JP2003254362A - Bearing unit for supporting wheel - Google Patents

Bearing unit for supporting wheel

Info

Publication number
JP2003254362A
JP2003254362A JP2002060411A JP2002060411A JP2003254362A JP 2003254362 A JP2003254362 A JP 2003254362A JP 2002060411 A JP2002060411 A JP 2002060411A JP 2002060411 A JP2002060411 A JP 2002060411A JP 2003254362 A JP2003254362 A JP 2003254362A
Authority
JP
Japan
Prior art keywords
rotor
rotating
flange
side flange
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002060411A
Other languages
Japanese (ja)
Other versions
JP2003254362A5 (en
Inventor
Hironari Miyazaki
裕也 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002060411A priority Critical patent/JP2003254362A/en
Publication of JP2003254362A publication Critical patent/JP2003254362A/en
Publication of JP2003254362A5 publication Critical patent/JP2003254362A5/ja
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/185Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with two raceways provided integrally on a part other than a race ring, e.g. a shaft or housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Braking Arrangements (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To implement structure for reducing weight and improving braking force of a disc brake inexpensively. <P>SOLUTION: A cylinder portion 31 is formed at an intermediate portion in a radial direction of a rotating side flange disposed on a peripheral face of a hub 8a. An outer diameter side circular ring portion 33 disposed to a portion close to an outer diameter of the rotating side flange 13a is disposed to be closer to the axially inside compared with an inner diameter side circular ring portion 32 disposed to a portion closer to an inner diameter. A circular-ring- like rotor 2 made of carbon-carbon composite material is supported to allow slight displacement in the axial direction. A wheel 1 is connected and fixed to the portion close to an inner diameter of the rotating side flange 13a. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、自動車のロータ
及び車輪を支持する為の自動車用の車輪支持用軸受ユニ
ットの改良に関する。 【0002】 【従来の技術】自動車の車輪を構成するホイール1及び
制動装置であるディスクブレーキを構成するロータ2
は、例えば図6に示す様な構造により、懸架装置を構成
するナックル3に回転自在に支承している。即ち、この
ナックル3に形成した円形の支持孔4部分に、車輪支持
用軸受ユニット5を構成する、使用時にも回転しない静
止輪である外輪6を、複数本のボルト7により固定して
いる。一方、上記車輪支持用軸受ユニット5を構成する
ハブ8に上記ホイール1及びロータ2を、複数本のスタ
ッド9とナット10とにより結合固定している。 【0003】上記外輪6の内周面にはそれぞれが静止側
軌道である複列の外輪軌道11a、11bを、外周面に
は固定側フランジ12を、それぞれ形成している。この
様な外輪6は、この固定側フランジ12を上記ナックル
3に、上記各ボルト7で結合する事により、このナック
ル3に対し固定している。この為に、図示の例の場合に
は、このナックル3の一部で上記支持孔4の周囲の円周
方向複数個所に通孔43を形成すると共に、上記固定側
フランジ12の一部でこれら各通孔43と整合する位置
にねじ孔44を形成している。そして、上記各ボルト7
の先端部で上記ナックル3に形成した通孔43に挿通し
た部分に設けた雄ねじ部を、上記固定側フランジ12に
形成したねじ孔44に螺合・緊締する事により、上記ナ
ックル3に上記固定側フランジ12を固定している。 【0004】これに対して、上記ハブ8の外周面の一部
で、上記外輪6の外端開口(軸方向に関して外とは、自
動車への組み付け状態で幅方向外側となる部分を言い、
図2を除く各図の左側。反対に、自動車への組み付け状
態で幅方向中央側となる、図2を除く各図の右側を、軸
方向に関する内と言う。本明細書全体で同じ。)から突
出した部分には、回転側フランジ13を形成している。
上記ホイール1及びロータ2はこの回転側フランジ13
の外側面に設けた取付面に、上記各スタッド9とナット
10とにより結合固定している。この為に、上記回転側
フランジ13の円周方向複数個所で、上記ハブ8の中心
軸をその中心とする同一円弧上には、それぞれ上記回転
側フランジ13の両側面を貫通する取付孔24を形成し
ている。そして、上記各スタッド9の基端部(図6の右
端部)外周面に設けたセレーション部25を上記各取付
孔24の内周面に圧入する事により、上記各スタッド9
の基端部を上記回転側フランジ13に、この回転側フラ
ンジ13に対する回転を阻止した状態で固定している。 【0005】そして、上記取付面に上記ロータ2を重ね
合わせ、更に、このロータ2の片側面に上記ホイール1
を重ね合わせている。この状態で上記各スタッド9の先
端部(図6の左端部)を、上記ホイール1及びロータ2
にそれぞれ設けた通孔26、27に挿通して、上記ホイ
ール1の片側面から突出させている。そして、上記スタ
ッド9の先端部でこのホイール1の片側面から突出した
部分に設けた雄ねじ部28にナット10を螺合し、更に
緊締している。この構成により、上記ホイール1及びロ
ータ2は、上記取付フランジ13の取付面に結合固定さ
れる。 【0006】又、上記ハブ8の中間部外周面で、上記複
列の外輪軌道11a、11bのうちの外側の外輪軌道1
1aに対向する部分には、回転側軌道である内輪軌道1
4aを形成している。更に、上記ハブ8の内端部外周面
に形成した小径段部15に、上記ハブ8と共に回転部材
23を構成する、内輪16を外嵌固定している。そし
て、この内輪16の外周面に形成した、やはり回転側軌
道である内輪軌道14bを、上記複列の外輪軌道11
a、11bのうちの内側の外輪軌道11bに対向させて
いる。 【0007】これら各外輪軌道11a、11bと各内輪
軌道14a、14bとの間には、それぞれが転動体であ
る玉17、17を複数個ずつ、それぞれ保持器18、1
8により保持した状態で転動自在に設けている。この構
成により、背面組み合わせである複列アンギュラ型の玉
軸受を構成し、上記外輪6の内側に上記回転部材23
を、回転自在に、且つ、ラジアル荷重及びスラスト荷重
を支承自在に支持している。尚、上記外輪6の両端部内
周面と、上記ハブ8の中間部外周面及び上記内輪16の
内端部外周面との間には、それぞれシールリング19
a、19bを設けて、上記各玉17、17を設けた内部
空間と外部とを遮断している。更に、図示の例は、駆動
輪(FR車及びRR車の後輪、FF車の前輪、4WD車
の全輪)用の車輪支持用軸受ユニット5である為、上記
ハブ8の中心部にスプライン孔20を形成している。そ
して、このスプライン孔20に、等速ジョイント21に
付属のスプライン軸22を挿入している。 【0008】上述の様な車輪支持用軸受ユニット5の使
用時には、図6に示す様に、外輪6をナックル3に固定
すると共に、ハブ8の回転側フランジ13に、図示しな
いタイヤを組み合わせたホイール1及びロータ2を固定
する。又、このうちのロータ2と、上記ナックル3に支
持した、図示しないサポート及びキャリパとを組み合わ
せて、制動用のディスクブレーキを構成する。制動時に
は、上記ロータ2を挟んで設けた1対のパッドを、この
ロータ2の制動用摩擦面である外径寄り部分の両側面に
押し付ける。 【0009】 【発明が解決しようとする課題】上述の様な従来の自動
車用の車輪支持用軸受ユニット5の場合、一般的に、ロ
ータ2を鋳鉄製としているが、一部の自動車では、この
ロータ2を炭素−炭素複合材(CC composite)製とす
る事が、近年行なわれている。この様にロータ2を炭素
−炭素複合材製とした場合には、ロータ2を鋳鉄製とす
る場合に比べて、ディスクブレーキの軽量化を図れると
共に、高速走行時の制動力を大きくする事ができる。 【0010】一方、車輪支持用軸受ユニット5の使用時
には、上記ロータ2の制動用摩擦面を有する外径寄り部
分の周囲に、サポートやキャリパ等、ディスクブレーキ
の構成部品を配置する為、これらディスクブレーキの構
成部品と上記ホイール1とが干渉するのを防止する必要
がある。この為、図6に示した構造の場合には、上記ロ
ータ2の径方向中間部に筒部29を形成する事により、
このロータ2の外径寄り部分を、上記ロータ2の内径寄
り部分よりも軸方向内側に設けている。そして、このロ
ータ2の内径寄り部分と共にハブ8の回転側フランジ1
3に固定する、ホイール1と、上記ロータ2の外径寄り
部分、並びにこの外径寄り部分の周囲に設けるディスク
ブレーキの構成部品とが干渉するのを防止している。但
し、上記ロータ2の径方向中間部に筒部29を設ける
と、このロータ2の容積が嵩む。この為、このロータ2
を、上述の様な炭素−炭素複合材製とする場合には、炭
素−炭素複合材自体が高価である事により、このロータ
2の材料費が大きく嵩む原因となる。この為、このロー
タ2を含んで構成する車輪支持用軸受ユニット5全体の
コストが大きく嵩む原因となる。本発明の車輪支持用軸
受ユニットは、上述の様な事情に鑑みて、ディスクブレ
ーキの軽量化と制動力の向上とを図れる構造を、安価に
得るべく発明したものである。 【0011】 【課題を解決するための手段】本発明の車輪支持用軸受
ユニットは、前述の図6に示した従来構造と同様に、静
止側軌道を有し、使用時にも回転しない静止輪と、回転
側軌道を有し、使用時に回転する回転部材と、この回転
部材の外周面に設けられた回転側フランジと、上記静止
側軌道と回転側軌道との間に設けられた複数個の転動体
と、上記回転側フランジにこの回転側フランジに対する
回転を阻止した状態で支持された、制動時に摩擦材を押
し付けられる制動用摩擦面を有するロータとを備える。 【0012】特に、本発明の車輪支持用軸受ユニットに
於いては、上記ロータが炭素−炭素複合材製である。
又、上記回転側フランジの外径寄り部分が、この回転側
フランジの内径寄り部分よりも軸方向内側に設けられて
いると共に、上記ロータがこの外径寄り部分に支持され
ている。 【0013】 【作用】上述の様に構成する本発明の自動車用の車輪支
持用軸受ユニットによれば、ロータを炭素−炭素複合材
製としている為、ディスクブレーキの軽量化と制動力の
向上とを図れる。しかも、本発明の場合には、このロー
タを、単なる円輪状等、単純でしかも容積を小さくでき
る形状にしても、使用時にこのロータの外径寄り部分に
配置するディスクブレーキの構成部品と、回転側フラン
ジの内径寄り部分に固定するホイールとが干渉する事を
有効に防止できる。この為、高価な炭素−炭素複合材に
より造るロータの容積を小さくできる。又、本発明の場
合には、上記回転側フランジの容積が嵩み易くなるが、
この回転側フランジを、炭素鋼、軸受鋼等の安価な材料
により造れば、材料費が大きく嵩む事がない。従って、
本発明によれば、ディスクブレーキの軽量化と制動力の
向上とを図れる構造を、安価に得られる。 【0014】 【発明の実施の形態】図1〜3は、本発明の実施の形態
の第1例を示している。尚、本発明の特徴は、ディスク
ブレーキの軽量化と制動力の向上とを、安価に図るべ
く、回転部材23を構成するハブ8aの外周面に設けた
回転側フランジ13aと、ロータ2aとの構造に工夫し
た点にある。その他の車輪支持用軸受ユニット5の基本
的構成及び作用に就いては、前述の図6に示した従来構
造と同様である為、同等部分には同一符号を付して重複
する説明を省略若しくは簡略にし、以下、本発明の特徴
部分、並びに上記従来構造と異なる部分を中心に説明す
る。 【0015】本例の場合、上記ハブ8aの内端寄り部分
に形成した小径段部15に、その外周面に軸方向内側の
内輪軌道14bを形成した内輪16を外嵌している。そ
して、この内輪16が上記小径段部15から抜け出るの
を防止する為に、上記ハブ8aの内端部にかしめ部30
を形成している。即ち、上記小径段部15に上記内輪1
6を外嵌した後、上記ハブ8aの内端部でこの内輪16
の内端面から突出した部分を径方向外方に塑性変形させ
て上記かしめ部30を形成し、このかしめ部30により
上記内輪16の内端面を抑え付けている。 【0016】又、上記ハブ8の外周面には、車輪を構成
するホイール1を固定する為の回転側フランジ13aを
設けている。特に、本発明の場合には、この回転側フラ
ンジ13の径方向中間部に円筒部31を形成して、この
円筒部31により、上記回転側フランジ13aの内径寄
り部分に設けた内径側円輪部32と、同じく外径寄り部
分に設けた外径側円輪部33とを連結している。この構
成により、この外径側円輪部33は、上記内径側円輪部
32よりも軸方向内側に設けられる。そして、この内径
側円輪部32の円周方向複数個所に形成した取付孔24
に、複数本のスタッド9の中間部に設けたセレーション
部25を圧入固定している。又、これら各スタッド9の
先半部で、ホイール1に設けた通孔26に挿通した部分
に形成した雄ねじ部28にナット10を螺合し、更に緊
締する事により、上記内径側円輪部32の外側面に上記
ホイール1を結合固定している。 【0017】そして、本例の場合には、上記外径側円輪
部33の外周面の円周方向等間隔の複数個所(例えば1
0個所)に、断面半円形の内側凹部34、34を形成し
ている。又、上記外径側円輪部33の外周面にロータ2
aを、この外径側円輪部33の軸方向に関する僅かな変
位を自在に支持している。本発明の場合には、このロー
タ2aを、炭素−炭素複合材により、(筒部を設けな
い)単なる円輪状に造っている。そして、このロータ2
aの内周面の円周方向複数個所で、上記外径側円輪部3
3の外周面に設けた各内側凹部34、34と整合する位
置に、断面半円形の外側凹部35、35を、それぞれ形
成している。又、上記ロータ2aの内径を、上記回転側
フランジ13に設けた外径側円輪部33の外径と同じ
か、これよりも僅かに大きくしている。 【0018】そして、上記外径側円輪部33の外径側に
上記ロータ2aを設けた状態で、互いに対向する内側凹
部34と外側凹部35とを組み合わせる事により、複数
の円孔36、36を構成している。そして、これら各円
孔36、36に筒状の連結部材37、37を挿通する事
により、上記外径側円輪部33に上記ロータ2aを結合
している。上記各連結部材37、37は、一端部(図
1、3の左端部)に外向鍔部38を、他端部(図1、3
の右端部)にかしめ部39を、それぞれ形成している。
上記外径側円輪部33に上記ロータ2aを、上記各連結
部材37、37により結合する場合には、先ず、上記各
連結部材37、37を、他端部にかしめ部30を形成す
る以前に、上記各円孔36、36に僅かな隙間を持たせ
て挿通する。そして、上記各連結部材37、37の他端
部で、上記ロータ2a及び外径側円輪部33の内側面か
ら突出した部分の外周面に形成した小径段部40に、間
座41を外嵌した後、上記各連結部材37の他端部を径
方向外方に塑性変形させて、上記かしめ部39を形成す
る。次いで、上記各連結部材37、37の外周面の本体
部分と上記小径段部40との連続部である段差面42
と、上記かしめ部39との間で、上記間座41を挟持す
る。この状態で、上記各連結部材37、37に設けた外
向鍔部38の軸方向内側面と、上記間座41の軸方向外
側面との間隔Lは、上記ロータ2aの厚さd2aよりも僅
かに(約1mm以下の大きさで)大きくしている(L>d
2a)。この構成により上記ロータ2aは、上記外径側円
輪部33の外周面に、軸方向に関する僅かな変位を自在
に支持される。制動時に上記ロータ2aに加わる制動ト
ルクは、上記各連結部材37、37が支承する。 【0019】上述の様に構成する本発明の車輪支持用ユ
ニットによれば、ロータ2aを、軽量で優れた耐熱性能
を有する炭素−炭素複合材製としている為、このロータ
2aを鋳鉄製とする場合に比べて、ディスクブレーキの
軽量化を図れると共に、高速走行時の制動力を大きくで
きる。しかも、本発明の場合には、ハブ8aの外周面に
設けた回転側フランジ13aの外径側円輪部33を、内
径側円輪部32よりも軸方向内側に設けている。この
為、この外径側円輪部33に支持する上記ロータ2aの
形状を、本例の様に容積を小さくできる単なる円輪状に
しても、使用時に上記ロータ2aの外径寄り部分の周囲
に配置するディスクブレーキの構成部品と、上記内径側
円輪部32に固定するホイール1とが干渉する事を有効
に防止できる。この為、高価な炭素−炭素複合材により
造るロータ2aの容積を小さくできる。又、本発明の場
合には、上記回転側フランジ13aの径方向中間部に円
筒部31を設けている為、この回転側フランジ13aを
単なる円輪状とする場合よりも容積が嵩むが、この回転
側フランジ13aを設けたハブ8aを、炭素鋼、軸受鋼
等の安価な材料により造れば、材料費が大きく嵩む事は
ない。従って、本発明によれば、ディスクブレーキの軽
量化と制動力の向上とを図れる構造を、安価に得られ
る。 【0020】又、本例の場合には、上記回転側フランジ
13aに上記ロータ2aを、軸方向に関する僅かな変位
を自在に支持している。この為、外力に対して比較的脆
い炭素−炭素複合材製のロータ2aが熱により膨張した
り、このロータ2aにモーメント荷重が加わる等の場合
でも、このロータ2aの一部で上記回転側フランジ13
aとの結合部に過大な応力が加わる事を防止して、耐久
性を十分に確保できる。尚、本例の場合と異なり、連結
部材37を省略する代わりに、リベットや、ボルトとナ
ットとの組み合わせ等、他の結合構造を使用して、外径
側円輪部33にロータ2aを支持する事もできる。 【0021】次に、図4〜5は、本発明の実施の形態の
第2例を示している。本例の場合には、上述した第1例
の場合と異なり、ハブ8bの外周面に1対の内輪16
a、16bを外嵌している。この為に、このハブ8aの
外周面で軸方向中間部乃至内半部に小径段部15を形成
すると共に、この小径段部15に、それぞれの外周面に
内輪軌道14a、14bを形成した、上記各内輪16
a、16bを外嵌している。そして、上記ハブ8bの内
端部で、これら各内輪16a、16bのうち、軸方向内
側の内輪16bの内端面から軸方向に突出した部分を外
径側にかしめ広げる事で形成したかしめ部30により、
上記各内輪16a、16bを上記ハブ8bに固定して、
回転部材23aとしている。 【0022】又、本例の場合には、上記ハブ8bの回転
側フランジ13aに設けた外径側円輪部33の円周方向
等間隔複数個所に、ねじ孔45、45を形成している。
そして、これら各ねじ孔45、45に、ボルト47、4
7の先端部に設けた雄ねじ部48、48を螺合し、更に
緊締している。これら各ボルト47、47は、外周面の
先端部に上記雄ねじ部48を、同じく中間部に円筒面部
50を、それぞれ形成している。この円筒面部50の外
径は、上記雄ねじ部48の外径よりも大きくしている。 【0023】そして、これら各円筒面部28、28を、
ロータ2aの内径寄り部分の円周方向複数個所に形成し
た通孔46、46に、それぞれ挿通している。上記各ボ
ルト47、47の雄ねじ部48は、これら各ボルト4
7、47の外周面でこの雄ねじ部48と上記円筒面部5
0との連続部である段差面51が上記外径側円輪部33
の内側面に突き当たる迄、上記ねじ孔45に螺合し、更
に緊締している。この状態で、上記外径側円輪部33の
内側面と上記各ボルト47、47の頭部50、50の外
側面との間の軸方向長さL´を、上記ロータ2aの厚さ
2aよりも僅かに大きくしている。この構成により、こ
のロータ2aは、上記回転側フランジ13aの軸方向内
側に、軸方向に関する僅かな変位を自在に支持される。
尚、図示の例の場合には、上記各ボルト47、47の頭
部49、49の端面に、マイナスドライバを係合させる
為の溝部52を形成しているが、この溝部52を十字形
に形成する事により、この溝部52にプラスドライバを
係合自在とする事もできる。又、上記頭部49、49の
外周面を六角形にする事により、この外周面にスパナ等
の工具を係合自在とする事もできる。又、上記頭部4
9、49の端面に、六角形の孔を形成する事により、こ
の孔に六角レンチ等の工具を係合自在とする事もでき
る。 【0024】又、本例の場合には、外輪6の外周面に設
けた固定側フランジ12及びナックル3に対する複数本
のボルト7の挿入方向を、上述した第1例の場合と異な
らせている。即ち、上述の図1〜3に示した第1例の場
合には、ナックル3の一部で支持孔4の周囲に存在する
円周方向複数個所に、内周面が単なる円筒面である通孔
43を形成すると共に、外輪6に設けた固定側フランジ
12の一部で上記各通孔43と整合する位置に、ねじ孔
44を形成している。そして、車輪支持用軸受ユニット
5の使用時には、上記ナックル3に形成した通孔43
に、内側から外側に挿通した複数本のボルト7の雄ねじ
部を、上記固定側フランジ12に形成したねじ孔44
に、内側から外側に螺合し、更に緊締する事により、上
記ナックル3に上記固定側フランジ12を固定してい
る。 【0025】これに対して、本例の場合には、ナックル
3の一部で支持孔4の周囲に存在する円周方向複数個所
にねじ孔53を形成すると共に、固定側フランジ12の
一部でこれら各ねじ孔53と整合する位置に、内周面が
単なる円筒面である通孔54を形成している。車輪支持
用軸受ユニット5の使用時には、これら各通孔54を外
側から内側に挿通した複数本のボルト7の雄ねじ部を、
上記ナックル3に形成したねじ孔53に、外側から内側
に螺合し、更に緊締する事により、上記ナックル3に上
記固定側フランジ12を固定する。又、本例の場合に
は、ハブ8bの外周面に設けた回転側フランジ13aの
一部で、外輪6に対しハブ8aを回転させた場合に上記
固定側フランジ12に形成した各通孔54と軸方向に対
向自在な位置に、作業用孔55を形成している。そし
て、この作業用孔55を通じて、上記各ボルト7と、こ
れら各ボルト7の螺合・緊締作業に使用する工具(図示
せず)の先端部とを挿通自在としている。 【0026】上述の様に構成する本例の車輪支持用軸受
ユニット5は、軸受ユニットの部品メーカーから自動車
の完成品メーカーに、上記回転側フランジ13aにホイ
ール1を固定する以前の状態で搬送する。そして、この
完成品メーカーで、ナックル3の支持孔4に外輪6の内
端部を内嵌した状態で、複数本のボルト7の先端部を、
固定側フランジ12に設けた通孔54に、外側から内側
に挿通する。この際、上記各ボルト7は、上記回転側フ
ランジ13aに設けた作業用孔55を通じて、上記回転
側フランジ13aの内側面と固定側フランジ12の外側
面との間の空間56に挿入する。そして、上記各ボルト
7の先端部で上記固定側フランジ12の内側面から突出
した部分に設けた雄ねじ部を、上記ナックル3に設けた
ねじ孔53に螺合し、更に緊締する。この様な螺合・緊
締作業は、上記作業用孔55を通じて上記空間56に進
入させた、六角レンチ等の工具の先端部を、上記各ボル
ト7の頭部に係合させる事により行なう。 【0027】本例の場合には、上記作業用孔55を上記
回転側フランジ13aに1個のみ設けている為、1個の
ボルト7の螺合・緊締作業が完了する毎に、外輪6に対
しハブ8bを回転させ、固定側フランジ12に設けた残
りの通孔54と上記作業用孔55とを、軸方向に対向さ
せる。そして、上記作業用孔55を通じて上記空間56
に進入させたボルト7の雄ねじ部を、上記通孔54に挿
通させると共に、上記ナックル3に設けたねじ孔53に
螺合し、更に緊締する。この様に、本例の場合には、上
記回転側フランジ13aに上記作業用孔55を、1個の
み設けている為、この作業用孔55を上記回転側フラン
ジ13aに形成する事によるこの回転側フランジ13a
の強度低下を抑える事ができる。 【0028】上述の様にして、自動車の完成品メーカー
で、上記ナックル3に対し上記外輪6を複数本のボルト
7により固定したならば、複数本のスタッド9とナット
10とにより、上記回転側フランジ13aの内径側円輪
部32に、ホイール1を固定する。尚、上記回転側フラ
ンジ13aの強度を十分に確保できるのであれば、この
回転側フランジ13aに、上記固定側フランジ12に設
けた通孔54と同数の作業用孔を、これら複数の通孔5
4と同ピッチで形成する事もできる。この様に、複数の
作業用孔を形成した場合には、本例の場合と異なり、上
記各ボルト7の螺合・緊締作業が完了する毎に、上記外
輪6に対し上記ハブ8bを回転させる面倒な手間が不要
となる。 【0029】上述の様に構成する本例の場合には、回転
側フランジ13aの外径側円輪部33の軸方向内側にロ
ータ2aを支持している為、この回転側フランジ13a
の内径側円輪部32の外側面と、上記外径側円輪部33
の外側面との間の軸方向長さL33(図5)が比較的小さ
い場合でも、上記内径側円輪部32の外側面と、上記ロ
ータ2aの外側面との間の軸方向長さL2a(図5)を大
きくして、ディスクブレーキの構成部品とホイール1と
が干渉するのを有効に防止できる。この為、本例の場合
には、上記回転側フランジ13aを構成する円筒部31
の軸方向寸法を短くしてこの回転側フランジ13aの容
積を小さくし、ハブ8bの軽量化を図り易くなる。尚、
本例の場合と異なり、上記ロータ2aを、上記回転側フ
ランジ13aの軸方向外側に支持する事もできる。但
し、この場合には、上記内径側円輪部32の外側面と外
径側円輪部33の外側面との間の軸方向長さを本例の場
合よりも大きくして、ディスクブレーキの構成部品とホ
イール1との干渉を防止する必要がある。この場合に
は、車輪支持用軸受ユニット5の重量が、本例の場合よ
りも大きくなり易い。その他の構成及び作用に就いて
は、前述の図1〜3に示した第1例の場合と同様である
為、同等部分には同一符号を付して重複する説明は省略
する。 【0030】尚、上述した各例の場合には、回転側フラ
ンジ13aの径方向中間部に円筒部31を形成する事に
より、外径側円輪部33を、内径側円輪部32よりも軸
方向内側に設けている。但し、本発明は、この様な構造
に限定するものではない。例えば、上記回転側フランジ
13aの径方向中間部に、軸方向内側に向かう程直径が
大きくなった円錐筒部を形成する事により、上記外径側
円輪部33を、上記内径側円輪部32よりも軸方向内側
に設ける事もできる。 【0031】 【発明の効果】本発明の車輪支持用軸受ユニットは、以
上に述べた通り構成され作用するので、ディスクブレー
キの軽量化及び高性能化を図れる構造を、安価に得られ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an automobile wheel supporting bearing unit for supporting an automobile rotor and wheels. 2. Description of the Related Art A wheel 1 constituting a wheel of an automobile and a rotor 2 constituting a disc brake which is a braking device.
Is rotatably supported by a knuckle 3 constituting a suspension device, for example, by a structure as shown in FIG. That is, an outer ring 6, which is a stationary wheel that does not rotate during use and forms a wheel supporting bearing unit 5, is fixed to a circular support hole 4 formed in the knuckle 3 by a plurality of bolts 7. On the other hand, the wheel 1 and the rotor 2 are fixedly connected to a hub 8 constituting the wheel supporting bearing unit 5 by a plurality of studs 9 and nuts 10. The inner race of the outer race 6 is formed with double-row outer raceways 11a and 11b, each of which is a stationary raceway, and the outer race is formed with a fixed flange 12 on the outer race. Such an outer ring 6 is fixed to the knuckle 3 by connecting the fixed flange 12 to the knuckle 3 with the bolts 7. For this reason, in the case of the example shown in the figure, through holes 43 are formed at a plurality of circumferential positions around the support hole 4 with a part of the knuckle 3 and these are formed with a part of the fixed side flange 12. A screw hole 44 is formed at a position corresponding to each through hole 43. And each of the bolts 7
The male screw portion provided at the tip of the knuckle 3 at the portion inserted into the through hole 43 formed in the knuckle 3 is screwed and tightened into a screw hole 44 formed in the fixed side flange 12, thereby fixing the knuckle 3 to the knuckle 3. The side flange 12 is fixed. On the other hand, a part of the outer peripheral surface of the hub 8 is an outer end opening of the outer ring 6 (the term "outside in the axial direction" means a part which is outward in the width direction when assembled to an automobile,
Left side of each figure except FIG. Conversely, the right side of each drawing except for FIG. 2, which is the center in the width direction when assembled to an automobile, is referred to as the inner side in the axial direction. Same throughout this specification. The portion protruding from ()) is formed with a rotation-side flange 13.
The wheel 1 and the rotor 2 are connected to the rotating side flange 13.
Each of the studs 9 and the nut 10 are connected and fixed to a mounting surface provided on the outer side surface of the. For this purpose, mounting holes 24 penetrating through both side surfaces of the rotating side flange 13 are respectively provided at a plurality of positions in the circumferential direction of the rotating side flange 13 on the same arc centered on the center axis of the hub 8. Has formed. Then, a serration portion 25 provided on the outer peripheral surface of the base end (the right end in FIG. 6) of each stud 9 is pressed into the inner peripheral surface of each of the mounting holes 24, so that each of the studs 9 is formed.
Is fixed to the rotating side flange 13 in a state where rotation with respect to the rotating side flange 13 is prevented. [0005] Then, the rotor 2 is superimposed on the mounting surface, and the wheel 1 is mounted on one side of the rotor 2.
Are superimposed. In this state, the tip (the left end in FIG. 6) of each of the studs 9 is connected to the wheel 1 and the rotor 2.
Are inserted through through holes 26 and 27 respectively provided in the wheel 1 and protrude from one side surface of the wheel 1. A nut 10 is screwed into a male screw portion 28 provided at a tip of the stud 9 at a portion protruding from one side of the wheel 1, and further tightened. With this configuration, the wheel 1 and the rotor 2 are connected and fixed to the mounting surface of the mounting flange 13. On the outer peripheral surface of the intermediate portion of the hub 8, the outer raceway 1 of the outer row of the double row outer raceways 11a and 11b is formed.
1a, the inner raceway 1 which is a rotation side raceway
4a. Further, an inner race 16, which constitutes a rotating member 23 together with the hub 8, is externally fixed to a small-diameter stepped portion 15 formed on the outer peripheral surface of the inner end of the hub 8. Then, the inner ring raceway 14b, which is also a rotation side raceway, formed on the outer peripheral surface of the inner ring 16 is replaced with the double row outer ring raceway 11 described above.
a and 11b are opposed to the inner outer raceway 11b. A plurality of balls 17, 17, each of which is a rolling element, is provided between each of the outer raceways 11a, 11b and each of the inner raceways 14a, 14b.
8 so that it can roll freely. With this configuration, a double-row angular contact type ball bearing that is a back-to-back combination is formed, and the rotating member 23 is provided inside the outer ring 6.
Are supported rotatably and capable of supporting radial loads and thrust loads. A seal ring 19 is provided between the inner peripheral surface of both ends of the outer race 6, the outer peripheral surface of the intermediate portion of the hub 8, and the outer peripheral surface of the inner end of the inner race 16.
a and 19b are provided to block the interior space where the balls 17 and 17 are provided from the outside. Further, the illustrated example is a wheel supporting bearing unit 5 for drive wheels (rear wheels of FR and RR vehicles, front wheels of FF vehicles, and all wheels of 4WD vehicles). A hole 20 is formed. The spline shaft 22 attached to the constant velocity joint 21 is inserted into the spline hole 20. When the above-described wheel supporting bearing unit 5 is used, as shown in FIG. 6, the outer ring 6 is fixed to the knuckle 3 and a wheel (not shown) is combined with a rotating side flange 13 of the hub 8. 1 and the rotor 2 are fixed. Further, the rotor 2 is combined with a support and a caliper (not shown) supported by the knuckle 3 to form a disc brake for braking. At the time of braking, a pair of pads provided so as to sandwich the rotor 2 is pressed against both side surfaces of a portion closer to the outer diameter, which is a friction surface for braking of the rotor 2. [0009] In the case of the above-described conventional wheel supporting bearing unit 5 for an automobile, the rotor 2 is generally made of cast iron. In recent years, the rotor 2 is made of a carbon-carbon composite (CC composite). When the rotor 2 is made of a carbon-carbon composite material as described above, the weight of the disc brake can be reduced and the braking force during high-speed running can be increased as compared with the case where the rotor 2 is made of cast iron. it can. On the other hand, when the wheel supporting bearing unit 5 is used, the disk brake components such as the support and the caliper are arranged around the outer diameter portion of the rotor 2 having the braking friction surface. It is necessary to prevent the components of the brake from interfering with the wheel 1. For this reason, in the case of the structure shown in FIG. 6, by forming the cylindrical portion 29 at the radially intermediate portion of the rotor 2,
The portion closer to the outer diameter of the rotor 2 is provided axially inward of the portion closer to the inner diameter of the rotor 2. The rotation side flange 1 of the hub 8 is formed together with the portion of the rotor 2 close to the inner diameter.
3 prevents the wheel 1 from interfering with the outer diameter portion of the rotor 2 and the components of the disc brake provided around the outer diameter portion. However, if the cylindrical portion 29 is provided at a radially intermediate portion of the rotor 2, the volume of the rotor 2 increases. Therefore, this rotor 2
Is made of a carbon-carbon composite material as described above, since the carbon-carbon composite material itself is expensive, the material cost of the rotor 2 is greatly increased. For this reason, the cost of the entire wheel supporting bearing unit 5 including the rotor 2 is greatly increased. In view of the above-described circumstances, the wheel supporting bearing unit of the present invention has been invented in order to obtain a structure capable of reducing the weight of the disc brake and improving the braking force at a low cost. A bearing unit for supporting a wheel according to the present invention has a stationary-side track which has a stationary-side track which does not rotate during use, similarly to the conventional structure shown in FIG. A rotating member having a rotating track and rotating at the time of use, a rotating flange provided on an outer peripheral surface of the rotating member, and a plurality of rolling members provided between the stationary track and the rotating track. A moving body; and a rotor having a braking friction surface that is pressed against the friction material during braking and that is supported by the rotating flange while preventing rotation with respect to the rotating flange. In particular, in the wheel supporting bearing unit of the present invention, the rotor is made of a carbon-carbon composite material.
Further, a portion closer to the outer diameter of the rotating flange is provided axially inward from a portion closer to the inner diameter of the rotating flange, and the rotor is supported by the portion closer to the outer diameter. According to the vehicle wheel supporting bearing unit of the present invention constructed as described above, since the rotor is made of carbon-carbon composite material, the weight of the disc brake is reduced and the braking force is improved. Can be achieved. In addition, in the case of the present invention, even if the rotor is formed in a simple shape such as a simple ring shape and the volume can be reduced, the components of the disc brake disposed near the outer diameter of the rotor during use are combined with the rotary brake. Interference with the wheel fixed to the inner flange portion of the side flange can be effectively prevented. Therefore, the volume of the rotor made of the expensive carbon-carbon composite material can be reduced. In addition, in the case of the present invention, the volume of the rotating side flange is easily increased,
If this rotating flange is made of an inexpensive material such as carbon steel or bearing steel, the material cost does not increase significantly. Therefore,
ADVANTAGE OF THE INVENTION According to this invention, the structure which can aim at the weight reduction of a disk brake and the improvement of a braking force can be obtained at low cost. 1 to 3 show a first embodiment of the present invention. It should be noted that a feature of the present invention is that the rotation side flange 13a provided on the outer peripheral surface of the hub 8a constituting the rotation member 23 and the rotor 2a are provided in order to reduce the weight of the disk brake and improve the braking force at low cost. The point is that the structure was devised. The other basic structure and operation of the wheel supporting bearing unit 5 are the same as those of the conventional structure shown in FIG. 6 described above. For simplicity, the following description focuses on features of the present invention and portions different from the above-described conventional structure. In the case of this embodiment, an inner ring 16 having an inner ring raceway 14b axially inwardly formed on the outer peripheral surface of a small-diameter stepped portion 15 formed near the inner end of the hub 8a. In order to prevent the inner ring 16 from coming out of the small-diameter stepped portion 15, a caulking portion 30 is attached to the inner end of the hub 8a.
Is formed. That is, the inner ring 1 is attached to the small-diameter step portion 15.
After the outer ring 6 has been fitted, the inner ring 16 is connected to the inner end of the hub 8a.
The portion protruding from the inner end surface of the inner ring 16 is plastically deformed radially outward to form the caulked portion 30, and the caulked portion 30 suppresses the inner end surface of the inner ring 16. The outer peripheral surface of the hub 8 is provided with a rotating flange 13a for fixing the wheel 1 constituting the wheel. In particular, in the case of the present invention, a cylindrical portion 31 is formed at a radially intermediate portion of the rotating side flange 13, and the cylindrical portion 31 is used to provide an inner side annular ring provided at a portion closer to the inner diameter of the rotating side flange 13 a. The portion 32 is connected to an outer diameter side annular portion 33 which is also provided at a portion closer to the outer diameter. With this configuration, the outer-diameter-side annular portion 33 is provided axially inward of the inner-diameter-side annular portion 32. The mounting holes 24 formed at a plurality of positions in the circumferential direction of the inner side annular portion 32 are provided.
Further, a serration portion 25 provided at an intermediate portion of the plurality of studs 9 is press-fitted and fixed. The nut 10 is screwed into a male thread 28 formed in a portion of the first half of each of the studs 9 inserted into the through hole 26 provided in the wheel 1, and further tightened. The wheel 1 is fixedly connected to the outer surface of the wheel 32. In the case of the present embodiment, a plurality of portions (for example, 1
0), inner concave portions 34, 34 each having a semicircular cross section are formed. Also, the rotor 2 is provided on the outer peripheral surface of the outer diameter side annular portion 33.
a freely supports a slight displacement of the outer diameter side annular portion 33 in the axial direction. In the case of the present invention, the rotor 2a is made of a carbon-carbon composite material into a simple ring shape (without a cylindrical portion). And this rotor 2
a, at a plurality of locations in the circumferential direction on the inner peripheral surface of
Outer concave portions 35, 35 each having a semicircular cross section are formed at positions matching the inner concave portions 34, 34 provided on the outer peripheral surface of No. 3, respectively. The inner diameter of the rotor 2a is the same as or slightly larger than the outer diameter of the outer-diameter annular portion 33 provided on the rotating flange 13. In a state where the rotor 2a is provided on the outer diameter side of the outer diameter side annular portion 33, the inner concave portion 34 and the outer concave portion 35 facing each other are combined to form a plurality of circular holes 36, 36. Is composed. The rotor 2a is connected to the outer diameter side annular portion 33 by inserting cylindrical connecting members 37, 37 into the respective circular holes 36, 36. Each of the connecting members 37, 37 has an outward flange 38 at one end (the left end in FIGS. 1 and 3), and another end (FIGS. 1, 3).
(Right end) of the stiffening member 39 is formed.
When the rotor 2a is connected to the outer diameter side annular portion 33 by the connection members 37, 37, first, the connection members 37, 37 are attached to the other end before the caulking portion 30 is formed. Each of the circular holes 36, 36 is inserted with a slight gap. At the other end of each of the connecting members 37, 37, the spacer 41 is attached to the small-diameter stepped portion 40 formed on the outer peripheral surface of the portion protruding from the inner surface of the rotor 2a and the outer-diameter-side annular portion 33. After the fitting, the other end of each of the connecting members 37 is plastically deformed radially outward to form the caulking portion 39. Next, a step surface 42 which is a continuous portion between the main body portion of the outer peripheral surface of each of the connection members 37 and 37 and the small diameter step portion 40 is provided.
And the caulking portion 39 to clamp the spacer 41. In this state, the axially inner side surface of the outward flange portion 38 provided on the respective connecting members 37, 37, the distance L between the axial outer surface of the spacer 41, than the thickness d 2a of the rotor 2a Slightly larger (with a size of about 1 mm or less) (L> d
2a ). With this configuration, the rotor 2a is freely supported on the outer peripheral surface of the outer-diameter-side annular portion 33 by a slight displacement in the axial direction. The connecting members 37 support the braking torque applied to the rotor 2a during braking. According to the wheel supporting unit of the present invention configured as described above, since the rotor 2a is made of a carbon-carbon composite material having a light weight and excellent heat resistance, the rotor 2a is made of cast iron. As compared with the case, the weight of the disc brake can be reduced, and the braking force during high-speed running can be increased. In addition, in the case of the present invention, the outer-diameter-side annular portion 33 of the rotating flange 13a provided on the outer peripheral surface of the hub 8a is provided axially inward of the inner-diameter-side annular portion 32. For this reason, even if the shape of the rotor 2a supported by the outer-diameter-side annular portion 33 is a simple annular shape whose volume can be reduced as in the present embodiment, the outer periphery of the rotor 2a near the outer diameter during use is used. It is possible to effectively prevent interference between the components of the disc brake to be arranged and the wheel 1 fixed to the inner diameter side annular portion 32. Therefore, the volume of the rotor 2a made of an expensive carbon-carbon composite material can be reduced. Further, in the case of the present invention, since the cylindrical portion 31 is provided at the radially intermediate portion of the rotary side flange 13a, the volume is larger than when the rotary side flange 13a is simply a ring shape. If the hub 8a provided with the side flanges 13a is made of an inexpensive material such as carbon steel or bearing steel, the material cost does not increase significantly. Therefore, according to the present invention, a structure capable of reducing the weight of the disc brake and improving the braking force can be obtained at low cost. In the case of this embodiment, the rotor 2a is supported on the rotating flange 13a so as to freely displace a small amount in the axial direction. Therefore, even when the rotor 2a made of a carbon-carbon composite material, which is relatively brittle to external force, expands due to heat or when a moment load is applied to the rotor 2a, a part of the rotor 2a is used as the rotating flange. Thirteen
Excessive stress is prevented from being applied to the joint portion with a, and sufficient durability can be ensured. Unlike the case of this example, instead of omitting the connecting member 37, the rotor 2a is supported on the outer-diameter-side circular ring portion 33 by using another coupling structure such as a rivet or a combination of a bolt and a nut. You can do it. Next, FIGS. 4 and 5 show a second example of the embodiment of the present invention. In the case of this example, unlike the case of the above-described first example, a pair of inner rings 16 is provided on the outer peripheral surface of the hub 8b.
a and 16b are externally fitted. For this purpose, a small-diameter step portion 15 is formed on the outer peripheral surface of the hub 8a in the axial middle portion or the inner half portion, and inner ring raceways 14a and 14b are formed on the outer peripheral surface of the small-diameter step portion 15, respectively. Each inner ring 16
a and 16b are externally fitted. At the inner end of the hub 8b, a portion of each of the inner rings 16a and 16b, which protrudes in the axial direction from the inner end surface of the inner ring 16b on the inner side in the axial direction, is formed by caulking and expanding toward the outer diameter side. By
Fixing the inner rings 16a and 16b to the hub 8b,
It is a rotating member 23a. In the case of this embodiment, screw holes 45 are formed at a plurality of circumferentially equidistant places on the outer diameter side annular portion 33 provided on the rotating side flange 13a of the hub 8b. .
Bolts 47, 4 are inserted into these screw holes 45, 45.
The male screw portions 48, 48 provided at the distal end portion 7 are screwed together and tightened further. Each of the bolts 47 has the external thread portion 48 formed at the tip of the outer peripheral surface, and the cylindrical surface portion 50 formed at the intermediate portion. The outer diameter of the cylindrical surface portion 50 is larger than the outer diameter of the male screw portion 48. Then, these cylindrical surface portions 28, 28
The rotor 2a is inserted through through holes 46, 46 formed at a plurality of positions in the circumferential direction of a portion near the inner diameter of the rotor 2a. The male screw portion 48 of each of the bolts 47, 47
The external thread 48 and the cylindrical surface 5
The stepped surface 51 which is a continuous portion with the outer diameter side annular portion 33
Screwed into the screw hole 45 until it abuts against the inner side surface of the. In this state, the axial length L 'between the inner surface of the outer diameter side annular portion 33 and the outer surfaces of the heads 50, 50 of the bolts 47, 47 is determined by the thickness d of the rotor 2a. It is slightly larger than 2a . With this configuration, the rotor 2a is freely supported on the inner side in the axial direction of the rotation side flange 13a with a slight displacement in the axial direction.
In the illustrated example, a groove 52 for engaging a flathead screwdriver is formed in the end face of the head 49, 49 of each of the bolts 47, 47, but this groove 52 is formed in a cross shape. By forming, a Phillips screwdriver can be freely engaged with the groove 52. Further, by making the outer peripheral surfaces of the heads 49, 49 hexagonal, a tool such as a wrench can be freely engaged with the outer peripheral surfaces. Also, the head 4
By forming a hexagonal hole in the end surfaces of 9, 49, a tool such as a hexagon wrench can be freely engaged with this hole. In the case of the present embodiment, the direction in which the plurality of bolts 7 are inserted into the fixed flange 12 and the knuckle 3 provided on the outer peripheral surface of the outer ring 6 is different from that of the first embodiment. . That is, in the case of the first example shown in FIGS. 1 to 3 described above, the inner peripheral surface is merely a cylindrical surface at a plurality of circumferential positions existing around the support hole 4 at a part of the knuckle 3. A hole 43 is formed, and a screw hole 44 is formed in a part of the fixed side flange 12 provided in the outer race 6 at a position matching with the above-mentioned through holes 43. When the wheel supporting bearing unit 5 is used, the through-hole 43 formed in the knuckle 3 is used.
The male screw portions of the plurality of bolts 7 inserted from the inside to the outside are screwed into screw holes 44 formed in the fixed side flange 12.
The fixed side flange 12 is fixed to the knuckle 3 by being screwed from inside to outside and further tightened. On the other hand, in the case of this example, screw holes 53 are formed at a plurality of circumferential positions around the support hole 4 in a part of the knuckle 3 and a part of the fixed side flange 12 is formed. A through hole 54 whose inner peripheral surface is a mere cylindrical surface is formed at a position corresponding to each of the screw holes 53. When the wheel supporting bearing unit 5 is used, the male screw portions of the plurality of bolts 7 having the through holes 54 inserted from the outside to the inside are used.
The fixed side flange 12 is fixed to the knuckle 3 by being screwed into the screw hole 53 formed in the knuckle 3 from the outside to the inside, and further tightened. Further, in the case of this example, each of the through holes 54 formed in the fixed side flange 12 when the hub 8a is rotated with respect to the outer ring 6 by a part of the rotating side flange 13a provided on the outer peripheral surface of the hub 8b. A work hole 55 is formed at a position where the work hole 55 can be opposed in the axial direction. The bolts 7 and the tips of tools (not shown) used for screwing and tightening these bolts 7 can be inserted through the working holes 55. The wheel supporting bearing unit 5 of the present embodiment constructed as described above is conveyed from a part unit manufacturer of the bearing unit to a finished product manufacturer of the automobile in a state before the wheel 1 is fixed to the rotating flange 13a. . Then, with this finished product maker, with the inner end of the outer ring 6 being fitted in the support hole 4 of the knuckle 3, the tips of the plurality of bolts 7 are
It is inserted into the through hole 54 provided in the fixed side flange 12 from the outside to the inside. At this time, each of the bolts 7 is inserted into a space 56 between the inner side surface of the rotating side flange 13a and the outer side surface of the fixed side flange 12 through a working hole 55 provided in the rotating side flange 13a. Then, a male screw portion provided at a portion protruding from the inner side surface of the fixed side flange 12 at a tip portion of each bolt 7 is screwed into a screw hole 53 provided in the knuckle 3 and further tightened. Such screwing / tightening work is performed by engaging the tip of a tool such as a hexagon wrench, which has entered the space 56 through the working hole 55, with the head of each bolt 7. In the case of this embodiment, only one working hole 55 is provided in the rotating flange 13a, so that each time the screwing and tightening work of one bolt 7 is completed, the outer ring 6 is formed. On the other hand, the hub 8b is rotated so that the remaining through-hole 54 provided in the fixed side flange 12 and the working hole 55 are opposed to each other in the axial direction. Then, the space 56 is passed through the working hole 55.
The male screw portion of the bolt 7 that has entered the knuckle 3 is screwed into the screw hole 53 provided in the knuckle 3 and further tightened. As described above, in the case of this example, since only one working hole 55 is provided in the rotating flange 13a, the rotation by forming the working hole 55 in the rotating flange 13a is performed. Side flange 13a
Can be prevented from decreasing in strength. As described above, when the outer ring 6 is fixed to the knuckle 3 by the plurality of bolts 7 by the finished product manufacturer of the automobile, a plurality of studs 9 and nuts 10 The wheel 1 is fixed to the inner ring 32 of the flange 13a. If sufficient strength of the rotating side flange 13a can be ensured, the rotating side flange 13a is provided with the same number of working holes as the through holes 54 provided in the fixed side flange 12 and the plurality of through holes 5a.
4 can be formed at the same pitch. In the case where a plurality of working holes are formed in this way, unlike the case of this example, the hub 8b is rotated with respect to the outer ring 6 every time the screwing and tightening work of the bolts 7 is completed. No need for troublesome work. In the case of the present embodiment constructed as described above, since the rotor 2a is supported axially inside the outer annular portion 33 of the rotating flange 13a, the rotating flange 13a is supported.
The outer surface of the inner-diameter side annular portion 32 and the outer-diameter side annular portion 33
Even when the axial length L 33 (FIG. 5) between the outer surface of the rotor 2a and the outer surface of the rotor 2a is relatively small, the axial length L 33 (FIG. 5) is relatively small. By increasing L 2a (FIG. 5), it is possible to effectively prevent interference between the components of the disc brake and the wheel 1. For this reason, in the case of the present example, the cylindrical portion 31 forming the rotating side flange 13a is used.
Is reduced in the axial direction to reduce the volume of the rotating side flange 13a, and the weight of the hub 8b can be easily reduced. still,
Unlike the case of this example, the rotor 2a can be supported on the outer side in the axial direction of the rotating flange 13a. However, in this case, the axial length between the outer surface of the inner-diameter annular portion 32 and the outer surface of the outer-diameter annular portion 33 is made larger than in the case of this example, and It is necessary to prevent interference between the components and the wheel 1. In this case, the weight of the wheel supporting bearing unit 5 tends to be larger than in the case of this example. Other configurations and operations are the same as those of the first example shown in FIGS. 1 to 3 described above, and therefore, the same reference numerals are given to the same parts, and duplicate description will be omitted. In each of the above-described examples, the cylindrical portion 31 is formed at the radially intermediate portion of the rotating flange 13a, so that the outer circular portion 33 is made larger than the inner circular portion 32. It is provided on the inner side in the axial direction. However, the present invention is not limited to such a structure. For example, by forming a conical cylindrical portion whose diameter increases toward the inner side in the axial direction at the radially intermediate portion of the rotating side flange 13a, the outer diameter side annular portion 33 is connected to the inner diameter side annular portion. 32 may be provided on the inner side in the axial direction. The bearing unit for supporting a wheel according to the present invention is constructed and operates as described above, so that a structure capable of reducing the weight and performance of the disc brake can be obtained at low cost.

【図面の簡単な説明】 【図1】本発明の実施の形態の第1例を示す断面図。 【図2】図1のA矢示図。 【図3】同じくB部拡大断面図。 【図4】本発明の実施の形態の第2例を示す断面図。 【図5】図4のC部拡大断面図。 【図6】本発明の対象となる車輪支持用軸受ユニットの
組み付け状態の1例を示す断面図。 【符号の説明】 1 ホイール 2、2a ロータ 3 ナックル 4 支持孔 5 車輪支持用軸受ユニット 6 外輪 7 ボルト 8、8a、8b ハブ 9 スタッド 10 ナット 11a、11b 外輪軌道 12 固定側フランジ 13、13a 回転側フランジ 14a、14b 内輪軌道 15 小径段部 16、16a、16b 内輪 17 玉 18 保持器 19a、19b シールリング 20 スプライン孔 21 等速ジョイント 22 スプライン軸 23、23a 回転部材 24 取付孔 25 セレーション部 26 通孔 27 通孔 28 雄ねじ部 29 筒部 30 かしめ部 31 円筒部 32 内径側円輪部 33 外径側円輪部 34 内側凹部 35 外側凹部 36 円孔 37 連結部材 38 外向鍔部 39 かしめ部 40 小径段部 41 間座 42 段差面 43 通孔 44 ねじ孔 45 ねじ孔 46 通孔 47 ボルト 48 雄ねじ部 49 頭部 50 円筒面部 51 段差面 52 溝部 53 ねじ孔 54 通孔 55 作業用孔 56 空間
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing a first example of an embodiment of the present invention. FIG. 2 is a diagram showing an arrow A in FIG. 1; FIG. 3 is an enlarged sectional view of a portion B in the same manner. FIG. 4 is a sectional view showing a second example of the embodiment of the present invention. FIG. 5 is an enlarged sectional view of a portion C in FIG. 4; FIG. 6 is a sectional view showing an example of an assembled state of a wheel supporting bearing unit to which the present invention is applied. [Description of Signs] 1 Wheel 2, 2a Rotor 3 Knuckle 4 Support hole 5 Wheel support bearing unit 6 Outer ring 7 Bolt 8, 8a, 8b Hub 9 Stud 10 Nut 11a, 11b Outer ring track 12 Fixed flange 13, 13a Rotation side Flanges 14a, 14b Inner ring raceway 15 Small diameter stepped portions 16, 16a, 16b Inner ring 17 Ball 18 Cage 19a, 19b Seal ring 20 Spline hole 21 Constant velocity joint 22 Spline shaft 23, 23a Rotating member 24 Mounting hole 25 Serration portion 26 Through hole 27 Through-hole 28 Male screw part 29 Cylindrical part 30 Caulking part 31 Cylindrical part 32 Inner diameter side annular part 33 Outer diameter side annular part 34 Inner concave part 35 Outer concave part 36 Round hole 37 Connecting member 38 Outer flange part 39 Caulking part 40 Small diameter step Part 41 spacer 42 step surface 43 through hole 44 screw hole 45 screw hole 46 through hole 47 bolt 48 Male screw part 49 Head 50 Cylindrical surface part 51 Step surface 52 Groove part 53 Screw hole 54 Through hole 55 Working hole 56 Space

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3J058 AA48 AA53 AA62 BA68 BA73 CB14 CB17 DD03 DD06 EA17 FA01 3J101 AA02 AA43 AA54 AA62 BA53 BA57 BA70 BA77 EA03 EA47 FA51 GA03    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 3J058 AA48 AA53 AA62 BA68 BA73                       CB14 CB17 DD03 DD06 EA17                       FA01                 3J101 AA02 AA43 AA54 AA62 BA53                       BA57 BA70 BA77 EA03 EA47                       FA51 GA03

Claims (1)

【特許請求の範囲】 【請求項1】 静止側軌道を有し、使用時にも回転しな
い静止輪と、回転側軌道を有し、使用時に回転する回転
部材と、この回転部材の外周面に設けられた回転側フラ
ンジと、上記静止側軌道と回転側軌道との間に設けられ
た複数個の転動体と、上記回転側フランジにこの回転側
フランジに対する回転を阻止した状態で支持された、制
動時に摩擦材を押し付けられる制動用摩擦面を有するロ
ータとを備えた車輪支持用軸受ユニットに於いて、 上記ロータが炭素−炭素複合材製であり、且つ、上記回
転側フランジの外径寄り部分が、この回転側フランジの
内径寄り部分よりも軸方向内側に設けられていると共
に、上記ロータがこの外径寄り部分に支持されている事
を特徴とする車輪支持用軸受ユニット。
Claims: 1. A stationary wheel having a stationary track and not rotating during use, a rotating member having a rotating track and rotating during use, and an outer peripheral surface of the rotating member. Provided on the rotating side flange, a plurality of rolling elements provided between the stationary side track and the rotating side track, and a brake supported by the rotating side flange in a state of preventing rotation with respect to the rotating side flange. A rotor having a friction surface for braking against which a friction material is sometimes pressed, wherein the rotor is made of a carbon-carbon composite material, and a portion of the rotating side flange close to the outer diameter is formed. A wheel support bearing unit, which is provided axially inward of a portion closer to the inner diameter of the rotating side flange, and wherein the rotor is supported by the portion closer to the outer diameter.
JP2002060411A 2002-03-06 2002-03-06 Bearing unit for supporting wheel Pending JP2003254362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002060411A JP2003254362A (en) 2002-03-06 2002-03-06 Bearing unit for supporting wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002060411A JP2003254362A (en) 2002-03-06 2002-03-06 Bearing unit for supporting wheel

Publications (2)

Publication Number Publication Date
JP2003254362A true JP2003254362A (en) 2003-09-10
JP2003254362A5 JP2003254362A5 (en) 2005-07-28

Family

ID=28669782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002060411A Pending JP2003254362A (en) 2002-03-06 2002-03-06 Bearing unit for supporting wheel

Country Status (1)

Country Link
JP (1) JP2003254362A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2398044A (en) * 2003-02-10 2004-08-11 Visteon Global Tech Inc Integrated wheel end for a wheel suspension of a motor vehicle
JP2006009930A (en) * 2004-06-25 2006-01-12 Koyo Seiko Co Ltd Bearing device for supporting pinion shaft
JP2006143071A (en) * 2004-11-22 2006-06-08 Jtekt Corp Hub unit for vehicle
CN1315662C (en) * 2003-09-26 2007-05-16 丰田自动车株式会社 Hub of suspension for vehicle
JP2008037272A (en) * 2006-08-07 2008-02-21 Nsk Ltd Race member for rolling bearing unit, rolling bearing unit, and method and device for manufacturing race member for rolling bearing unit
JP2011033083A (en) * 2009-07-30 2011-02-17 Jtekt Corp Rolling bearing device for wheel
JP2012063522A (en) * 2010-09-15 2012-03-29 Konica Minolta Business Technologies Inc Image forming apparatus
CN103415399A (en) * 2011-03-07 2013-11-27 株式会社捷太格特 Rolling bearing device for wheel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2398044A (en) * 2003-02-10 2004-08-11 Visteon Global Tech Inc Integrated wheel end for a wheel suspension of a motor vehicle
GB2398044B (en) * 2003-02-10 2005-04-06 Visteon Global Tech Inc Integrated wheel end for a wheel suspension of a motor vehicle
US6880841B2 (en) 2003-02-10 2005-04-19 Visteon Global Technologies, Inc. Integrated wheel end for a wheel suspension of a motor vehicle
CN1315662C (en) * 2003-09-26 2007-05-16 丰田自动车株式会社 Hub of suspension for vehicle
JP2006009930A (en) * 2004-06-25 2006-01-12 Koyo Seiko Co Ltd Bearing device for supporting pinion shaft
JP4525208B2 (en) * 2004-06-25 2010-08-18 株式会社ジェイテクト Bearing device for pinion shaft support
JP2006143071A (en) * 2004-11-22 2006-06-08 Jtekt Corp Hub unit for vehicle
JP2008037272A (en) * 2006-08-07 2008-02-21 Nsk Ltd Race member for rolling bearing unit, rolling bearing unit, and method and device for manufacturing race member for rolling bearing unit
JP2011033083A (en) * 2009-07-30 2011-02-17 Jtekt Corp Rolling bearing device for wheel
JP2012063522A (en) * 2010-09-15 2012-03-29 Konica Minolta Business Technologies Inc Image forming apparatus
CN103415399A (en) * 2011-03-07 2013-11-27 株式会社捷太格特 Rolling bearing device for wheel

Similar Documents

Publication Publication Date Title
JP2003097588A (en) Hub unit for automobile driving wheel
JP3650746B2 (en) Wheel bearing fixed structure and wheel bearing
JP2003094905A (en) Bearing device for axle
JP2009149183A (en) Bearing device for wheel
JP3533883B2 (en) Hub unit for wheel support
JP2003254362A (en) Bearing unit for supporting wheel
JP2002178706A (en) Wheel driving bearing unit
WO2003029025A2 (en) Compact unitized hub assembly
JP4239495B2 (en) Bearing device
JP2013086514A (en) Rolling bearing unit for supporting wheel
JP2003002003A (en) Bearing unit for wheel
JP2000006610A (en) Rolling bearing unit combining with another article
JP2018197598A (en) Hub unit for drive wheel
JP2002187404A (en) Wheel bearing device
JP4023129B2 (en) Rotating member for braking and rolling bearing unit with wheel
JP3954279B2 (en) Wheel support structure
JP2006144966A (en) Rolling bearing device
JP2021060076A (en) Hub unit bearing
JP2004106618A (en) Rolling bearing unit for supporting wheel
JP2003148526A (en) Wheel support bearing unit for automobile
JP2004306681A (en) Rolling bearing unit for wheel support
JP2004150485A (en) Rolling bearing device
JP2004255893A (en) Bearing unit for vehicle wheel
JP2003054203A (en) Bearing unit for wheel
EP1470936A1 (en) Bearing unit for vehicle wheel

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904