-2 and CV-2 for switching the open / close state of the third pipe 32 and the fourth pipe 33;
Provided in the fourth pipe 33, the cooled heat medium is introduced into the heat medium flow path 13 to enter the reaction container 1. A cooling medium tank 6 that receives a low-temperature heat medium flowing out from the reaction container 1 when switching to give a heated heat medium to the heat medium flow path 13 to give a high-temperature state in the reaction container 1 after giving the low-temperature state. And
Pressure measuring means 26 for measuring the head pressure of the heat medium is provided on the outlet side of the reaction vessel 1, and when the reaction vessel 1 is switched between a low temperature state and a high temperature state, the inlet side valve devices HV-1, CV- 1 is operated to switch between opening and closing, the head pressure of the heat medium flowing out from the reaction container 1 side and stored in the tank 6 is measured, and the heat medium before switching remaining on the reaction container 1 side almost flows out. The reaction vessel temperature control device is characterized by detecting the completion of the operation and then switching the outlet side valve devices HV-2 and CV-2 to open and close.
  The invention of claim 6The heat medium heated by the heating device 2 and the heat medium cooled by the cooling device 3 are alternately introduced into the heat medium flow path 13 of the reaction vessel 1 so that a high temperature state and A temperature control device for a reaction vessel that repeatedly performs a reaction in a low temperature state,
A first pipe 30 connecting the heating device 2 and the inlet side of the reaction vessel 1,
A second pipe 31 connecting the cooling device 3 and the inlet side of the reaction vessel 1,
A third pipe 32 connecting the heating device 2 and the outlet side of the reaction vessel 1,
A fourth pipe 33 connecting the cooling device 3 and the outlet side of the reaction vessel 1,
Inlet-side valve devices HV-1 and CV-1 for switching the open / close state of the first pipe 30 and the second pipe 31;
Outlet side valve devices HV-2 and CV-2 for switching the open / close state of the third pipe 32 and the fourth pipe 33;
Provided in the third pipe 32, the heated heat medium is introduced into the heat medium flow path 13 to give a high temperature state in the reaction vessel 1, and then the cooled heat medium is introduced into the heat medium flow path 13. A heating medium tank 7 for receiving a high-temperature heat medium flowing out from the reaction container 1 when switching to give a low temperature state in the reaction container 1;
Pressure measuring means 26 for measuring the head pressure of the heat medium is provided on the outlet side of the reaction vessel 1, and when the reaction vessel 1 is switched between a low temperature state and a high temperature state, the inlet side valve devices HV-1, CV- 1 is operated to switch between opening and closing, the head pressure of the heat medium flowing out from the reaction container 1 side and stored in the tank 7 is measured, and the heat medium before switching that remains on the reaction container 1 side almost flows out. Is detected, and then the outlet-side valve devices HV-2 and CV-2 are opened and closed.A temperature control device for a reaction vessel.
  According to the seventh aspect of the present invention, the heat medium heated by the heating device 2 and the heat medium cooled by the cooling device 3 are placed in the heat medium flow path 13 of the reaction vessel 1 containing the hydrogen storage alloy M. Alternately, the pump 65, 66 is used to introduce the hydrogen into the hydrogen storage alloy M by heating the reaction vessel 1 in a high temperature state to release hydrogen from the hydrogen storage alloy M, and the reaction vessel 1 in a low temperature state. A method for adjusting the temperature of a reaction vessel that repeatedly performs a cooling step of occlusion,
  When the cooled heat medium is introduced into the heat medium flow path 13 to give a low temperature state to the hydrogen storage alloy M in the reaction vessel 1, the pressure, flow rate, temperature, etc. of the hydrogen gas flowing toward the hydrogen storage alloy M are changed. When the state quantity is detected by the detection means 51 and 70 and the hydrogen storage speed by the hydrogen storage alloy M is too slow, the rotational speed of the pump 66 that sends the heat medium cooled by the cooling device 3 is increased, When the hydrogen occlusion speed by the hydrogen occlusion alloy M is too fast, control is performed so as to reduce the number of revolutions of the pump 66 that feeds the heat medium cooled by the cooling device 3. It is.
  In the invention according to claim 8, the heat medium heated by the heating device 2 and the heat medium cooled by the cooling device 3 are placed in the heat medium flow path 13 of the reaction vessel 1 containing the hydrogen storage alloy M. Alternately, the pump 65, 66 is used to introduce the hydrogen into the hydrogen storage alloy M by heating the reaction vessel 1 in a high temperature state to release hydrogen from the hydrogen storage alloy M, and the reaction vessel 1 in a low temperature state. A temperature control device for a reaction vessel that repeatedly performs a cooling step of occlusion,
When the cooled heat medium is introduced into the heat medium flow path 13 to give a low temperature state to the hydrogen storage alloy M in the reaction vessel 1, the pressure, flow rate, temperature, etc. of the hydrogen gas flowing toward the hydrogen storage alloy M are changed. Detection means 51 and 70 for detecting state quantities;
Basic control value setting means 60b, 67b for setting basic control values b, h for controlling the rotational speed of the pump 66 for sending the heat medium cooled by the cooling device 3,
Comparing means 61b and 63b for comparing the detected values d and f by the detecting means 51 and 70 with the basic control values b and h,
Based on the comparison results by the comparison means 61b and 63b, when the hydrogen storage speed by the hydrogen storage alloy M is too slow, the rotational speed of the pump 66 for sending the heat medium cooled by the cooling device 3 is increased, and the hydrogen When the hydrogen occlusion speed by the occlusion alloy M is too fast, the reaction vessel temperature control device is controlled so as to reduce the number of revolutions of the pump 66 that feeds the heat medium cooled by the cooling device 3. .
  According to the ninth aspect of the present invention, the heat medium heated by the heating device 2 and the heat medium cooled by the cooling device 3 are placed in the heat medium flow path 13 of the reaction vessel 1 containing the hydrogen storage alloy M. Alternately, the pump 65, 66 is used to introduce the hydrogen into the hydrogen storage alloy M by heating the reaction vessel 1 in a high temperature state to release hydrogen from the hydrogen storage alloy M, and the reaction vessel 1 in a low temperature state. A temperature control device for a reaction vessel that repeatedly performs a cooling step of occlusion,
A temperature detecting means 70 for detecting the temperature of the reaction vessel 1 when the cooled heat medium is introduced into the heat medium flow path 13 to give a low temperature state to the hydrogen storage alloy M in the reaction vessel 1;
Basic control value setting means 67b for setting a basic control value h for controlling the rotational speed of the pump 66 that sends the heat medium cooled by the cooling device 3, and
Comparing means 63b for comparing the detected value f by the temperature detecting means 70 with the basic control value h,
Based on the comparison result by the comparison means 63b, when the hydrogen storage speed by the hydrogen storage alloy M is too slow, the rotation speed of the pump 66 that sends the heat medium cooled by the cooling device 3 is increased, and the hydrogen storage alloy When the hydrogen occlusion speed by M is too fast, the reaction vessel temperature control device is controlled so as to reduce the rotational speed of the pump 66 that feeds the heat medium cooled by the cooling device 3.
  In the invention of claim 10, the heat medium heated by the heating device 2 and the heat medium cooled by the cooling device 3 are placed in the heat medium flow path 13 of the reaction vessel 1 containing the hydrogen storage alloy M. Alternately, the pump 65, 66 is used to introduce the hydrogen into the hydrogen storage alloy M by heating the reaction vessel 1 in a high temperature state to release hydrogen from the hydrogen storage alloy M, and the reaction vessel 1 in a low temperature state. A temperature control device for a reaction vessel that repeatedly performs a cooling step of occlusion,
When the heated heat medium is introduced into the heat medium flow path 13 to give a high temperature state to the hydrogen storage alloy M in the reaction vessel 1, the pressure, flow rate, temperature, etc. of the hydrogen gas released from the hydrogen storage alloy M are changed. Detection means 50 and 70 for detecting a state quantity;
Basic control value setting means 60a, 67a for setting basic control values a, g for controlling the rotational speed of the pump 65 for sending the heat medium heated by the heating device 2, and
Comparing means 61a and 63a for comparing the detected values by the detecting means 50 and 70 with the basic control values a and g,
Based on the comparison results by the comparison means 61a and 63a, when the hydrogen release rate by the hydrogen storage alloy M is too fast, the rotation number of the pump 65 that sends the heat medium heated by the heating device 2 is decreased, and the hydrogen When the hydrogen release rate by the storage alloy M is too slow, the reaction vessel temperature control device is controlled to increase the number of revolutions of the pump 66 that feeds the heat medium heated by the heating device 2. .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a temperature adjusting device for a reaction vessel according to a first embodiment of the present invention, and reference numeral 1 denotes a hydrogen storage alloy containing vessel as a reaction vessel. The hydrogen storage alloy containing container 1 has a shell shape having a container body 10, a first wall 11 that closes one end of the container body 10, and a second wall 12 that closes the other end of the container body 10. None, the housing space 15 communicating with the outside is defined by the hydrogen inlet 1a and the hydrogen outlet 1b formed at appropriate positions. A hydrogen storage alloy M is accommodated in the accommodation space 15.
[0010]
One end portion of the heat medium flow path 13 is connected to the first wall 11, the other end portion is connected to the second wall 12, and a plurality of (in the drawing) are provided between the first wall 11 and the second wall 12. Then, a heat medium flow path 13 made of three tube members is installed. A mirror member 9 that partitions the internal space 9 a is fixed to the outer surface of the first wall 11, and an inlet pipe 20 is connected to the mirror member 9. A mirror member 8 that partitions the internal space 8 a is fixed to the outer surface of the second wall 12, and an outlet pipe 21 is connected to the mirror member 8. One end of an absorption pipe 40 is connected to the hydrogen inlet 1a, one end of a discharge pipe 41 is connected to the hydrogen outlet 1b, and the other ends of the absorption pipe 40 and the discharge pipe 41 are, for example, A hydrogen utilization device (not shown) that uses hydrogen gas is connected.
[0011]
Thus, the other end of the inlet pipe 20 communicates with one end of the plurality of heat medium flow paths 13 via the internal space 9a, and the other end of the heat medium flow path 13 exits via the internal space 8a. It communicates with the tube 21. The internal space 9a, the heat medium flow path 13, and the internal space 8a of the hydrogen storage alloy container 1 are portions through which a high-temperature heat medium and a low-temperature heat medium that form a liquid flow in common.
[0012]
A heating device 2 is connected to one end of the inlet pipe 20 via a first pipe 30 having a first valve HV-1 having an opening / closing function, and has a second valve CV-1 having an opening / closing function. The cooling device 3 is connected via the second pipe 31. Thus, the heat medium from the heating device 2 or the cooling device 3 is selected via the inlet pipe 20 in the heat medium flow path 13 of the container body 10 by switching the opening and closing of the first and second valves HV-1 and CV-1. Can be introduced automatically. The first valve HV-1 and the second valve CV-1 constitute an inlet side valve device that switches the open / close state of the first pipe 30 and the second pipe 31.
[0013]
The outlet pipe 21 is provided with a flow meter 22 for integrating the flow rate and a pump 24, and the other end of the outlet pipe 21 has a third valve HV-2 having an opening / closing function and a heating medium tank 7. The heating device 2 is connected via a three pipe 32 and the cooling device 3 is connected via a fourth pipe 33 having a fourth valve CV-2 having an opening / closing function and a cooling medium tank 6. The heating medium tank 7 is arranged so as to form a part of the third pipe 32, that is, a part of the flow path of the heat medium, and the cooling medium tank 6 is a part of the fourth pipe 33, that is, the flow path of the heat medium. Arranged to form part. The third valve HV-2 and the fourth valve CV-2 constitute an outlet side valve device that switches the open / close state of the third pipe 32 and the fourth pipe 33. Therefore, the heating medium tank 7 and the cooling medium tank 6 constitute separate tanks.
[0014]
Accordingly, by switching the third and fourth valves HV-2 and CV-2, the heat medium flowing out from the heat medium flow path 13 of the container body 10 passes through the outlet pipe 21 and the third pipe 32 or the fourth pipe 33. Thus, the heating device 2 or the cooling device 3 can be selectively refluxed. The pump 24 only needs to be able to flow the heat medium in the heat medium flow path 13, can be provided in the inlet pipe 20, and is provided separately in the third pipe 32 and the fourth pipe 33. Is also possible.
[0015]
The first to fourth valves HV-1, CV-1, HV-2, CV-2 made of electromagnetic valves, the flow meter 22 and the pump 24 (pump motor) are electrically and individually connected to a control device 35 made of a microcomputer. And is appropriately controlled when the process is switched. The control device 35 also has a function of integrating the flow rate of the outlet pipe 21 based on the signal from the flow meter 22.
[0016]
Next, the operation will be described.
Now, hydrogen is stored in the hydrogen storage alloy M in the hydrogen storage alloy container 1, the first and third valves HV-1 and HV-2 are opened, and the second and fourth valves CV-1 and CV-2. Is closed and a heating step is performed. The pump 24 is driven, and a relatively high-temperature heat medium heated by the heating device 2 is supplied into the hydrogen storage alloy containing container 1 through the first pipe 30 and the inlet pipe 20. The heat medium flowing through the inlet pipe 20 enters the internal space 9a, flows out to the internal space 8a through the plurality of heat medium flow paths 13, and enters the heating medium tank 7 through the outlet pipe 21 and the third pipe 32. . The same amount of heat medium as having entered the heating medium tank 7 is pushed out of the heating medium tank 7 and is circulated in the same manner after being heated by the heating device 2.
[0017]
When the high-temperature heat medium passes through the heat medium flow path 13 and the hydrogen storage alloy M is heated, the hydrogen gas released from the hydrogen storage alloy M flows out from the discharge pipe 41 to the outside. If hydrogen gas is sufficiently released from the hydrogen storage alloy M, the pump 24 is stopped to end the heating process, and after the first sensible heat recovery process is performed, the process proceeds to the cooling process. In addition, it can detect that hydrogen gas was fully discharge | released from the hydrogen storage alloy M by the rapid fall of the pressure in the storage space 15, the rapid temperature rise of the hydrogen storage alloy M, etc. FIG.
[0018]
The first sensible heat recovery step is performed by switching the inlet side valve devices (HV-1, CV-1) before the outlet side valve devices (HV-2, CV-2). That is, the third valve HV-2 is opened, the fourth valve CV-2 is closed, the first valve HV-1 is closed, and the second valve CV-1 is opened. Next, by driving the pump 24, a relatively low-temperature heat medium cooled by the cooling device 3 flows through the second pipe 31 and the inlet pipe 20 toward the internal space 9 a. Thereby, at the end of the heating process, the relatively high temperature heat medium remaining in the hydrogen storage alloy containing container 1 including the inlet pipe 20 and the heat medium flow path 13 and in the outlet pipe 21 is led to the third pipe 32, and the heating medium tank 7 flows in. The sensible heat in the hydrogen storage alloy container 1 is recovered by the heat medium flowing toward the heating medium tank 7, and the liquid level of the heat medium in the heating medium tank 7 rises.
[0019]
Thus, if the relatively high temperature heat medium remaining in the inlet pipe 20, the internal space 9 a, the heat medium flow path 13, the internal space 8 a and the outlet pipe 21 flows into the third pipe 32 at the end of the heating process, The sensible heat recovery process is finished, and the process proceeds to the cooling process. The end time of the first sensible heat recovery process can be known by measuring and integrating the flow rate of the heat medium flowing through the outlet pipe 21 with the flow meter 22 after the start of the first sensible heat recovery process. . That is, the flow rate of the heat medium that flows through the outlet pipe 21 after the start of the first sensible heat recovery process is relatively high as it remains in the inlet pipe 20, the internal space 9a, the heat medium flow path 13, the internal space 8a, and the outlet pipe 21. The first sensible heat recovery process ends when the amount of the heat medium substantially matches. Thus, the heating medium tank 7 has a size capable of receiving the entire amount of the relatively high-temperature heat medium remaining in the inlet pipe 20, the internal space 9 a, the heat medium flow path 13, the internal space 8 a, and the outlet pipe 21. It only has to be. If the heating medium tank 7 is arranged so as to form a part of the flow path of the heating medium, the heating medium is heated when the heating medium heated by the heating device 2 flows out from the first pipe 30 next time. The heat medium in the tank 7 always flows out, and the temperature of the heat medium in the heating medium tank 7 is prevented from being lowered for a long time.
[0020]
The cooling process is started by opening the fourth valve CV-2 while keeping the second valve CV-1 open, and simultaneously closing the third valve HV-2 and driving the pump 24. By driving the pump 24, the relatively low-temperature heat medium cooled by the cooling device 3 is supplied into the hydrogen storage alloy containing container 1 through the second pipe 31 and the inlet pipe 20. The heat medium flowing through the inlet pipe 20 enters the internal space 9 a, flows out to the internal space 8 a through the plurality of heat medium flow paths 13, and enters the cooling medium tank 6 through the outlet pipe 21 and the fourth pipe 33. . The same amount of heat medium as having entered the cooling medium tank 6 is pushed out of the cooling medium tank 6 and is circulated in the same manner after being cooled by the cooling device 3.
[0021]
The low-temperature heat medium passes through the heat medium flow path 13 and the hydrogen storage alloy M is cooled, so that hydrogen flowing in from the absorption pipe 40 is stored in the hydrogen storage alloy M. If hydrogen is sufficiently stored in the hydrogen storage alloy M, the pump 24 is stopped to end the cooling process, and after the second sensible heat recovery process is performed, the process proceeds to the heating process. It should be noted that the fact that the hydrogen storage alloy M has sufficiently stored hydrogen can be detected by a rapid increase in pressure in the storage space 15, a rapid temperature drop of the hydrogen storage alloy M, or the like.
[0022]
The second sensible heat recovery process is performed by opening the first valve HV-1 and driving the pump 24 while the second valve CV-1 is closed and the fourth valve CV-2 is opened. By driving the pump 24, a relatively high-temperature heat medium heated by the heating device 2 flows through the first pipe 30 and the inlet pipe 20 toward the internal space 9a. Thereby, at the end of the cooling process, the relatively low temperature heat medium remaining in the hydrogen storage alloy containing container 1 including the inlet pipe 20 and the heat medium flow path 13 and in the outlet pipe 21 is led to the fourth pipe 33, and the cooling medium tank The relatively high-temperature heat medium flowing into and switching to 6 gradually approaches the outlet pipe 21. The sensible heat in the hydrogen storage alloy container 1 is recovered by the heat medium flowing toward the cooling medium tank 6, and the liquid level of the heat medium in the cooling medium tank 6 rises.
[0023]
Thus, if the relatively low-temperature heat medium remaining in the inlet pipe 20, the internal space 9 a, the heat medium flow path 13, the internal space 8 a, and the outlet pipe 21 flows into the fourth pipe 33 at the end of the cooling process, the second pipe The sensible heat recovery process is finished, and the process proceeds to the heating process. The end time of the second sensible heat recovery process can be known by measuring and integrating the flow rate of the heat medium flowing through the outlet pipe 21 with the flow meter 22 after the start of the second sensible heat recovery process. . That is, the flow rate of the heat medium flowing through the outlet pipe 21 after the start of the second sensible heat recovery step is relatively low as it remains in the inlet pipe 20, the internal space 9a, the heat medium flow path 13, the internal space 8a, and the outlet pipe 21. The second sensible heat recovery process is terminated when the amount of the heat medium substantially matches. Thus, the cooling medium tank 6 has a size capable of receiving a relatively low temperature heat medium remaining in the inlet pipe 20, the internal space 9 a, the heat medium flow path 13, the internal space 8 a, and the outlet pipe 21. Just do it. If the cooling medium tank 6 is disposed so as to form a part of the flow path of the heat medium, the cooling medium is cooled when the heat medium cooled by the cooling device 3 flows out of the second pipe 31 next time. The heat medium in the tank 6 always flows out, and it is possible to prevent the heat medium in the cooling medium tank 6 from being left for a long time and rising in temperature.
[0024]
Thus, ideally, such first and second sensible heat recovery steps are the portions where the high temperature heat medium and the low temperature heat medium flow in common, that is, the inlet pipe 20, the internal space 9a, the heat medium flow. This is performed in accordance with the heat medium capacity of the passage 13, the internal space 8 a and the outlet pipe 21. Since the flow rate of the heat medium flowing through the outlet pipe 21 after the start of the sensible heat recovery process is measured and integrated by the flow meter 22, the end time of the first and second sensible heat recovery processes is detected. The heat medium can be recovered accurately without excess or deficiency.
[0025]
FIG. 2 shows a temperature adjusting device for a reaction vessel according to a second embodiment of the present invention. The same reference numerals as those in the first embodiment denote the same functional parts, and their explanations are omitted. In the second embodiment, a thermometer 25 is provided on the outlet pipe 21 instead of the flow meter 22 of the first embodiment. Accordingly, the thermometer 25 is electrically connected to the control device 35 instead of the flow meter 22. The thermometer 25 has a portion where the high temperature heat medium and the low temperature heat medium flow in common, that is, the heat medium of the inlet pipe 20, the internal space 9 a, the heat medium flow path 13, the internal space 8 a, and the outlet pipe 21. Since it is provided for the purpose of detecting that a change has occurred between the high temperature and the low temperature, it is desirable to arrange it in the downstream portion of the outlet pipe 21.
[0026]
According to the second embodiment, the heating step and the cooling step can be performed in the same manner as in the first embodiment, and the end timing of the first sensible heat recovery step and the second sensible heat recovery step is set as follows. You can know like this. That is, the first sensible heat recovery process is performed, and the relatively high-temperature heat medium remaining in the inlet pipe 20, the internal space 9 a, the heat medium flow path 13, the internal space 8 a, and the outlet pipe 21 flows out from the outlet pipe 21. At this time, since the temperature of the heat medium flowing through the outlet pipe 21 is decreased, this temperature decrease is detected by the thermometer 25, and the first sensible heat recovery process is completed. In addition, the second sensible heat recovery step was performed, and the relatively low temperature heat medium remaining in the inlet pipe 20, the internal space 9 a, the heat medium flow path 13, the internal space 8 a, and the outlet pipe 21 almost flowed out of the outlet pipe 21. At this time, the temperature of the heat medium flowing through the outlet pipe 21 rises, so this temperature rise is detected by the thermometer 25, and the second sensible heat recovery step is completed.
[0027]
FIG. 3 shows a temperature adjusting device for a reaction vessel according to a third embodiment of the present invention. The same reference numerals as those in the first embodiment denote the same functional parts, and their explanations are omitted. For the third embodiment, instead of the flow meter 22 of the first embodiment, a pressure gauge 26 is provided in the outlet pipe 21 as a downstream position from the pump 24, and the water head pressure in the heating medium tank 7 is increased. The third pipe 32 is connected to the lower part of the heating medium tank 7 so as to act on the pressure gauge 26, and the fourth pipe 33 is connected to the cooling medium tank so that the water head pressure in the cooling medium tank 6 acts on the pressure gauge 26. 6 is connected to the lower part. Therefore, the pressure gauge 26 is electrically connected to the control device 35 instead of the flow meter 22. The pressure gauge 26 measures the head pressure of the heat medium stored in the cooling medium tank 6 or the heating medium tank 7 and detects that the heat medium before switching remaining on the reaction vessel 1 side has almost completely flowed out. It is also possible to arrange in the cooling medium tank 6 or the heating medium tank 7.
[0028]
According to the third embodiment, the heating step and the cooling step can be performed similarly to the first embodiment, and the end timing of the first sensible heat recovery step and the second sensible heat recovery step is set as follows. You can know like this. That is, if the first sensible heat recovery step is performed, the comparison remaining in the inlet pipe 20, the internal space 9a, the heat medium flow path 13, the internal space 8a, and the outlet pipe 21 with the third valve HV-2 opened. Since the heat medium having a substantially high temperature flows out from the outlet pipe 21, the heat medium flowing through the outlet pipe 21 flows into the heating medium tank 7 and the liquid level of the heating medium in the heating medium tank 7 rises. A sufficient increase in pressure is detected by the pressure gauge 26, and the first sensible heat recovery step is completed. Further, if the second sensible heat recovery step is performed, the comparison remaining in the inlet pipe 20, the internal space 9a, the heat medium flow path 13, the internal space 8a, and the outlet pipe 21 with the fourth valve CV-2 opened. Since the low temperature heat medium substantially flows out from the outlet pipe 21, the heat medium flowing through the outlet pipe 21 flows into the cooling medium tank 6 and the liquid level of the heat medium in the cooling medium tank 6 rises. A sufficient increase in pressure is detected by the pressure gauge 26, and the second sensible heat recovery process is completed.
[0029]
By the way, although it applied to the hydrogen storage alloy container 1 about the said 1st-3rd embodiment, this invention sends a high temperature and a low temperature heat medium alternately to a reaction container, and processes the contents of a reaction container. The present invention can be widely applied to a method for adjusting the temperature of a reaction vessel for carrying out a reaction including
[0030]
4 and 5 show a temperature adjusting device for a reaction vessel according to a fourth embodiment of the present invention. The same reference numerals as those in the first embodiment denote the same functional parts, and their explanations are omitted. In the fourth embodiment, the flow meter 22 of the first embodiment is omitted, and the pressure as the hydrogen state quantity in the hydrogen storage alloy container 1, that is, toward the hydrogen storage alloy container 1. First and second pressure detecting means 50 and 51 for detecting the pressure of hydrogen flowing in and the pressure of hydrogen flowing out of the hydrogen storage alloy container 1 are provided. Actually, the first pressure detection means 50 for detecting the pressure in the discharge pipe 41 connected to the hydrogen outlet 1b, and the second pressure detection for detecting the pressure in the absorption pipe 40 connected to the hydrogen inlet 1a. Means 51 are provided, and the first and second pressure detection means 50 and 51 are electrically connected to the control device 35.
[0031]
The control device 35 is configured by a microcomputer, and serves as first and second basic control value setting means 60a and 60b, first and second comparison means 61a and 61b, and first and second correction means 62a and 62b. Function. Further, in the fourth embodiment, pumps 65 and 66 are provided in the first pipe 30 and the second pipe 31, respectively, instead of the pump 24 of the first embodiment. Note that the cooling medium tank 6 and the heating medium tank 7 are omitted.
[0032]
The first basic control value setting means 60a is a basic control that is various electrical quantities for rotationally driving a pump 65 (pump motor) that feeds the heat medium heated by the heating device 2 at a target predetermined number of rotations. Set the value a. The first comparison means 61a compares the basic control value a with the detection value c detected by the first pressure detection means 50, and outputs a comparison result m. The first correction means 62a corrects the basic control value a based on the comparison result m and outputs a corrected control value w. The pump 65 (pump motor) is rotationally driven by this correction control value w.
[0033]
Similarly, the second basic control value setting means 60b is an electrical quantity for rotationally driving a pump 66 (pump motor) that sends the heat medium cooled by the cooling device 3 at a target predetermined rotational speed. A certain basic control value b is set. The second comparison means 61b compares the basic control value b with the detection value d detected by the second pressure detection means 51, and outputs a comparison result n. The second correction means 62b corrects the basic control value b based on the comparison result n and outputs a corrected control value x. The pump 66 (pump motor) is rotationally driven by this correction control value x.
[0034]
According to the fourth embodiment, by separately driving the pumps 65 and 66, the heat medium heated by the heating device 2 and the heat medium cooled by the cooling device 3 are alternately occluded by hydrogen. It can be fed into the heat medium flow path 13 of the alloy container 1. Accordingly, the hydrogen storage alloy M releases or stores hydrogen in the hydrogen storage alloy container 1, so that the pressure in the absorption pipe 40 or the discharge pipe 41 is changed to the first and second pressure detection means 50, 51 for detection. The detection values c and d detected by the first and second pressure detection means 50 and 51 are compared with the basic control values a and b in the first and second comparison means 61a and 61b. The basic control values a and b change with a constant value or a predetermined pattern. The basic control values a and b are corrected in the first and second correction means 62a and 62b based on the comparison results m and n in the first and second comparison means 61a and 61b, and the corrected control values w and x are output. To do. The pumps 65 and 66 (pump motor) are rotationally driven by the correction control values w and x.
[0035]
For example, in the hydrogen releasing step of the hydrogen storage alloy M that opens the first and third valves HV-1 and HV-2 and introduces the heat medium heated by the heating device 2 into the heat medium flow path 13, an endothermic reaction occurs. Therefore, by setting the control pattern of the released hydrogen pressure as the basic control value a, the rotation speed of the pump 65 is increased when the hydrogen release pressure is low and the hydrogen release amount is insufficient. The supply amount of the heat medium in a high temperature state can be increased, and hydrogen release from the hydrogen storage alloy M can be promoted. Further, when the hydrogen release pressure is high and the hydrogen release amount is too large, the inside of the hydrogen storage alloy container 1 becomes high pressure, and the gas tightness is lost to cause hydrogen leakage. The amount of supply of the heat medium in a high temperature state can be reduced by lowering, and hydrogen release from the hydrogen storage alloy M can be suppressed.
[0036]
On the other hand, in the hydrogen occlusion process of the hydrogen occlusion alloy M in which the heat medium cooled by the cooling device 3 is opened by opening the second and fourth valves CV-1 and CV-2 to the heat medium flow path 13, a heat dissipation reaction occurs. Therefore, by setting the control pattern of the occluded hydrogen pressure as the basic control value b, if the occlusion speed of hydrogen is too fast, the rotational speed of the pump 66 is lowered and the supply amount of the heat medium in the low temperature state is reduced. And hydrogen storage by the hydrogen storage alloy M is suppressed. Thereby, it can prevent beforehand that the pressure of hydrogen in the hydrogen storage alloy accommodation container 1 falls and it becomes a negative pressure, and the danger that external air invades arises beforehand. On the other hand, when the hydrogen storage speed is too slow, the number of rotations of the pump 66 can be increased to increase the supply amount of the heat medium in the low temperature state, and hydrogen storage by the hydrogen storage alloy M can be promoted.
[0037]
In this way, feedback control is performed, and a proper amount of the cooled heat medium can be introduced into the heat medium flow path 13 to accurately give a predetermined pressure state and thus a low temperature state in the hydrogen storage alloy container 1. In addition, an appropriate amount of the heated heat medium can be introduced into the heat medium flow path 13 to accurately give a predetermined pressure state and thus a high temperature state in the hydrogen storage alloy container 1. Thereby, hydrogen can be stored in the hydrogen storage alloy M at a predetermined speed, and hydrogen can be released from the hydrogen storage alloy M at a predetermined speed, and a hydrogen utilization device (connected to the absorption pipe 40 and the discharge pipe 41 ( The amount of hydrogen (not shown) can be accurately increased or decreased.
[0038]
Strictly speaking, the detection values c and d detected by the first and second pressure detection means 50 and 51 have a time delay after the pumps 65 and 66 are rotationally driven by the basic control values a and b themselves. Therefore, when the basic control values a and b are changed and changed, the first and second comparison targets in the first and second comparison means 61a and 61b are compared. The basic control values a and b from the basic control value setting means 60a and 60b are set to a value a predetermined time before the basic control values a and b given to the first and second correction means 62a and 62b.
[0039]
The first pressure detection means 50 has a function of detecting the pressure of the hydrogen gas flowing out from the hydrogen storage alloy M, and the second pressure detection means 51 determines the pressure of the hydrogen gas flowing toward the hydrogen storage alloy M. The first and second pressure detection means 50 and 51 may be configured by a single pressure detection means as long as it has a function to detect. Of course, the pressure in the discharge pipe 41 is detected by the first pressure detection means 50, and the pressure in the absorption pipe 40 is detected by the second pressure detection means 51, so that the hydrogen gas pressure is increased. Is accurately detected.
[0040]
Furthermore, it is also possible to detect the end of hydrogen occlusion or hydrogen release by the hydrogen occlusion alloy M using the first and second pressure detection means 50 and 51. That is, at the end of the hydrogen occlusion when the hydrogen occlusion by the hydrogen occlusion alloy M reaches saturation, the pressure in the hydrogen occlusion alloy container 1 suddenly increases, and this is detected by either the first or second pressure detection means 50, 51. Detect by. Further, at the end of the hydrogen release by the hydrogen storage alloy M, the pressure in the hydrogen storage alloy storage container 1 rapidly decreases due to the sufficient release of hydrogen, and this is the first and second pressure detection means. Detection is performed by either 50 or 51.
[0041]
By the way, in the fourth embodiment, the pressure of the hydrogen gas flowing into the hydrogen storage alloy storage container 1 or the outflow from the hydrogen storage alloy storage container 1 by the first and second pressure detection means 50, 51. The pressure of the hydrogen gas to be detected is detected. Instead of the first and second pressure detecting means 50 and 51, the flow rate as the hydrogen state quantity in the hydrogen storage alloy storage container 1, that is, the hydrogen storage alloy storage container 1 It is also possible to provide the same action by providing first and second flow rate detecting means for detecting the flow rate of the hydrogen gas flowing into the gas or the flow rate of the hydrogen gas flowing out of the hydrogen storage alloy container 1. The first and second flow rate detection means may be provided at the same positions as the first and second pressure detection means 50 and 51 in the absorption pipe 40 and the discharge pipe 41.
[0042]
In this case, when the pumps 65 and 66 are driven, the heat medium heated by the heating device 2 and the heat medium cooled by the cooling device 3 alternately alternate with the heat medium flow path 13 of the hydrogen storage alloy container 1. Is sent to. Along with this, the hydrogen storage alloy M releases or stores hydrogen in the hydrogen storage alloy storage container 1, so that the flow rate of hydrogen flowing out of the hydrogen storage alloy storage container 1 or toward the hydrogen storage alloy storage container 1. The flow rate of hydrogen flowing in is detected by the first and second flow rate detection means (50, 51). The detection values obtained by the first and second flow rate detection means are processed in the control device 35 in the same manner as in the fourth embodiment, and the pumps 65 and 66 (by the correction control values (w, x) output from the control device 35 ( By rotating the pump motor), the same action as that of the fourth embodiment can be obtained with respect to the pressure state in the hydrogen storage alloy container 1.
[0043]
Specifically, when the flow rate of hydrogen gas from the discharge pipe 41 is too large, the rotational speed of the pump 65 that sends the heat medium heated by the heating device 2 is decreased, When the flow rate of the hydrogen gas is too small, the rotational speed of the pump 65 is increased. On the other hand, when the flow rate of the hydrogen gas from the absorption pipe 40 is too large, the rotational speed of the pump 66 that sends the heat medium cooled by the cooling device 3 is decreased, and the hydrogen gas from the absorption pipe 40 is reduced. If the flow rate is too small, the rotational speed of the pump 66 is increased. Thereby, hydrogen can be stored in the hydrogen storage alloy M at a predetermined speed, and hydrogen can be released from the hydrogen storage alloy M at a predetermined speed, and a hydrogen utilization device (connected to the absorption pipe 40 and the discharge pipe 41 ( The amount of hydrogen (not shown) can be accurately increased or decreased.
[0044]
6 and 7 show a temperature adjusting device for a reaction vessel according to a fifth embodiment of the present invention. The same reference numerals as those in the fourth embodiment denote the same functional parts, and their explanations are omitted. For the fifth embodiment, instead of the first and second pressure detection means 50, 51 of the fourth embodiment, the temperature for detecting the temperature as the hydrogen state quantity in the hydrogen storage alloy container 1 The detection means 70 is provided, and the temperature detection means 70 is electrically connected to the control device 35.
[0045]
The third and fourth comparison means 63a and 63b compare the basic control values g and h from the third and fourth basic control value setting means 67a and 67b with the detected values e and f from the temperature detection means 70, and compare them. Output the results o and p. The third and fourth correction means 64a and 64b correct the basic control values g and h based on the comparison results o and p, and output the corrected control values y and z. The pumps 65 and 66 (pump motor) are rotationally driven by the correction control values y and z.
[0046]
In other words, the heat medium heated by the heating device 2 and the heat medium cooled by the cooling device 3 alternately by the appropriate drive of the pumps 65 and 66 are alternately heated by the heat storage channel of the hydrogen storage alloy container 1. 13 is sent. Along with this, the hydrogen storage alloy M releases or stores hydrogen in the hydrogen storage alloy storage container 1, so that the hydrogen that exists around the hydrogen storage alloy M and tends to flow out of the hydrogen storage alloy storage container 1. Or the temperature of hydrogen flowing toward the hydrogen storage alloy container 1 is detected by the temperature detecting means 70. The detection values e and f detected by the temperature detection means 70 are compared with the basic control values g and h in the comparison means 61a and 61b. The basic control values g and h are constant values or values that change in a predetermined pattern. Then, based on the comparison results o and p in the comparison means 61a and 61b, the basic control values g and h are corrected in the correction means 62a and 62b, and the correction control values y and r for driving the pumps 65 and 66 (pump motor) to rotate. z is output.
[0047]
For example, in the hydrogen releasing process of the hydrogen storage alloy M in which an endothermic reaction occurs, the hydrogen storage alloy M is controlled by setting the control pattern of the released hydrogen temperature as the basic control value g in the third basic control value setting means 67a. When the temperature of the hydrogen after being released from the refrigerant has decreased, it is considered that the hydrogen release rate is too slow and the supply amount of the heat medium in the high temperature state is insufficient, and the rotational speed of the pump 65 is increased to increase the heat in the high temperature state. The supply amount of the medium can be increased, and hydrogen release from the hydrogen storage alloy M can be promoted. Further, when the temperature of hydrogen after being released from the hydrogen storage alloy M is high, it is considered that the release rate of hydrogen is too fast in the state where the supply amount of the heat medium in the high temperature state is excessive, and the rotation of the pump 65 Decrease the number to reduce the supply amount of the heat medium in the high temperature state, suppress the hydrogen release from the hydrogen storage alloy M, the pressure of the released hydrogen rises, the inside of the hydrogen storage alloy container becomes high pressure, and the airtightness Prevents hydrogen leakage from being lost.
[0048]
On the other hand, since a heat release reaction occurs in the hydrogen storage step of the hydrogen storage alloy M, the hydrogen temperature is controlled by setting the control pattern of the stored hydrogen temperature as the basic control value h in the fourth basic control value setting means 67b. As a result, when the pressure is too low, the hydrogen occlusion speed is too fast, so the number of rotations of the pump 66 is lowered to reduce the supply amount of the low-temperature heat medium, and the hydrogen occlusion by the hydrogen occlusion alloy M is suppressed. Can be made. As a result, the temperature of the hydrogen in the hydrogen storage alloy containing container 1 and thus the pressure is reduced to a negative pressure, and it is possible to prevent the risk of the outside air from entering. On the other hand, when the hydrogen temperature is considered to be too high and the hydrogen occlusion speed is considered to be too slow, the rotational speed of the pump 66 is increased to increase the supply amount of the low-temperature heat medium, and the hydrogen occlusion by the hydrogen occlusion alloy M is achieved. Can be encouraged.
[0049]
In this way, feedback control is performed, and it is possible to introduce a proper amount of the cooled heat medium into the heat medium flow path 13 to accurately give a predetermined low temperature state in the hydrogen storage alloy containing container 1, A proper amount of the heated heat medium can be introduced into the heat medium flow path 13 to accurately give a predetermined high temperature state in the hydrogen storage alloy containing container 1. Thereby, hydrogen can be stored in the hydrogen storage alloy M at a predetermined speed, and hydrogen can be released from the hydrogen storage alloy M at a predetermined speed, and a hydrogen utilization device (connected to the absorption pipe 40 and the discharge pipe 41 ( The amount of hydrogen (not shown) can be accurately increased or decreased.
[0050]
By the way, in the fifth embodiment, the temperature detecting means 70 causes the temperature of hydrogen existing around the hydrogen storage alloy M to flow out of the hydrogen storage alloy storage container 1 or the hydrogen storage alloy storage container 1. However, instead of this, the temperature of the hydrogen storage alloy containing container 1 including the hydrogen storage alloy M can be detected by the temperature detection means 70, and the same action can be obtained. Of course. In particular, since the temperature of the hydrogen storage alloy M is directly related to the storage and release of hydrogen, by detecting the temperature of the hydrogen storage alloy M, the hydrogen storage and release rate can be controlled even better.
[0051]
【The invention's effect】
  As understood from the above description, the method for adjusting the temperature of the reaction vessel according to the present invention andTemperature control of reaction vesselAccording to the apparatus, the following effects can be achieved.
(1) Claim 1,3, 5According to the above, after introducing the cooled heat medium into the heat medium flow path to give the reaction container a low temperature state, the heated heat medium is introduced into the heat medium flow path to bring the reaction container into a high temperature state. At the time of switching, the low-temperature heat medium flowing out from the reaction vessel is received in the cooling medium tank, so that sensible heat in the reaction vessel can be recovered and energy efficiency can be improved. In addition, in a reaction vessel temperature control device in which a heating device and a cooling device are connected to a single reaction vessel in a switchable manner, a cooling medium tank is simply provided in a pipe through which a heat medium flows from the reaction vessel toward the cooling device. With this structure, the heat medium flowing through the pipe can be recovered accurately without excess or deficiency.
[0052]
(2) Claim2, 4, 6According to the present invention, the heated heat medium is introduced into the heat medium flow path to give the reaction container a high temperature state, and then the cooled heat medium is introduced into the heat medium flow path to bring the reaction container into a low temperature state. At the time of switching, the high-temperature heat medium flowing out from the reaction container is received in the heating medium tank, so that the sensible heat in the reaction container can be recovered and the energy efficiency can be improved. In addition, in a reaction vessel temperature control device in which a heating device and a cooling device are connected to a single reaction vessel in a switchable manner, a simple heating medium tank is provided in a pipe through which the heat medium flows from the reaction vessel toward the heating device. With this structure, the heat medium can be recovered accurately without excess or deficiency.
[0053]
(3) According to claims 7 to 9, when the cooled heat medium is introduced into the heat medium flow path to give a low temperature state to the hydrogen storage alloy in the reaction vessel, the speed of hydrogen stored in the hydrogen storage alloy Is properly maintained, so that hydrogen is excessively stored and the pressure in the reaction vessel drops to a negative pressure, preventing outside air from entering, and insufficient hydrogen storage in the reaction vessel. The pressure is prevented from rising and causing hydrogen leakage. In addition, since it responds by increasing / decreasing the number of revolutions of the pump, an excessive time delay between the control of the pump and the temperature of the hydrogen storage alloy, such as when operating / stopping the pump, is suppressed. As a result, the hydrogen storage rate can be changed stably and smoothly, and the durability of the pump can be improved.
[0054]
(4) According to claim 10, when the heated heat medium is introduced into the heat medium flow path 13 to give a high temperature state to the hydrogen storage alloy M in the reaction vessel 1, the amount of hydrogen released from the hydrogen storage alloy Therefore, it is possible to prevent hydrogen leakage due to an excessive amount of hydrogen in the reaction vessel. In addition, since it responds by increasing / decreasing the number of revolutions of the pump, an excessive time delay between the control of the pump and the temperature of the hydrogen storage alloy, such as when operating / stopping the pump, is suppressed. As a result, it becomes possible to stably and precisely control the temperature of the hydrogen storage alloy, so that the hydrogen release rate changes stably and smoothly, and the durability of the pump can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a temperature adjustment device for a reaction vessel according to a first embodiment of the present invention.
FIG. 2 is a schematic view showing a temperature adjustment device for a reaction vessel according to a second embodiment of the present invention.
FIG. 3 is a schematic view showing a temperature adjusting device for a reaction vessel according to a third embodiment of the present invention.
FIG. 4 is a schematic view showing the arrangement of components of a temperature adjustment device for a reaction vessel according to a fourth embodiment of the present invention.
FIG. 5 is a claim correspondence diagram showing a temperature adjusting device for a reaction vessel according to a fourth embodiment.
FIG. 6 is a schematic view showing the arrangement of components of a temperature adjustment device for a reaction vessel according to a fifth embodiment of the present invention.
FIG. 7 is a claim correspondence diagram showing a temperature adjusting device for a reaction vessel according to a fifth embodiment.
[Explanation of symbols]
1: hydrogen storage alloy container (reaction vessel), 2: heating device, 3: cooling device, 6: cooling medium tank, 7: heating medium tank, 13: heating medium flow path, 22: flow rate measuring means, 25: temperature Measuring means, 26: pressure measuring means, 30: first piping, 31: second piping, 32: third piping, 33: fourth piping, 50: first pressure detecting means (detecting means), 51: second pressure Detection means (detection means), 60a, 60b, 67a, 67b: basic control value setting means, 61a: first comparison means, 61b: second comparison means, 62a: first correction means, 62b: second correction means, 63a : Third comparison means, 63b: fourth comparison means, 64a: third correction means, 64b: fourth correction means, 65, 66: pump, 70: temperature detection means (detection means), M: hydrogen storage alloy, HV -1: 1st valve (inlet side valve device), CV- : Second valve (inlet side valve device), HV-2: third valve (outlet side valve device), CV-2: fourth valve (outlet side valve device), a, b, g, h: basic control values , C, d, e, f: detection value, m, n, o, p: comparison result, w, x, y, z: correction control value.

Claims (10)

反応容器(1)の熱媒体流路(13)に、加熱装置(2)によつて加熱された熱媒体と冷却装置(3)によつて冷却された熱媒体とを交互に導入して、反応容器(1)内で高温状態及び低温状態での反応を繰り返し行なわせる反応容器の温度調節装置であつて、
加熱装置(2)と反応容器(1)の入口側とを接続する第1配管(30)と、
冷却装置(3)と反応容器(1)の入口側とを接続する第2配管(31)と、
加熱装置(2)と反応容器(1)の出口側とを接続する第3配管(32)と、
冷却装置(3)と反応容器(1)の出口側とを接続する第4配管(33)と、
第1配管(30)及び第2配管(31)の開閉状態を切り替えさせる入口側バルブ装置(HV−1,CV−1)と、
第3配管(32)及び第4配管(33)の開閉状態を切り替えさせる出口側バルブ装置(HV−2,CV−2)と、
第4配管(33)に設けられ、冷却された熱媒体を熱媒体流路(13)に導入して反応容器(1)内に低温状態を与えた後、加熱された熱媒体を熱媒体流路(13)に導入して反応容器(1)内に高温状態を与える切り替えに際し、反応容器(1)から流出する低温の熱媒体を受け入れる冷却媒体タンク(6)とを有し、
反応容器(1)の出口側に、反応容器(1)から流出する熱媒体の流量を積算して計測する流量計測手段(22)を設け、反応容器(1)内に低温状態と高温状態との切り替えを与えるに際し、入口側バルブ装置(HV−1,CV−1)を操作して開閉切り替えを与えた後に反応容器(1)側から流出する低温の熱媒体の流量を積算して計測し、反応容器(1)側に残る切り替え前の熱媒体がほぼ流出し終えたことを検出し、その後に出口側バルブ装置(HV−2,CV−2)を開閉切り替えることを特徴とする反応容器の温度調節装置。
The heat medium heated by the heating device (2) and the heat medium cooled by the cooling device (3) are alternately introduced into the heat medium flow path (13) of the reaction vessel (1), and A reaction vessel temperature control device for repeatedly performing a reaction in a high temperature state and a low temperature state in the reaction vessel (1),
A first pipe (30) connecting the heating device (2) and the inlet side of the reaction vessel (1);
A second pipe (31) connecting the cooling device (3) and the inlet side of the reaction vessel (1);
A third pipe (32) connecting the heating device (2) and the outlet side of the reaction vessel (1);
A fourth pipe (33) connecting the cooling device (3) and the outlet side of the reaction vessel (1);
An inlet side valve device (HV-1, CV-1) for switching the open / close state of the first pipe (30) and the second pipe (31);
Outlet side valve devices (HV-2, CV-2) for switching the open / close state of the third pipe (32) and the fourth pipe (33);
A cooling medium provided in the fourth pipe (33) is introduced into the heating medium channel (13) to give a low temperature state to the reaction vessel (1), and then the heated heating medium is supplied to the heating medium flow. upon switching by introducing the road (13) gives a high temperature in the reaction vessel (1), the cooling medium tank (6) for receiving the low-temperature heat medium flowing out of the reaction vessel (1) and have a,
On the outlet side of the reaction vessel (1), a flow rate measuring means (22) for integrating and measuring the flow rate of the heat medium flowing out from the reaction vessel (1) is provided, and a low temperature state and a high temperature state are provided in the reaction vessel (1). When the switching is performed, the flow rate of the low-temperature heat medium flowing out from the reaction vessel (1) side after the opening / closing switching is operated by operating the inlet side valve device (HV-1, CV-1) is measured. , the heat medium before switching remaining in the reaction vessel (1) side detects that it has finished nearly flow out, then characterized by closing switch Rukoto the outlet valve device (HV-2, CV-2 ) reaction Container temperature control device.
反応容器(1)の熱媒体流路(13)に、加熱装置(2)によつて加熱された熱媒体と冷却装置(3)によつて冷却された熱媒体とを交互に導入して、反応容器(1)内で高温状態及び低温状態での反応を繰り返し行なわせる反応容器の温度調節装置であつて、
加熱装置(2)と反応容器(1)の入口側とを接続する第1配管(30)と、
冷却装置(3)と反応容器(1)の入口側とを接続する第2配管(31)と、
加熱装置(2)と反応容器(1)の出口側とを接続する第3配管(32)と、
冷却装置(3)と反応容器(1)の出口側とを接続する第4配管(33)と、
第1配管(30)及び第2配管(31)の開閉状態を切り替えさせる入口側バルブ装置(HV−1,CV−1)と、
第3配管(32)及び第4配管(33)の開閉状態を切り替えさせる出口側バルブ装置(HV−2,CV−2)と、
第3配管(32)に設けられ、加熱された熱媒体を熱媒体流路(13)に導入して反応容器(1)内に高温状態を与えた後、冷却された熱媒体を熱媒体流路(13)に導入して反応容器(1)内に低温状態を与える切り替えに際し、反応容器(1)から流出する高温の熱媒体を受け入れる加熱媒体タンク(7)とを有し、
反応容器(1)の出口側に、反応容器(1)から流出する熱媒体の流量を積算して計測する流量計測手段(22)を設け、反応容器(1)内に低温状態と高温状態との切り替えを与えるに際し、入口側バルブ装置(HV−1,CV−1)を操作して開閉切り替えを与えた後に反応容器(1)側から流出する高温の熱媒体の流量を積算して計測し、反応容器(1)側に残る切り替え前の熱媒体がほぼ流出し終えたことを検出し、その後に出口側バルブ装置(HV−2,CV−2)を開閉切り替えることを特徴とする反応容器の温度調節装置。
The heat medium heated by the heating device (2) and the heat medium cooled by the cooling device (3) are alternately introduced into the heat medium flow path (13) of the reaction vessel (1), and A reaction vessel temperature control device for repeatedly performing a reaction in a high temperature state and a low temperature state in the reaction vessel (1),
A first pipe (30) connecting the heating device (2) and the inlet side of the reaction vessel (1);
A second pipe (31) connecting the cooling device (3) and the inlet side of the reaction vessel (1);
A third pipe (32) connecting the heating device (2) and the outlet side of the reaction vessel (1);
A fourth pipe (33) connecting the cooling device (3) and the outlet side of the reaction vessel (1);
An inlet side valve device (HV-1, CV-1) for switching the open / close state of the first pipe (30) and the second pipe (31);
Outlet side valve devices (HV-2, CV-2) for switching the open / close state of the third pipe (32) and the fourth pipe (33);
A heated heat medium provided in the third pipe (32) is introduced into the heat medium flow path (13) to give a high temperature state in the reaction vessel (1), and then the cooled heat medium is flown into the heat medium flow. upon switching by introducing the road (13) gives a low temperature in the reaction vessel (1), the heating medium tank (7) for receiving the high-temperature heat medium flowing out of the reaction vessel (1) and have a,
On the outlet side of the reaction vessel (1), a flow rate measuring means (22) for integrating and measuring the flow rate of the heat medium flowing out from the reaction vessel (1) is provided, and a low temperature state and a high temperature state are provided in the reaction vessel (1). When the switching is performed, the flow rate of the high-temperature heat medium flowing out from the reaction vessel (1) side after the opening / closing switching is operated by operating the inlet side valve device (HV-1, CV-1) is measured. , the heat medium before switching remaining in the reaction vessel (1) side detects that it has finished nearly flow out, then characterized by closing switch Rukoto the outlet valve device (HV-2, CV-2 ) reaction Container temperature control device.
反応容器(1)の熱媒体流路(13)に、加熱装置(2)によつて加熱された熱媒体と冷却装置(3)によつて冷却された熱媒体とを交互に導入して、反応容器(1)内で高温状態及び低温状態での反応を繰り返し行なわせる反応容器の温度調節装 置であつて、
加熱装置(2)と反応容器(1)の入口側とを接続する第1配管(30)と、
冷却装置(3)と反応容器(1)の入口側とを接続する第2配管(31)と、
加熱装置(2)と反応容器(1)の出口側とを接続する第3配管(32)と、
冷却装置(3)と反応容器(1)の出口側とを接続する第4配管(33)と、
第1配管(30)及び第2配管(31)の開閉状態を切り替えさせる入口側バルブ装置(HV−1,CV−1)と、
第3配管(32)及び第4配管(33)の開閉状態を切り替えさせる出口側バルブ装置(HV−2,CV−2)と、
第4配管(33)に設けられ、冷却された熱媒体を熱媒体流路(13)に導入して反応容器(1)内に低温状態を与えた後、加熱された熱媒体を熱媒体流路(13)に導入して反応容器(1)内に高温状態を与える切り替えに際し、反応容器(1)から流出する低温の熱媒体を受け入れる冷却媒体タンク(6)とを有し、
反応容器(1)の出口側に、反応容器(1)から流出する熱媒体の温度を計測する温度計測手段(25)を設け、反応容器(1)内に低温状態と高温状態との切り替えを与えるに際し、入口側バルブ装置(HV−1,CV−1)を操作して開閉切り替えを与えた後に反応容器(1)側から流出する低温の熱媒体の温度を計測し、反応容器(1)側に残る切り替え前の熱媒体がほぼ流出し終えたことを検出し、その後に出口側バルブ装置(HV−2,CV−2)を開閉切り替えることを特徴とする反応容器の温度調節装置。
The heat medium heated by the heating device (2) and the heat medium cooled by the cooling device (3) are alternately introduced into the heat medium flow path (13) of the reaction vessel (1), and shall apply at a temperature regulating equipment of the reactor to repeatedly perform the reaction at a high temperature state and the cold state in the reaction vessel (1),
A first pipe (30) connecting the heating device (2) and the inlet side of the reaction vessel (1);
A second pipe (31) connecting the cooling device (3) and the inlet side of the reaction vessel (1);
A third pipe (32) connecting the heating device (2) and the outlet side of the reaction vessel (1);
A fourth pipe (33) connecting the cooling device (3) and the outlet side of the reaction vessel (1);
An inlet side valve device (HV-1, CV-1) for switching the open / close state of the first pipe (30) and the second pipe (31);
Outlet side valve devices (HV-2, CV-2) for switching the open / close state of the third pipe (32) and the fourth pipe (33);
A cooling medium provided in the fourth pipe (33) is introduced into the heating medium channel (13) to give a low temperature state to the reaction vessel (1), and then the heated heating medium is supplied to the heating medium flow. A cooling medium tank (6) for receiving a low-temperature heat medium flowing out from the reaction container (1) at the time of switching to be introduced into the passage (13) to give a high temperature state in the reaction container (1),
A temperature measuring means (25) for measuring the temperature of the heat medium flowing out from the reaction vessel (1) is provided on the outlet side of the reaction vessel (1), and switching between the low temperature state and the high temperature state is performed in the reaction vessel (1). In giving, the temperature of the low-temperature heat medium flowing out from the reaction vessel (1) side is measured after operating the inlet side valve device (HV-1, CV-1) to switch on and off, and the reaction vessel (1) A temperature control device for a reaction vessel, characterized in that it detects that the heat medium before switching remaining on the side has almost flowed out, and then opens and closes the outlet side valve devices (HV-2, CV-2).
反応容器(1)の熱媒体流路(13)に、加熱装置(2)によつて加熱された熱媒体と冷却装置(3)によつて冷却された熱媒体とを交互に導入して、反応容器(1)内で高温状態及び低温状態での反応を繰り返し行なわせる反応容器の温度調節装置であつて、
加熱装置(2)と反応容器(1)の入口側とを接続する第1配管(30)と、
冷却装置(3)と反応容器(1)の入口側とを接続する第2配管(31)と、
加熱装置(2)と反応容器(1)の出口側とを接続する第3配管(32)と、
冷却装置(3)と反応容器(1)の出口側とを接続する第4配管(33)と、
第1配管(30)及び第2配管(31)の開閉状態を切り替えさせる入口側バルブ装置(HV−1,CV−1)と、
第3配管(32)及び第4配管(33)の開閉状態を切り替えさせる出口側バルブ装置(HV−2,CV−2)と、
第3配管(32)に設けられ、加熱された熱媒体を熱媒体流路(13)に導入して反応容器(1)内に高温状態を与えた後、冷却された熱媒体を熱媒体流路(13)に導入して反応容器(1)内に低温状態を与える切り替えに際し、反応容器(1)から流出する高温の熱媒体を受け入れる加熱媒体タンク(7)とを有し、
反応容器(1)の出口側に、反応容器(1)から流出する熱媒体の温度を計測する温度計測手段(25)を設け、反応容器(1)内に低温状態と高温状態との切り替えを与えるに際し、入口側バルブ装置(HV−1,CV−1)を操作して開閉切り替えを与えた後に反応容器(1)側から流出する高温の熱媒体の温度を計測し、反応容器(1)側に残る切り替え前の熱媒体がほぼ流出し終えたことを検出し、その後に出口側バルブ装置(HV−2,CV−2)を開閉切り替えることを特徴とする反応容器の温度調節装置。
The heat medium heated by the heating device (2) and the heat medium cooled by the cooling device (3) are alternately introduced into the heat medium flow path (13) of the reaction vessel (1), and A reaction vessel temperature control device for repeatedly performing a reaction in a high temperature state and a low temperature state in the reaction vessel (1),
A first pipe (30) connecting the heating device (2) and the inlet side of the reaction vessel (1);
A second pipe (31) connecting the cooling device (3) and the inlet side of the reaction vessel (1);
A third pipe (32) connecting the heating device (2) and the outlet side of the reaction vessel (1);
A fourth pipe (33) connecting the cooling device (3) and the outlet side of the reaction vessel (1);
An inlet side valve device (HV-1, CV-1) for switching the open / close state of the first pipe (30) and the second pipe (31);
Outlet side valve devices (HV-2, CV-2) for switching the open / close state of the third pipe (32) and the fourth pipe (33);
A heated heat medium provided in the third pipe (32) is introduced into the heat medium flow path (13) to give a high temperature state in the reaction vessel (1), and then the cooled heat medium is flown into the heat medium flow. A heating medium tank (7) for receiving a high-temperature heat medium flowing out from the reaction container (1) when switching into a low temperature state in the reaction container (1) after being introduced into the passage (13),
A temperature measuring means (25) for measuring the temperature of the heat medium flowing out from the reaction vessel (1) is provided on the outlet side of the reaction vessel (1), and switching between the low temperature state and the high temperature state is performed in the reaction vessel (1). In giving, the temperature of the high-temperature heat medium flowing out from the reaction vessel (1) side is measured after operating the inlet side valve device (HV-1, CV-1) to provide opening / closing switching, and the reaction vessel (1) detects that the heat medium before switching to remain on the side has finished almost outflow, then the outlet side valve device (HV-2, CV-2 ) a temperature control device of the reaction vessel, wherein the opening and closing switch Rukoto.
反応容器(1)の熱媒体流路(13)に、加熱装置(2)によつて加熱された熱媒体と冷却装置(3)によつて冷却された熱媒体とを交互に導入して、反応容器(1)内で高温状態及び低温状態での反応を繰り返し行なわせる反応容器の温度調節装置であつて、
加熱装置(2)と反応容器(1)の入口側とを接続する第1配管(30)と、
冷却装置(3)と反応容器(1)の入口側とを接続する第2配管(31)と、
加熱装置(2)と反応容器(1)の出口側とを接続する第3配管(32)と、
冷却装置(3)と反応容器(1)の出口側とを接続する第4配管(33)と、
第1配管(30)及び第2配管(31)の開閉状態を切り替えさせる入口側バルブ装置( HV−1,CV−1)と、
第3配管(32)及び第4配管(33)の開閉状態を切り替えさせる出口側バルブ装置(HV−2,CV−2)と、
第4配管(33)に設けられ、冷却された熱媒体を熱媒体流路(13)に導入して反応容器(1)内に低温状態を与えた後、加熱された熱媒体を熱媒体流路(13)に導入して反応容器(1)内に高温状態を与える切り替えに際し、反応容器(1)から流出する低温の熱媒体を受け入れる冷却媒体タンク(6)とを有し、
反応容器(1)の出口側に、熱媒体の水頭圧を計測する圧力計測手段(26)を設け、反応容器(1)内に低温状態と高温状態との切り替えを与えるに際し、入口側バルブ装置(HV−1,CV−1)を操作して開閉切り替えを与えた後に反応容器(1)側から流出して前記タンク(6)内に貯留される熱媒体の水頭圧を計測し、反応容器(1)側に残る切り替え前の熱媒体がほぼ流出し終えたことを検出し、その後に出口側バルブ装置(HV−2,CV−2)を開閉切り替えることを特徴とする反応容器の温度調節装置。
The heat medium heated by the heating device (2) and the heat medium cooled by the cooling device (3) are alternately introduced into the heat medium flow path (13) of the reaction vessel (1), and A reaction vessel temperature control device for repeatedly performing a reaction in a high temperature state and a low temperature state in the reaction vessel (1),
A first pipe (30) connecting the heating device (2) and the inlet side of the reaction vessel (1);
A second pipe (31) connecting the cooling device (3) and the inlet side of the reaction vessel (1);
A third pipe (32) connecting the heating device (2) and the outlet side of the reaction vessel (1);
A fourth pipe (33) connecting the cooling device (3) and the outlet side of the reaction vessel (1);
An inlet side valve device ( HV-1, CV-1) for switching the open / close state of the first pipe (30) and the second pipe (31) ;
Outlet side valve devices (HV-2, CV-2) for switching the open / close state of the third pipe (32) and the fourth pipe (33);
A cooling medium provided in the fourth pipe (33) is introduced into the heating medium channel (13) to give a low temperature state to the reaction vessel (1), and then the heated heating medium is supplied to the heating medium flow. A cooling medium tank (6) for receiving a low-temperature heat medium flowing out from the reaction container (1) at the time of switching to be introduced into the passage (13) to give a high temperature state in the reaction container (1),
A pressure measuring means (26) for measuring the head pressure of the heat medium is provided on the outlet side of the reaction vessel (1), and an inlet side valve device is provided when switching between the low temperature state and the high temperature state in the reaction vessel (1). (HV-1, CV-1) is operated to switch between opening and closing, then the head pressure of the heat medium flowing out from the reaction vessel (1) side and stored in the tank (6) is measured, and the reaction vessel (1) Temperature control of the reaction vessel characterized by detecting that the heat medium before switching that has remained on the side has almost flowed out, and then switching the outlet valve device (HV-2, CV-2) to open or close apparatus.
反応容器(1)の熱媒体流路(13)に、加熱装置(2)によつて加熱された熱媒体と冷却装置(3)によつて冷却された熱媒体とを交互に導入して、反応容器(1)内で高温状態及び低温状態での反応を繰り返し行なわせる反応容器の温度調節装置であつて、
加熱装置(2)と反応容器(1)の入口側とを接続する第1配管(30)と、
冷却装置(3)と反応容器(1)の入口側とを接続する第2配管(31)と、
加熱装置(2)と反応容器(1)の出口側とを接続する第3配管(32)と、
冷却装置(3)と反応容器(1)の出口側とを接続する第4配管(33)と、
第1配管(30)及び第2配管(31)の開閉状態を切り替えさせる入口側バルブ装置(HV−1,CV−1)と、
第3配管(32)及び第4配管(33)の開閉状態を切り替えさせる出口側バルブ装置(HV−2,CV−2)と、
第3配管(32)に設けられ、加熱された熱媒体を熱媒体流路(13)に導入して反応容器(1)内に高温状態を与えた後、冷却された熱媒体を熱媒体流路(13)に導入して反応容器(1)内に低温状態を与える切り替えに際し、反応容器(1)から流出する高温の熱媒体を受け入れる加熱媒体タンク(7)とを有し、
反応容器(1)の出口側に、熱媒体の水頭圧を計測する圧力計測手段(26)を設け、反応容器(1)内に低温状態と高温状態との切り替えを与えるに際し、入口側バルブ装置(HV−1,CV−1)を操作して開閉切り替えを与えた後に反応容器(1)側から流出して前記タンク(7)内に貯留される熱媒体の水頭圧を計測し、反応容器(1)側に残る切り替え前の熱媒体がほぼ流出し終えたことを検出し、その後に出口側バルブ装置(HV−2,CV−2)を開閉切り替えることを特徴とする反応容器の温度調節装置。
The heat medium heated by the heating device (2) and the heat medium cooled by the cooling device (3) are alternately introduced into the heat medium flow path (13) of the reaction vessel (1), and A reaction vessel temperature control device for repeatedly performing a reaction in a high temperature state and a low temperature state in the reaction vessel (1),
A first pipe (30) connecting the heating device (2) and the inlet side of the reaction vessel (1);
A second pipe (31) connecting the cooling device (3) and the inlet side of the reaction vessel (1);
A third pipe (32) connecting the heating device (2) and the outlet side of the reaction vessel (1);
A fourth pipe (33) connecting the cooling device (3) and the outlet side of the reaction vessel (1);
An inlet side valve device (HV-1, CV-1) for switching the open / close state of the first pipe (30) and the second pipe (31);
Outlet side valve devices (HV-2, CV-2) for switching the open / close state of the third pipe (32) and the fourth pipe (33);
A heated heat medium provided in the third pipe (32) is introduced into the heat medium flow path (13) to give a high temperature state in the reaction vessel (1), and then the cooled heat medium is flown into the heat medium flow. A heating medium tank (7) for receiving a high-temperature heat medium flowing out from the reaction container (1) when switching into a low temperature state in the reaction container (1) after being introduced into the passage (13),
A pressure measuring means (26) for measuring the head pressure of the heat medium is provided on the outlet side of the reaction vessel (1), and an inlet side valve device is provided when switching between the low temperature state and the high temperature state in the reaction vessel (1). (HV-1, CV-1) is operated to switch between opening and closing, then the head pressure of the heat medium flowing out from the reaction vessel (1) side and stored in the tank (7) is measured, and the reaction vessel (1) before switching the heat medium is detected that finished almost outflow remains on the side, the temperature of the reaction vessel followed by the outlet-side valve device (HV-2, CV-2 ) , wherein the opening and closing switch Rukoto Adjusting device.
水素吸蔵合金(M)を収容する反応容器(1)の熱媒体流路(13)に、加熱装置(2)によつて加熱された熱媒体と冷却装置(3)によつて冷却された熱媒体とを交互にポンプ(65,66)によつて送つて導入し、反応容器(1)内を高温状態として水素吸蔵合金(M)から水素を放出させる加熱工程、及び反応容器(1)内を低温状態として水素吸蔵合金(M)に水素を吸蔵させる冷却工程を繰り返し行なわせる反応容器の温度調節方法であつて、
冷却された熱媒体を熱媒体流路(13)に導入して反応容器(1)内の水素吸蔵合金(M)に低温状態を与える場合に、水素吸蔵合金(M)に向けて流れる水素ガスの圧力、流量、温度等の状態量を検出手段(51,70)によつて検出し、該水素吸蔵合金(M)による水素吸蔵速度が遅過ぎるときには、冷却装置(3)によつて冷却された熱媒体を送るポンプ(66)の回転数を増加させ、該水素吸蔵合金(M)による水素吸蔵速度が早過ぎるときには、冷却装置(3)によつて冷却された熱媒体を送るポンプ(66)の回転数を減少させるように制御することを特徴とする反応容器の温度調節方法。
The heat medium heated by the heating device (2) and the heat cooled by the cooling device (3) in the heat medium channel (13) of the reaction vessel (1) containing the hydrogen storage alloy (M). A heating process for introducing the medium alternately by pumps (65, 66), bringing the reaction vessel (1) into a high temperature state and releasing hydrogen from the hydrogen storage alloy (M), and the reaction vessel (1) A temperature adjustment method for a reaction vessel in which a hydrogen storage alloy (M) is stored in a low temperature state to repeatedly perform a cooling step of storing hydrogen.
Hydrogen gas flowing toward the hydrogen storage alloy (M) when the cooled heat medium is introduced into the heat medium flow path (13) to give a low temperature state to the hydrogen storage alloy (M) in the reaction vessel (1). The state quantity such as pressure, flow rate and temperature is detected by the detection means (51, 70), and when the hydrogen storage speed by the hydrogen storage alloy (M) is too slow, it is cooled by the cooling device (3). When the rotation speed of the pump (66) for feeding the heat medium is increased and the hydrogen storage speed by the hydrogen storage alloy (M) is too fast, the pump (66 for supplying the heat medium cooled by the cooling device (3)) ) In order to reduce the number of rotations).
水素吸蔵合金(M)を収容する反応容器(1)の熱媒体流路(13)に、加熱装置(2)によつて加熱された熱媒体と冷却装置(3)によつて冷却された熱媒体とを交互にポンプ(65,66)によつて送つて導入し、反応容器(1)内を高温状態として水素吸蔵合金(M)から水素を放出させる加熱工程、及び反応容器(1)内を低温状態として水素吸蔵合金(M)に水素を吸蔵させる冷却工程を繰り返し行なわせる反応容器の温度調節装置であつて、
冷却された熱媒体を熱媒体流路(13)に導入して反応容器(1)内の水素吸蔵合金(M)に低温状態を与える場合に、水素吸蔵合金(M)に向けて流れる水素ガスの圧力、流量、温度等の状態量を検出する検出手段(51,70)と、
冷却装置(3)によつて冷却された熱媒体を送るポンプ(66)の回転数を制御する基本制御値(b,h)を設定する基本制御値設定手段(60b,67b)と、
該検出手段(51,70)による検出値(d,f)と基本制御値(b,h)とを比較する比較手段(61b,63b)とを備え、
該比較手段(61b,63b)による比較結果に基づき、該水素吸蔵合金(M)による水素吸蔵速度が遅過ぎるときには、冷却装置(3)によつて冷却された熱媒体を送るポンプ(66)の回転数を増加させ、該水素吸蔵合金(M)による水素吸蔵速度が早過ぎるときには、冷却装置(3)によつて冷却された熱媒体を送るポンプ(66)の回転数を減少させるように制御することを特徴とする反応容器の温度調節装置。
The heat medium heated by the heating device (2) and the heat cooled by the cooling device (3) in the heat medium channel (13) of the reaction vessel (1) containing the hydrogen storage alloy (M). A heating process for introducing the medium alternately by pumps (65, 66), bringing the reaction vessel (1) into a high temperature state and releasing hydrogen from the hydrogen storage alloy (M), and the reaction vessel (1) A temperature adjusting device for a reaction vessel that repeatedly performs a cooling step of storing hydrogen in the hydrogen storage alloy (M) under a low temperature state,
Hydrogen gas flowing toward the hydrogen storage alloy (M) when the cooled heat medium is introduced into the heat medium flow path (13) to give a low temperature state to the hydrogen storage alloy (M) in the reaction vessel (1). Detection means (51, 70) for detecting state quantities such as pressure, flow rate, temperature, etc.
Basic control value setting means (60b, 67b) for setting basic control values (b, h) for controlling the rotational speed of the pump (66) for sending the heat medium cooled by the cooling device (3);
Comparing means (61b, 63b) for comparing the detected value (d, f) by the detecting means (51, 70) with the basic control value (b, h),
Based on the comparison result by the comparison means (61b, 63b), when the hydrogen occlusion speed by the hydrogen occlusion alloy (M) is too slow, the pump (66) for sending the heat medium cooled by the cooling device (3) When the rotation speed is increased and the hydrogen storage speed by the hydrogen storage alloy (M) is too fast, control is performed to decrease the rotation speed of the pump (66) that feeds the heat medium cooled by the cooling device (3). A temperature control device for a reaction vessel.
水素吸蔵合金(M)を収容する反応容器(1)の熱媒体流路(13)に、加熱装置(2)によつて加熱された熱媒体と冷却装置(3)によつて冷却された熱媒体とを交互にポンプ(65,66)によつて送つて導入し、反応容器(1)内を高温状態として水素吸蔵合金(M)から水素を放出させる加熱工程、及び反応容器(1)内を低温状態として水素吸蔵合金(M)に水素を吸蔵させる冷却工程を繰り返し行なわせる反応容器の温度調節装置であつて、
冷却された熱媒体を熱媒体流路(13)に導入して反応容器(1)内の水素吸蔵合金(M)に低温状態を与える場合に、反応容器(1)の温度を検出する温度検出手段(70)と、
冷却装置(3)によつて冷却された熱媒体を送るポンプ(66)の回転数を制御する基本制御値(h)を設定する基本制御値設定手段(67b)と、
該温度検出手段(70)による検出値(f)と基本制御値(h)とを比較する比較手段(63b)とを備え、
該比較手段(63b)による比較結果に基づき、該水素吸蔵合金(M)による水素吸蔵速度が遅過ぎるときには、冷却装置(3)によつて冷却された熱媒体を送るポンプ(66)の回転数を増加させ、該水素吸蔵合金(M)による水素吸蔵速度が早過ぎるときには、冷却装置(3)によつて冷却された熱媒体を送るポンプ(66)の回転数を減少させるように制御することを特徴とする反応容器の温度調節装置。
The heat medium heated by the heating device (2) and the heat cooled by the cooling device (3) in the heat medium channel (13) of the reaction vessel (1) containing the hydrogen storage alloy (M). A heating process for introducing the medium alternately by pumps (65, 66), bringing the reaction vessel (1) into a high temperature state and releasing hydrogen from the hydrogen storage alloy (M), and the reaction vessel (1) A temperature adjusting device for a reaction vessel that repeatedly performs a cooling step of storing hydrogen in the hydrogen storage alloy (M) under a low temperature state,
Temperature detection for detecting the temperature of the reaction container (1) when the cooled heat medium is introduced into the heat medium flow path (13) to give a low temperature state to the hydrogen storage alloy (M) in the reaction container (1). Means (70);
Basic control value setting means (67b) for setting a basic control value (h) for controlling the rotational speed of the pump (66) for sending the heat medium cooled by the cooling device (3);
Comparing means (63b) for comparing the detected value (f) by the temperature detecting means (70) with the basic control value (h),
Based on the comparison result by the comparison means (63b), when the hydrogen occlusion speed by the hydrogen occlusion alloy (M) is too slow, the rotational speed of the pump (66) for feeding the heat medium cooled by the cooling device (3) When the hydrogen occlusion speed by the hydrogen occlusion alloy (M) is too fast, control is performed to reduce the rotational speed of the pump (66) that feeds the heat medium cooled by the cooling device (3). A temperature control device for a reaction vessel.
水素吸蔵合金(M)を収容する反応容器(1)の熱媒体流路(13)に、加熱装置(2)によつて加熱された熱媒体と冷却装置(3)によつて冷却された熱媒体とを交互にポンプ(65,66)によつて送つて導入し、反応容器(1)内を高温状態として水素吸蔵合金(M)から水素を放出させる加熱工程、及び反応容器(1)内を低温状態として水素吸蔵合金(M)に水素を吸蔵させる冷却工程を繰り返し行なわせる反応容器の温度調節装置であつて、
加熱された熱媒体を熱媒体流路(13)に導入して反応容器(1)内の水素吸蔵合金(M)に高温状態を与える場合に、水素吸蔵合金(M)から放出される水素ガスの圧力、流量、温度等の状態量を検出する検出手段(50,70)と、
加熱装置(2)によつて加熱された熱媒体を送るポンプ(65)の回転数を制御する基本制御値(a,g)を設定する基本制御値設定手段(60a,67a)と、
該検出手段(50,70)による検出値と基本制御値(a,g)とを比較する比較手段(61a,63a)とを備え、
該比較手段(61a,63a)による比較結果に基づき、該水素吸蔵合金(M)による水素放出速度が早過ぎるときには、加熱装置(2)によつて加熱された熱媒体を送るポンプ(65)の回転数を減少させ、該水素吸蔵合金(M)による水素放出速度が遅過ぎるときには、加熱装置(2)によつて加熱された熱媒体を送るポンプ(66)の回転数を増加させるように制御することを特徴とする反応容器の温度調節装置。
The heat medium heated by the heating device (2) and the heat cooled by the cooling device (3) in the heat medium channel (13) of the reaction vessel (1) containing the hydrogen storage alloy (M). A heating process for introducing the medium alternately by pumps (65, 66), bringing the reaction vessel (1) into a high temperature state and releasing hydrogen from the hydrogen storage alloy (M), and the reaction vessel (1) A temperature adjusting device for a reaction vessel that repeatedly performs a cooling step of storing hydrogen in the hydrogen storage alloy (M) under a low temperature state,
Hydrogen gas released from the hydrogen storage alloy (M) when the heated heat medium is introduced into the heat medium flow path (13) to give a high temperature to the hydrogen storage alloy (M) in the reaction vessel (1). Detecting means (50, 70) for detecting state quantities such as pressure, flow rate, temperature, etc.
Basic control value setting means (60a, 67a) for setting basic control values (a, g) for controlling the number of revolutions of the pump (65) for sending the heat medium heated by the heating device (2);
Comparing means (61a, 63a) for comparing the detected value by the detecting means (50, 70) and the basic control value (a, g),
Based on the comparison result by the comparison means (61a, 63a), when the hydrogen release rate by the hydrogen storage alloy (M) is too fast, the pump (65) for feeding the heat medium heated by the heating device (2) When the rotational speed is decreased and the hydrogen release rate by the hydrogen storage alloy (M) is too slow, the rotational speed of the pump (66) that feeds the heat medium heated by the heating device (2) is increased. A temperature control device for a reaction vessel.
JP10220198A 1998-03-30 1998-03-30 Temperature control method for reaction vessel and temperature adjustment device for reaction vessel Expired - Fee Related JP4120994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10220198A JP4120994B2 (en) 1998-03-30 1998-03-30 Temperature control method for reaction vessel and temperature adjustment device for reaction vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10220198A JP4120994B2 (en) 1998-03-30 1998-03-30 Temperature control method for reaction vessel and temperature adjustment device for reaction vessel

Publications (2)

Publication Number Publication Date
JPH11281192A JPH11281192A (en) 1999-10-15
JP4120994B2 true JP4120994B2 (en) 2008-07-16

Family

ID=14321061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10220198A Expired - Fee Related JP4120994B2 (en) 1998-03-30 1998-03-30 Temperature control method for reaction vessel and temperature adjustment device for reaction vessel

Country Status (1)

Country Link
JP (1) JP4120994B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6924099B2 (en) * 2017-08-18 2021-08-25 株式会社日本製鋼所 Hydrogen storage system, control program and energy supply system
JP7103876B2 (en) * 2018-07-04 2022-07-20 日本製鋼所M&E株式会社 Hydrogen shipping equipment and hydrogen shipping system

Also Published As

Publication number Publication date
JPH11281192A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
US6964820B2 (en) Water recirculation in fuel cell power plant
US7040109B2 (en) Fuel cell system and method of storing hydrogen
US10480715B2 (en) Gas supply device and method for starting operation of gas supply device
EP1826051B1 (en) Hydrogen tank cooling device and cooling method in hydrogen fuel automobile, and hydrogen fuel automobile
US8281813B2 (en) Coolant temperature controller for fuel cell vehicle
US20080044704A1 (en) Fuel Cell System
US6861168B2 (en) Hydrogen supply device
US6824903B2 (en) Hydrogen supplying device for fuel cell
WO2006035764A1 (en) Hydrogen station, hydrogen filling method, and vehicle
JP2012047234A (en) Gas filling device
CN110190296A (en) Battery thermal management system and its control method
JP3918639B2 (en) Fuel cell system
JP4120994B2 (en) Temperature control method for reaction vessel and temperature adjustment device for reaction vessel
JP2006294499A (en) Fuel cell system
US6408896B1 (en) Coolant circulating apparatus with automatically recovering mechanism
KR20090122891A (en) Constant temperature bath
JP2005259528A (en) Fuel cell system
JP2643878B2 (en) Electronic component cooling device
JP5485022B2 (en) Low temperature heat storage and cooling system
US20220200019A1 (en) Fuel cell system and method of controlling fuel cell system
JP3719161B2 (en) Heat pump water heater
CN217370315U (en) Sand temperature regulator refrigerating plant
CN212524101U (en) Temperature control system of reaction kettle
KR102518693B1 (en) The apparatus for gas discharging of fuelcell system having high pressure vessel and the control method for the same
JP2005044520A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees