JP2003254293A - Jet fan - Google Patents

Jet fan

Info

Publication number
JP2003254293A
JP2003254293A JP2002053865A JP2002053865A JP2003254293A JP 2003254293 A JP2003254293 A JP 2003254293A JP 2002053865 A JP2002053865 A JP 2002053865A JP 2002053865 A JP2002053865 A JP 2002053865A JP 2003254293 A JP2003254293 A JP 2003254293A
Authority
JP
Japan
Prior art keywords
fan
blade
rotor blade
angle
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002053865A
Other languages
Japanese (ja)
Inventor
Satoshi Toyama
聡 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2002053865A priority Critical patent/JP2003254293A/en
Publication of JP2003254293A publication Critical patent/JP2003254293A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Ventilation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a jet fan wherein efficiency is remarkably improved and noise is reduced in conformance to a large air quantity without using a structurally complicating rotor blade reversing mechanism and the like. <P>SOLUTION: Rotor blades 5 of fans 6 have a streamline profile. At air current generation, the rotor blades 5 of the fan 6 that is positioned in a front stage bear a 100% workload rate, and the rotor blades 5 of the fan 6 that is positioned in a back stage bear a 0% workload rate. Support legs of a double shaft motor have a flat plate form and a mounting angle conformed to an outlet angle of an air current from a trailing edge of the tip of the rotor blades 5 of the fan 6 positioned in the front stage. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、トンネルの天井部
に設けられ且つ該トンネル内の換気を行うための軸流形
のジェットファンに関するものである。 【0002】 【従来の技術】一般に、自動車が走行するトンネル内に
おいては、ドライバーの視環境の確保、自動車から排出
される一酸化炭素や亜硫酸ガス等の有害物質の希釈、火
災時の避難路の確保等を目的として、換気を行う必要が
あり、このため、トンネルの天井部には軸流形のジェッ
トファンが設けられる。 【0003】図9は一般的なジェットファンの一例を示
す斜視図であって、1はジェットファンであり、該ジェ
ットファン1は、トンネルの天井部に取り付けられる円
筒状のケーシング2内に、支持脚3により同心状となる
よう両軸モータ4を配設し、該両軸モータ4の各軸にそ
れぞれ、複数枚の動翼5を有するファン6を嵌着してな
る構成を有しており、前記両軸モータ4を正転させたと
きには正方向の気流7が発生し、又、前記両軸モータ4
を逆転させたときには逆方向の気流8が発生するように
なっている。 【0004】従来においては、逆転による同一仕様での
双方向送風の機能を実現するために、前記ファン6の動
翼5の翼形には、背面と正面の形状が円弧で反りのない
対称形のものが用いられていた。 【0005】 【発明が解決しようとする課題】しかしながら、前述の
如く、ファン6の動翼5の翼形に、背面と正面の形状が
円弧で反りのない対称形のものを用いるのでは、空力、
騒音特性が悪く、大風量化に対応した大幅な高効率化と
低騒音化を図ることが困難となっていた。 【0006】このため、ファン6の動翼5の翼形を流線
形にして空力、騒音特性を向上させることも考えられて
いるが、この場合、逆転による同一仕様での双方向送風
の機能を実現するために、動翼反転機構が不可欠とな
る。しかしながら、ジェットファンに動翼反転機構を設
けるのでは、全体の構造が複雑になり、コストアップに
もつながるという欠点を有していた。 【0007】本発明は、斯かる実情に鑑み、構造が複雑
になる動翼反転機構等を設けることなく、大風量化に対
応した大幅な高効率化と低騒音化を図り得るジェットフ
ァンを提供しようとするものである。 【0008】 【課題を解決するための手段】本発明は、トンネルの天
井部に取り付けられる円筒状のケーシングと、該ケーシ
ング内に支持脚により同心状となるよう配設された両軸
モータと、該両軸モータの各軸にそれぞれ嵌着され且つ
動翼を有するファンとを備え、前記両軸モータを正転又
は逆転させることにより、正方向又は逆方向の気流を発
生させるジェットファンにおいて、ファンの動翼の翼形
を流線形にすると共に、気流発生時に前段に位置するフ
ァンの動翼の仕事負担率を100%とし且つ後段に位置
するファンの動翼の仕事負担率を0%とし、両軸モータ
の支持脚を平板状とし且つその取付角度を前段に位置す
るファンの動翼の先端部後縁からの気流の流出角度に一
致させたことを特徴とするジェットファンにかかるもの
である。 【0009】上記手段によれば、以下のような作用が得
られる。 【0010】ファンの動翼の翼形を流線形にすると共
に、気流発生時に前段に位置するファンの動翼の仕事負
担率を100%とし且つ後段に位置するファンの動翼の
仕事負担率を0%とすると、ファンの動翼の翼形に、従
来のように、背面と正面の形状が円弧で反りのない対称
形のものを用いるのとは異なり、空力、騒音特性が良
く、大風量化に対応した大幅な高効率化と低騒音化が可
能となり、しかも、逆転による同一仕様での双方向送風
の機能を実現するための動翼反転機構を設けなくて済
み、全体の構造が複雑化せず、コストアップも避けら
れ、更に、両軸モータの支持脚を平板状とし且つその取
付角度を前段に位置するファンの動翼の先端部後縁から
の気流の流出角度に一致させると、支持脚にひねりを加
えなくても、抵抗を最小限に抑えることが可能となる。 【0011】 【発明の実施の形態】以下、本発明の実施の形態を図示
例と共に説明する。 【0012】図1は本発明を実施する形態の一例であっ
て、図中、図9と同一の符号を付した部分は同一物を表
わしている。 【0013】図1に示す如く、ファン6の動翼5の翼形
を流線形にすると共に、気流発生時に前段に位置するフ
ァン6の動翼5の仕事負担率を100%とし且つ後段に
位置するファン6の動翼5の仕事負担率を0%とする。
回転方向が矢印の方向(図1中、右方向)である場合、
前段に位置するファン6の動翼5は前縁が丸形で後縁が
尖る通常の翼形状となるのに対し、後段に位置するファ
ン6の動翼5は前縁が尖り後縁が丸形で通常の翼形状と
は反対となり、後段に位置するファン6の動翼5は気流
に対してエネルギを与えないものとなる。速度三角形に
ついて説明すると、気流発生時に前段に位置するファン
6でエネルギを与えると動翼5の揚力により相対相度
は、動翼5入口でW1であったものが動翼5出口ではW
2になり、絶対速度は動翼5入口でC1であったものが
動翼5出口ではC2になる。後段のファン6では相対速
度はW2のままで、絶対速度もC2のままである。尚、
図1中、Uは周速度である。 【0014】前記気流発生時に前段に位置するファン6
の一枚の動翼5に対する気流の流入方向と流出方向につ
いて考察すると、図2に示すようになる。即ち、軸方向
の速度Vの流れの中を、ファン6が回転数Nで回転して
いる場合、動翼5の先端部、中央部、根元部の各断面に
は、軸方向の流れ成分Vi(V1,V2,V3)と、回転と
反対方向の流れ成分Ti(T1,T2,T3)の合ベクトル
方向の流れが動翼5の前縁から流入する。尚、図2中、
1−X2は動翼5の先端部における断面の前縁と後縁を
つなぐ基準線、Y1−Y2は動翼5の中央部における断面
の前縁と後縁をつなぐ基準線、Z1−Z2は動翼5の根元
部における断面の前縁と後縁をつなぐ基準線である。 【0015】ここで、軸方向の速度Vについては、 【数1】V=V1=V2=V3 の関係があり、又、回転と反対方向の流れ成分Tiにつ
いては、動翼5の先端部、中央部、根元部の各断面にお
ける軸心からの距離(半径)をRiとした場合、 【数2】Ti=2×π×Ri×N となり、半径の大きい動翼5の先端部で最大となること
から、 【数3】T1>T2>T3 の関係がある。 【0016】そして、動翼5の前縁から流入した気流
は、その後縁から各断面の基準線X1−X2,Y1−Y2
1−Z2に対して流出角度θi(θ1,θ2,θ3)の方向
へ流出するが、前記流出角度θiは、各断面位置で動翼
5がする仕事(或いは発生揚力)に応じて決まる角度
で、一般に動翼5の先端部で大きく、根元部に向かって
小さくなり、動翼5の根元部のように仕事をしない場合
にはθi=0になることから、 【数4】θ1>θ2>θ3(≒0) の関係がある。 【0017】即ち、軸方向に沿って流れる一様流(流速
V)は、動翼5を過ぎると該動翼5の仕事によって流れ
の方向が変えられて、流出角度θiの向きに流出して行
く。つまり、動翼5のなす仕事によって流出角度θi
向きに旋回する流れとなって流出して行くこととなる。 【0018】動翼5の半径Riと流出角度θiとの関係
は、図3に示すようになる。図3中、θTIPは、動翼5
の先端部での流出角度を示している。 【0019】こうしたことから、例えば、図4(a)に
示される如く、ファン6後方に配置される支持脚3をひ
ねりのある曲板とすれば、図4(b)に示される如く、
動翼5の先端部、中央部、根元部の各断面から流出して
くる気流の方向に対応して支持脚3の各断面が置かれる
形となるため、理論的に抵抗がゼロとなり、理想的では
あるが、支持脚3に曲面加工が必要でコストアップにつ
ながり好ましくない。これに対し、例えば、図5(a)
に示す如く、ファン6後方に配置される支持脚3をひね
りのない平板とし且つ動翼5の先端部の流出角度に取付
角度を一致させると、図5(b)に示す如く、支持脚3
の軸心(両軸モータ4)側で大きな迎角をもつ形となる
が、この場合、気流の流速が遅いために抵抗はさほど大
きくならず小さく抑えられることとなる。因みに、例え
ば、図6(a)に示される如く、ファン6後方に配置さ
れる支持脚3をひねりのない平板とし且つ動翼5の根元
部の流出角度に取付角度を一致させると、図6(b)に
示される如く、支持脚3のケーシング2内面側で大きな
迎角をもつ形となるが、この場合、気流の流速が速いた
めに抵抗も大きくなる。 【0020】従って、流体力学的には、図4に示される
ように支持脚3をひねりのある曲板とすることが最も理
想的であるが、本発明の実施の形態においては、製造コ
ストも含めて考え、図5に示す如く、両軸モータ4の支
持脚3を平板状とし且つその取付角度を前段に位置する
ファン6の動翼5の先端部後縁からの気流の流出角度に
一致させるようにする。 【0021】次に、上記図示例の作動を説明する。 【0022】前述の如く、ファン6の動翼5の翼形を流
線形にすると共に、気流発生時に前段に位置するファン
6の動翼5の仕事負担率を100%とし且つ後段に位置
するファン6の動翼5の仕事負担率を0%とすると、従
来のように、ファン6の動翼5の翼形に、背面と正面の
形状が円弧で反りのない対称形のものを用いるのとは異
なり、空力、騒音特性が良く、大風量化に対応した大幅
な高効率化と低騒音化が可能となり、しかも、逆転によ
る同一仕様での双方向送風の機能を実現するための動翼
反転機構を設けなくて済み、全体の構造が複雑化せず、
コストアップも避けられ、更に、両軸モータ4の支持脚
3を平板状とし且つその取付角度を前段に位置するファ
ン6の動翼5の先端部後縁からの気流の流出角度に一致
させると、支持脚3にひねりを加えなくても、抵抗を最
小限に抑えることが可能となる。 【0023】尚、前述の如く構成したジェットファン1
において、動翼5の角度を設計値から変化させた場合
に、正転、逆転時のデータをプロットした性能試験結果
は、図7(a)(b)(c)に示すようになり、設計動
翼角度からの偏角を0.0即ち動翼角度を設計値とした
場合に、吐出風量がその仕様値の下限より低くなること
なく、且つ軸動力がその仕様値の上限を越えることな
く、ファン効率をその仕様値の下限を上回るおよそ82
%程度まで上げられることが確認された。又、図8に示
す如く、騒音レベルについても従来型と比較して低減で
きることが確認された。 【0024】こうして、構造が複雑になる動翼反転機構
等を設けることなく、大風量化に対応した大幅な高効率
化と低騒音化を図り得る。 【0025】尚、本発明のジェットファンは、上述の図
示例にのみ限定されるものではなく、本発明の要旨を逸
脱しない範囲内において種々変更を加え得ることは勿論
である。 【0026】 【発明の効果】以上、説明したように本発明のジェット
ファンによれば、構造が複雑になる動翼反転機構等を設
けることなく、大風量化に対応した大幅な高効率化と低
騒音化を図り得るという優れた効果を奏し得る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial-flow type jet fan provided on a ceiling portion of a tunnel and for ventilating the inside of the tunnel. 2. Description of the Related Art Generally, in a tunnel in which a car travels, a driver's visual environment is ensured, harmful substances such as carbon monoxide and sulfur dioxide discharged from the car are diluted, and an evacuation route in the event of a fire is established. Ventilation needs to be performed for the purpose of securing or the like. For this reason, an axial flow type jet fan is provided on the ceiling of the tunnel. FIG. 9 is a perspective view showing an example of a general jet fan. Reference numeral 1 denotes a jet fan. The jet fan 1 is supported in a cylindrical casing 2 attached to a ceiling of a tunnel. A dual-axis motor 4 is provided so as to be concentric with the legs 3, and a fan 6 having a plurality of moving blades 5 is fitted to each axis of the dual-axis motor 4. When the two-axis motor 4 is rotated forward, a forward airflow 7 is generated.
Is reversed, an airflow 8 in the opposite direction is generated. Conventionally, in order to realize the function of bidirectional air blowing with the same specifications by reverse rotation, the airfoil of the moving blade 5 of the fan 6 has a symmetrical shape in which the back and front surfaces are circular and have no warpage. Was used. [0005] However, as described above, if the blades of the rotor blades 5 of the fan 6 are of a symmetrical shape in which the back surface and the front surface are circular and have no warpage, the aerodynamic ,
The noise characteristics were poor, and it was difficult to achieve a significant increase in efficiency and a reduction in noise in response to a large air volume. For this reason, it has been considered to improve the aerodynamic and noise characteristics by making the airfoil of the rotor blade 5 of the fan 6 streamlined. In this case, the function of bidirectional air blowing with the same specifications by reverse rotation is considered. In order to realize this, a blade reversing mechanism is indispensable. However, providing the moving blade reversing mechanism in the jet fan has a disadvantage that the entire structure becomes complicated and leads to an increase in cost. The present invention has been made in view of the above circumstances, and provides a jet fan capable of significantly increasing efficiency and reducing noise corresponding to a large air flow without providing a moving blade reversing mechanism having a complicated structure. What you are trying to do. According to the present invention, there is provided a cylindrical casing mounted on a ceiling of a tunnel, a double-shaft motor disposed concentrically by supporting legs in the casing, and A fan fitted to each shaft of the dual-shaft motor and having a moving blade, wherein the dual-shaft motor rotates forward or reverse to generate a forward or reverse airflow; And the work load of the rotor blade of the fan located at the front stage at the time of airflow generation is set to 100%, and the work load ratio of the rotor blade of the fan located at the rear stage is set to 0%, The present invention relates to a jet fan, wherein the support legs of the double-shaft motor are formed in a flat plate shape, and the mounting angle thereof is made to coincide with the outflow angle of the airflow from the trailing edge of the leading edge of the rotor blade of the fan located at the front stage. You. According to the above means, the following effects can be obtained. The airfoil shape of the moving blade of the fan is made streamlined, and the work load of the moving blade of the fan located at the front stage is set to 100% when the air flow is generated, and the work load of the moving blade of the fan located at the rear stage is reduced. If it is set to 0%, the aerodynamic and noise characteristics are good and the wind is large unlike the conventional case where the back and front shapes of the fan blades are symmetrical with no arc and no warp. Significantly higher efficiency and lower noise can be achieved in response to the quantity increase, and there is no need to provide a rotating blade reversing mechanism to realize the function of bidirectional air blowing with the same specifications by reversing, making the overall structure complicated If the support legs of the two-axis motor are made flat and the mounting angle is made to match the outflow angle of the airflow from the trailing edge of the tip of the rotor blade of the fan located at the front stage. Minimizes drag without twisting the support legs It can be suppressed to become. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of an embodiment of the present invention. In FIG. 1, portions denoted by the same reference numerals as those in FIG. 9 represent the same components. As shown in FIG. 1, the blades 5 of the fan 6 have a streamlined airfoil shape, and the work load of the rotor blades 5 of the fan 6 located at the front stage at the time of airflow generation is set to 100% and the work load ratio at the rear stage is determined. The work load rate of the rotor blades 5 of the fan 6 to be performed is set to 0%.
When the rotation direction is the direction of the arrow (right direction in FIG. 1),
The rotor blades 5 of the fan 6 located at the front stage have a normal blade shape with a round front edge and a sharp rear edge, whereas the rotor blades 5 of the fan 6 located at the rear stage have a sharp front edge and a round rear edge. The shape is opposite to the normal blade shape, and the rotor blade 5 of the fan 6 located at the subsequent stage does not give energy to the airflow. To explain the speed triangle, when energy is given by the fan 6 located at the preceding stage at the time of airflow generation, the relative phase is W1 at the entrance of the moving blade 5 due to the lift of the moving blade 5, but W at the exit of the moving blade 5.
The absolute speed is C1 at the entrance of the moving blade 5, but becomes C2 at the exit of the moving blade 5. In the subsequent fan 6, the relative speed remains at W2 and the absolute speed also remains at C2. still,
In FIG. 1, U is a peripheral speed. The fan 6 located at the preceding stage when the air flow is generated
FIG. 2 shows the inflow direction and outflow direction of the airflow with respect to one blade 5. That is, when the fan 6 is rotating at the rotation speed N in the flow of the velocity V in the axial direction, the cross section of the tip, the center, and the root of the rotor blade 5 has an axial flow component V i (V 1 , V 2 , V 3 ) and the flow in the combined vector direction of the flow components T i (T 1 , T 2 , T 3 ) in the direction opposite to the rotation flow in from the leading edge of the bucket 5. In FIG. 2,
X 1 -X 2 is a reference line connecting the leading edge and the trailing edge of the section at the tip of the bucket 5, Y 1 -Y 2 is a reference line connecting the leading edge and the trailing edge of the section at the center of the bucket 5, Z 1 -Z 2 is a reference line connecting the leading edge and the trailing edge of the cross section at the root of the rotor blade 5. Here, for the velocity V in the axial direction, there is a relation of V = V 1 = V 2 = V 3 , and for the flow component T i in the direction opposite to the rotation, the moving blade 5 Assuming that the distance (radius) from the axis at each of the cross-section of the tip, center, and root of the blade is R i , T i = 2 × π × R i × N. 5 has the following relationship: T 1 > T 2 > T 3 . The airflow that has flowed in from the leading edge of the rotor blade 5 has the reference lines X 1 -X 2 , Y 1 -Y 2 ,
The fluid flows out in the direction of the outflow angle θ i1 , θ 2 , θ 3 ) with respect to Z 1 -Z 2 , and the outflow angle θ i depends on the work (or the generated lift) performed by the rotor blade 5 at each sectional position. ), The angle is generally large at the tip of the moving blade 5 and decreases toward the root, and θ i = 0 when no work is performed like the root of the moving blade 5. ## EQU4 ## There is a relationship of θ 1 > θ 2 > θ 3 (≒ 0). [0017] That is, uniform flow flowing along the axial direction (flow velocity V) is past the rotor blade 5 is changed the direction of the flow by the work of the animal blade 5, it flows out in the direction of the outflow angle theta i Go. That is, due to the work performed by the rotor blades 5, the flow turns in the direction of the outflow angle θ i and flows out. The relationship between the radius R i of the rotor blade 5 and the outflow angle θ i is as shown in FIG. In FIG. 3, θ TIP is
Shows the outflow angle at the tip end. For this reason, for example, as shown in FIG. 4 (a), if the support leg 3 arranged behind the fan 6 is a curved plate having a twist, as shown in FIG. 4 (b),
Since each cross section of the support leg 3 is placed in accordance with the direction of the airflow flowing out from the cross section of the tip, the center, and the root of the rotor blade 5, the resistance is theoretically zero and the ideal. However, the support leg 3 needs a curved surface processing, which leads to an increase in cost, which is not preferable. On the other hand, for example, FIG.
As shown in FIG. 5 (b), when the support leg 3 disposed behind the fan 6 is a flat plate without twist and the mounting angle matches the outflow angle of the tip of the rotor blade 5, as shown in FIG.
Has a large angle of attack on the side of the shaft center (both shaft motor 4), but in this case, the resistance is suppressed to a small value without being so large because the flow velocity of the air flow is slow. Incidentally, for example, as shown in FIG. 6A, when the support leg 3 arranged behind the fan 6 is a flat plate without twist and the mounting angle matches the outflow angle of the root of the rotor blade 5, FIG. As shown in (b), the support leg 3 has a large angle of attack on the inner surface side of the casing 2, but in this case, the resistance is also increased due to the high flow velocity of the air flow. Therefore, in terms of hydrodynamics, it is most ideal that the support leg 3 is a curved plate having a twist as shown in FIG. 4, but in the embodiment of the present invention, the manufacturing cost is also reduced. As shown in FIG. 5, the support leg 3 of the two-axis motor 4 is formed in a flat plate shape, and its mounting angle matches the outflow angle of the airflow from the trailing edge of the tip of the rotor blade 5 of the fan 6 located at the front stage. Let it do. Next, the operation of the illustrated example will be described. As described above, the airfoil of the rotor blade 5 of the fan 6 has a streamlined shape, the work load of the rotor blade 5 of the fan 6 located at the front stage is 100%, and the fan located at the rear stage is located at the time of airflow generation. Assuming that the work load ratio of the moving blades 5 of the fan 6 is 0%, as in the conventional case, the wings of the moving blades 5 of the fan 6 use a symmetrical shape in which the back and front surfaces are circular and have no warpage. In contrast, the aerodynamic and noise characteristics are good, and it is possible to significantly increase efficiency and reduce noise in response to large air volume, and also to perform rotor reversal to realize the function of bidirectional air blowing with the same specifications by reverse rotation. There is no need to provide a mechanism, the overall structure is not complicated,
It is also possible to avoid an increase in cost, and furthermore, to make the support leg 3 of the two-axis motor 4 flat, and to make its mounting angle coincide with the outflow angle of the airflow from the trailing edge of the tip of the rotor blade 5 of the fan 6 located at the front stage. In addition, the resistance can be minimized without twisting the support leg 3. The jet fan 1 constructed as described above
In FIG. 7, when the angle of the rotor blade 5 is changed from the design value, the performance test results obtained by plotting the data at the time of normal rotation and reverse rotation are as shown in FIGS. 7A, 7B, and 7C. When the declination from the rotor blade angle is 0.0, that is, the rotor blade angle is a design value, the discharge air volume does not become lower than the lower limit of the specification value, and the shaft power does not exceed the upper limit of the specification value. , About 82 above the lower limit of its specification.
%. Further, as shown in FIG. 8, it was confirmed that the noise level could be reduced as compared with the conventional type. In this way, it is possible to achieve a significant increase in efficiency and a reduction in noise corresponding to a large air volume without providing a moving blade reversing mechanism or the like having a complicated structure. It should be noted that the jet fan of the present invention is not limited to the illustrated example described above, and it is needless to say that various changes can be made without departing from the spirit of the present invention. As described above, according to the jet fan of the present invention, it is possible to greatly increase the efficiency corresponding to a large air flow without providing a moving blade reversing mechanism or the like having a complicated structure. An excellent effect of reducing noise can be achieved.

【図面の簡単な説明】 【図1】本発明を実施する形態の一例における前後段の
動翼の翼形配置と速度三角形を示す図である。 【図2】本発明を実施する形態の一例における一枚の動
翼に対する気流の流入方向と流出方向を示す斜視図であ
る。 【図3】本発明を実施する形態の一例における動翼の半
径と流出角度との関係を示す線図である。 【図4】(a)はファン後方に配置される支持脚をひね
りのある曲板とした場合を示す図、(b)はファン後方
に配置される支持脚をひねりのある曲板とした場合の各
断面を示す図である。 【図5】(a)はファン後方に配置される支持脚をひね
りのない平板とし且つ動翼先端部の流出角度に取付角度
を一致させた場合を示す図、(b)はファン後方に配置
される支持脚をひねりのない平板とし且つ動翼先端部の
流出角度に取付角度を一致させた場合の各断面を示す図
である。 【図6】(a)はファン後方に配置される支持脚をひね
りのない平板とし且つ動翼根元部の流出角度に取付角度
を一致させた場合を示す図、(b)はファン後方に配置
される支持脚をひねりのない平板とし且つ動翼根元部の
流出角度に取付角度を一致させた場合の各断面を示す図
である。 【図7】本発明を実施する形態の一例の性能試験結果を
示す線図であって、(a)は動翼の翼角変化に対する吐
出風量の変化を示す線図、(b)は動翼の翼角変化に対
する軸動力の変化を示す線図、(c)は動翼の翼角変化
に対するファン効率の変化を示す線図である。 【図8】本発明を実施する形態の一例の騒音レベルを従
来型と比較した結果を示す図である。 【図9】一般的なジェットファンの一例を示す斜視図で
ある。 【符号の説明】 1 ジェットファン 2 ケーシング 3 支持脚 4 両軸モータ 5 動翼 6 ファン 7 気流 8 気流
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing an airfoil arrangement and a speed triangle of front and rear rotor blades in an example of an embodiment of the present invention. FIG. 2 is a perspective view showing an inflow direction and an outflow direction of an airflow to one blade in an example of an embodiment of the present invention. FIG. 3 is a diagram showing a relationship between a radius of a moving blade and an outflow angle in an example of an embodiment of the present invention. FIG. 4 (a) is a view showing a case where a support leg arranged behind the fan is a curved plate with a twist, and FIG. 4 (b) is a view showing a case where the support leg arranged behind the fan is a curved plate with a twist. It is a figure which shows each cross section. FIG. 5 (a) is a view showing a case where a support leg disposed behind the fan is a flat plate having no twist and an attachment angle is made equal to an outflow angle of a blade tip, and FIG. 5 (b) is disposed behind the fan. FIG. 6 is a view showing each cross section when the supporting legs to be formed are flat plates without twist and the mounting angle is made to coincide with the outflow angle of the blade tip. FIG. 6 (a) is a view showing a case where the support legs arranged behind the fan are flat plates without twist and the mounting angle is matched to the outflow angle of the blade root, and FIG. 6 (b) is arranged behind the fan. FIG. 7 is a view showing each cross section when the supporting legs to be formed are flat plates without twist and the mounting angle is made to coincide with the outflow angle of the blade root portion. 7A and 7B are diagrams showing performance test results of an example of an embodiment of the present invention, in which FIG. 7A is a diagram showing a change in a discharge air amount with respect to a change in blade angle of a moving blade, and FIG. FIG. 7C is a diagram illustrating a change in shaft power with respect to a change in blade angle of the rotor blade, and FIG. 7C is a diagram illustrating a change in fan efficiency with respect to a change in blade angle of the rotor blade. FIG. 8 is a diagram showing a result of comparing a noise level of an example of an embodiment of the present invention with a conventional noise level. FIG. 9 is a perspective view showing an example of a general jet fan. [Description of Signs] 1 Jet fan 2 Casing 3 Support leg 4 Double shaft motor 5 Moving blade 6 Fan 7 Air flow 8 Air flow

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F04D 29/52 F04D 29/52 D F24F 7/06 F24F 7/06 F Fターム(参考) 3H032 AA04 CA02 CA08 NA05 3H033 AA02 BB02 BB08 BB20 CC01 CC07 DD03 EE06 EE14 EE19 3H034 AA02 BB02 BB08 CC01 CC07 DD27 DD28 EE06 EE12 EE18 3L058 BD01 BE08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) F04D 29/52 F04D 29/52 D F24F 7/06 F24F 7/06 FF Term (Reference) 3H032 AA04 CA02 CA08 NA05 3H033 AA02 BB02 BB08 BB20 CC01 CC07 DD03 EE06 EE14 EE19 3H034 AA02 BB02 BB08 CC01 CC07 DD27 DD28 EE06 EE12 EE18 3L058 BD01 BE08

Claims (1)

【特許請求の範囲】 【請求項1】 トンネルの天井部に取り付けられる円筒
状のケーシングと、該ケーシング内に支持脚により同心
状となるよう配設された両軸モータと、該両軸モータの
各軸にそれぞれ嵌着され且つ動翼を有するファンとを備
え、前記両軸モータを正転又は逆転させることにより、
正方向又は逆方向の気流を発生させるジェットファンに
おいて、 ファンの動翼の翼形を流線形にすると共に、気流発生時
に前段に位置するファンの動翼の仕事負担率を100%
とし且つ後段に位置するファンの動翼の仕事負担率を0
%とし、 両軸モータの支持脚を平板状とし且つその取付角度を前
段に位置するファンの動翼の先端部後縁からの気流の流
出角度に一致させたことを特徴とするジェットファン。
Claims: 1. A cylindrical casing attached to a ceiling of a tunnel, a two-axis motor disposed concentrically by supporting legs in the casing, and a A fan fitted to each shaft and having a rotor blade, by rotating the dual-axis motor forward or reverse,
In a jet fan that generates airflow in the forward or reverse direction, the airfoil of the blade of the fan is made streamlined, and the work load of the rotor blade of the fan located at the preceding stage when the airflow is generated is 100%.
And the work load ratio of the rotor blade of the fan
A jet fan, wherein the support legs of the two-axis motor are formed in a flat plate shape, and the mounting angle thereof is made to coincide with the outflow angle of the airflow from the trailing edge of the tip of the rotor blade of the fan located at the front stage.
JP2002053865A 2002-02-28 2002-02-28 Jet fan Pending JP2003254293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002053865A JP2003254293A (en) 2002-02-28 2002-02-28 Jet fan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002053865A JP2003254293A (en) 2002-02-28 2002-02-28 Jet fan

Publications (1)

Publication Number Publication Date
JP2003254293A true JP2003254293A (en) 2003-09-10

Family

ID=28665179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002053865A Pending JP2003254293A (en) 2002-02-28 2002-02-28 Jet fan

Country Status (1)

Country Link
JP (1) JP2003254293A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040199A (en) * 2005-08-03 2007-02-15 Mitsubishi Heavy Ind Ltd Shroud of propeller fan and propeller fan
US7815418B2 (en) 2005-08-03 2010-10-19 Mitsubishi Heavy Industries, Ltd. Shroud and rotary vane wheel of propeller fan and propeller fan
CN108915752A (en) * 2018-08-09 2018-11-30 湖南科技大学 Extra-long Highway Tunnel open circulation ventilation divides wind to determine method than number maximum

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007040199A (en) * 2005-08-03 2007-02-15 Mitsubishi Heavy Ind Ltd Shroud of propeller fan and propeller fan
JP4508976B2 (en) * 2005-08-03 2010-07-21 三菱重工業株式会社 Propeller fan shroud and propeller fan
US7815418B2 (en) 2005-08-03 2010-10-19 Mitsubishi Heavy Industries, Ltd. Shroud and rotary vane wheel of propeller fan and propeller fan
US7909572B2 (en) 2005-08-03 2011-03-22 Mitsubishi Heavy Industries, Ltd. Shroud and rotary vane wheel of propeller fan and propeller fan
CN108915752A (en) * 2018-08-09 2018-11-30 湖南科技大学 Extra-long Highway Tunnel open circulation ventilation divides wind to determine method than number maximum

Similar Documents

Publication Publication Date Title
US11506211B2 (en) Counter-rotating fan
JP2007024004A (en) Axial fan
JP2002364594A (en) Enhanced performance fan with winglet
JP2008111383A (en) Axial fan
JP3071456U (en) Fan with series blades
JP3960776B2 (en) Blower impeller for air conditioning
JP2001090693A (en) Blower impeller and air conditioner
KR20080019521A (en) Propeller fan
JPH1089289A (en) Impeller for axial flow blower
JP2009250225A (en) Moving blade and axial flow blower using the same
CN210715259U (en) Coaxial double-impeller fan
JP6373439B1 (en) Axial fan
JP2003254293A (en) Jet fan
JP3602991B2 (en) Axial fan
JP2004027858A (en) Jet fan
CN213392780U (en) Outdoor machine of air conditioner
JPH05296195A (en) Axial fan
CN113123977B (en) Fan, air conditioner outdoor unit and air conditioner
JPH10311294A (en) Centrifugal blower
KR200314840Y1 (en) Low noise type fan
JP4233359B2 (en) Blower impeller for air conditioner
EP1382856A1 (en) Blower and air conditioner with the blower
WO2020077802A1 (en) Contra-rotating fan
JP4389285B2 (en) Jet fan
JPS60169699A (en) Vane wheel of multiblade blower